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Abstract—This paper studies mechanisms that produce hierar-
chical structuring of affordance learning tasks of different levels
of complexity. Guided by intrinsic motivation, our system detects
easy tasks first, and learns them in selected environments which
are maximally different from the previously encountered ones.
Easy tasks are learned from observed low-level attributes of the
environment, and provide abstractions over these attributes. As
learning progresses, the system shifts its focus and starts learning
harder tasks not only from low-level attributes but also from
previously-learned abstract concepts. Therefore, hard tasks are
autonomously placed higher in the hierarchy if the easy task
concepts are identified as distinctive input attributes of hard
tasks. Use of abstract concepts allows hard tasks to be learned
faster than learning them from scratch, i.e., from low-level
perception only. We tested our system with the tasks of learning
effect predictions for poke and stack actions using a dataset that
includes 83 real-world objects. On the basis of a large number of
runs of the method, our analysis shows that the hierarchical task
structure emerged as expected, along with a consistent learning
order. Furthermore, a significant bootstrapping effect in learning
speed of the stack action was observed with the discovered
hierarchy, albeit only when fully-learned poke actions were used
from the beginning.

Index Terms—intrinsic motivation, affordance, bootstrapping,
discriminative learning, structure learning, transfer learning, re-
use of concepts, prediction hierarchies, feature selection, diversity
maximization

I. INTRODUCTION

One hallmark feature of bootstrapped learning is that learn-

ing problems stack in the sense that higher-level learners use

as input attributes concepts produced by lower-level learners.

These higher-level attributes should allow faster learning than

if the higher-level concepts had to be learned from the lower-

level attributes alone. Consider an example where the robot

learns stackability affordances, i.e. learns to detect if two given

objects would stably stack on top of each other. In this case,

the robot needs to explore a high-dimensional search space if

it learns from low-level shape features of these objects such

as curvatures of different sides. On the other hand, if the

robot uses previously learned high-level abstractions, such as

rollability, it would learn which objects can be stacked on top

of each other by associating rollability and stackability from

fewer examples, This is achieved because the robot already

learns and encodes part of object-robot-environment dynamics

in the higher-level attribute of rollability, and can re-use this
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attribute to bootstrap other related learning problems that share

similar characteristics.

In this paper, we formulate the skill learning problem as

learning inter-dependent affordances where a robot is expected

to detect affordances of different complexities by learning the

relations between objects, actions and effects. In our system

the affordance detection is achieved by predicting what kind

of effect would be created on an object given the visual

properties of the object and the action applied. Following

the re-use idea, an expert can design a system which learns

simple affordances first, and gradually shifts its focus to more

complex affordances taking advantage of the learned simple

affordances. However in a life-long learning scenario where

the objects in the environment are unknown and changing, and

any arbitrary action can be added to the robot repertoire any

time, the difficulty of affordances cannot be known in advance

by the experts. A truly developmental agent should discover

the best means to organize its learning strategy so that the

skill re-use is most effective without such prior knowledge.

In other words, the agent should simultaneously discover the

learning order and the re-use structure of affordances.

Discovering the learning order of affordances means real-

izing an exploration strategy that shifts the focus of learn-

ing from simple to complex affordances. Since the robot

learns from observations of the consequences of its actions

on different objects, this exploration strategy practically cor-

responds to selecting the ‘best’ actions and objects in an

active learning setting in a potentially open-ended system. For

action selection, we used Intrinsic Motivation (IM) approach,

which guides the robot with intelligent exploration strategies.

IM is regarded as a set of active learning mechanisms for

developmental robots, which enables efficient and effective

learning in high-dimensional search spaces [1]. IM approach

[2] in developmental robots [3] was inspired from curiosity

based motivation mechanisms in human development, and has

recently been effectively applied to cognitive robots where

object knowledge is developed through self-exploration [4]

and social guidance [5]. This approach adaptively partitions

agent’s sensorimotor space into regions of exploration and

guides the agent to select the regions that are in intermediate

level of difficulty. This is achieved by maximizing reduction

in prediction error, in other words by maximizing the learning

progress. In this paper, we propose to use this approach to

guide the robot to explore different affordances by adaptively

selecting the actions to execute, and updating the models of

the affordance predictions based on the results of these actions.
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Through IM approach, we aim to achieve a developmental

progression similar to those of infants in learning simple-to-

complex skills and affordances.

In order to actively select which objects to interact with,

on the other hand, we used a heuristic which maximizes the

diversity of the objects used in training. In each learning step,

the object, which is maximally different from the objects that

are already used in previous learning steps, is selected with

the aim to cover the variety in the object space.

Discovering the re-use structures of affordance corresponds

to autonomously selecting the set of affordances that are useful

in learning and predicting other affordances. Practically, this

corresponds to deciding input/output links among affordance

predictors. Our solution to this problem is inspired from

Eleanor J. Gibson who was a developmental psychologist

studying on mechanisms of affordance learning in biological

systems. She argued that learning affordances is neither the

construction of representations from smaller pieces, nor the

association of a response to a stimulus. Instead, she claimed

that learning is “discovering distinctive features and invariant

properties of things and events” [6]. Learning is not “enriching

the input” but discovering the critical perceptual information

in that input. Following this idea, we identify distinctive

inputs for each affordance predictor, and establish connection

between output of an affordance predictor and input of another

predictor only if the former affordance is discriminative in

predicting the latter one. We formalized this through a relevant

feature selection mechanism that selects the most relevant,

non-redundant, and minimal set of inputs, which in turn can

achieve maximal prediction accuracy.

In summary, we study the mechanisms that enable au-

tonomous structuring of affordance learning tasks. Our system

starts in a flat form as shown in Fig. 1(a) where output of each

affordance predictor can be potentially used as an input of

any other predictor. As learning progresses the robot actively

updates these connections by selecting the most distinctive

inputs of the corresponding action predictors. In detail, in

each learning step, the robot selects the most ‘interesting’

action to perform based on Intrinsic Motivation, the most

different object to explore based on diversity maximization,

and updates the predictor of the corresponding action along

with its distinctive inputs based on the observed effect on

the object. We demonstrate these mechanisms, namely (i) the

IM based selection of actions, and (ii) diversity maximization

based selection of objects, and (iii) the use of the most dis-

tinctive inputs in affordance predictions, enable emergence of

a hierarchical structure, similar to the one shown in Fig. 1(b).

With this, the system autonomously discovers which tasks

should be learned first, and which ones become simpler if

expressed in terms of other tasks without any prior knowledge

on the relative complexity of these tasks.

The rest of this paper is organized as follows. First, a

summary of related work on affordances, re-use of learned

concepts, and intrinsic motivation based robotics work is given

in the next section. Next, representation of affordances, and

mechanisms of active action, object and connection selection

are detailed in Section III. In Section IV, the discovered

learning order of predictors and evolution of the input/output

(a) Flat prediction (b) Hierarchical prediction

Fig. 1. (a) shows a flat affordance learning structure, where the affordances
are predicted based on low level object features, action parameters, and all
other perceived affordances. (b) shows a simple hierarchical structure where
simple affordance predictions can be used to detect complex affordances.
This paper aims automatic discovery of such a hierarchical structure where
the lower level predictors are learned first, and connected to the higher level
predictors autonomously.

connections are given along with the results on speed-up in

learning complex affordances with the emerged structures.

Finally, in Sections V and VI, we discuss how a number of

assumptions can be addressed and how our system can be

extended to handle more complex learning spaces.

II. RELATED WORK

Affordances, which were introduced by James Gibson in

his ecological approach to visual perception [7], provide the

agents a ‘direct’ means to perceive the action possibilities

provided by the environment, and act on them. As detecting

action possibilities and reasoning on them are crucial in

robotics, affordances concept has been very influential in the

last decade. Affordance research in robotics can be coarsely

divided into two categories: learning affordances from passive

observations or through robots own interaction with the world.

The research in the first category does not involve the robot

in active learning. For example Koppula et al. [8] studied

learning of object affordances along with human activities

using Markov Random Fields where the nodes encode the

sub-activities and affordances; and the edges correspond to

the learned relations between these components. Sun et al.

[9] recently studied object-object interaction affordances, and

learned motion models that represent interaction possibili-

ties between pairs of objects from manually labeled video

sequences. Myers et al. [10] labelled tool parts with multi-

ple affordances and learns generalizable affordance detectors.

Schoeler and Worgotter recently studied generalizing object

affordances through effective transfer of part functionalities in

real world objects [11]. The research in the second category,

which involves learning affordances in the form of object-

action-effect relations has been widely studied in robotics in
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recent years [12, 13, 14, 15, 16]. While all different kinds

of clustering and classification methods are used in literature,

the standard learning setup includes a robot that actively

explores the object in the environment. It interacts with objects

using generally pre-defined set of behaviors, observes the

effects generated by these behaviors, and learns the relations

between the behaviors, behavior parameters, object properties

and generated effects. Then, given a goal, the robot can

chain effect predictions to find the sequence of behaviors,

effectively generating a plan to reach that goal. Our approach

in this paper belongs to the second category as we also study

learning effects of actions of the robot on different objects

using self-discovered effect categories that were transferred

from previous robot interactions [13, 17].

Re-use of learned affordances and relational affordances

have been addressed by only a few studies. Transfer of learned

single-object affordances to bootstrap learning of paired-object

affordances was studied by Moldovan et al. [18, 19]. The

authors first used Bayesian Networks (BN) to learn (object,

action, effect) relations from single and paired-object interac-

tions, where relative position and orientation were encoded ex-

plicitly. Single-object action rules were transferred in learning

paired-object action models when objects do not interact with

each other. A relational knowledge representation model was

derived from the BN affordance models, and later generalized

to arbitrary number of objects. The system, which learned

probabilistic rules for push and grasp actions in single and

paired-object settings, were able to generalize its predictions

to multi-object settings. Different from our model, Moldovan

et al. focused on generalizing the rules that encode the position

and orientation relations between objects; whereas our focus is

to learn complex affordances that encode non-linear relations

between arbitrary features of objects. In [19], the authors

extended their system to continuous settings, however high-

level shape primitives such as cubes and cylinders were pre-

defined, whereas our system can discover such primitives from

low-level shape features. Fichtl et al. also used predictions of

action effects as inputs in predicting effects of other actions

[20]. In a setting with 9 simulated actions, they used effect

predictions of one or two actions in predicting effects of other

actions. They showed that bootstrapping in learning speed

can be achieved in the initial phases of learning especially

if the learning problem is hard. This study is similar to ours

as we also use of outputs of predictors as inputs of other

predictors. However, our system can discover the input/output

structure itself, and co-develop affordance predictors in an

active learning setting that is guided by Intrinsic Motivation.

Intrinsic Motivation (IM) was first used as a ‘manipulation

drive’ that explains why monkeys spend time on mechanical

puzzles for long durations without any extrinsic reward [21],

Activities that do not directly serve the goals of survival or

material advantage such as play, curiosity, interest in novel

stimuli and surprising events are said to be driven by intrinsic

motivations [22, 23]. In order to achieve an open-ended

development like infants, this mechanism has been heavily

utilized in robotics in the last decade. Law et al. [24] realized

a staged development with iCub that models an infant from

birth to 6 months. iCub, through motor babbling driven with

a novelty metric, started from uncontrolled motor movements,

passed through several distinct behavioral stages, and achieved

reaching and basic manipulation of objects, similar to the

human infants. Ivaldi et al. [5] proposed a system where the

iCub humanoid robot learned object properties by actively

choosing among objects to explore, actions to execute and

caregivers to interact. This socially guided intrinsic motivation

framework [25] that combined robot’s manipulatory actions

with social guidance significantly increased object recognition

performance, and could be directly used to increase speed

of affordance learning. Hart and Grupen [26, 27] realized

a longitudinal development, where a robot self-organized its

sensorimotor space by assembling basic actions into hier-

archical programs in a bottom-up way, and by learning to

apply these programs in novel contexts in a top-down fashion.

The staged learning of behaviors was guided by an intrinsic

rewards mechanism that maximizes detection of and acting

on affordances with the corresponding behaviors. Hart and

Grupen’s work was focused on behavior formation in a staged

progression with mechanisms similar to accommodation and

assimilation [28] through the so-called affordance discovery

motivator with emphasis on closed-loop control programs as

coupled dynamical systems. Other researchers used intrinsic

motivation for autonomous acquisition of motor skills [29],

and for autonomous selection of tasks to explore based on

a measure of competence progress [30]. Please see Baldas-

sarre et al. [22] for a recent Electronic Book (eBook) that

compiled large number of interdisciplinary articles on Intrinsic

Motivation within Neuroscience, attention, robotics, and social

interactions research.

We previously studied intrinsic motivation and relevance

based affordance learning in [31], and bootstrapping complex

affordance learning with learned simple affordances in [32].

The method, discussions, and analysis of the system have

been significantly extended in this paper as follows. First of

all, the main components of our system, namely IM-based

action selection, diversity-based object selection, and relevance

based distinctive input selection are first time combined and

analyzed in an integrated framework. Second the current work

rigorously analyzes the proposed approach by running the

algorithm large number of times with different configurations,

and by providing the statistics obtained from these several

runs. Finally, all material presented in the results section is

new, and supported by more thorough discussions.

III. ACTIVE LEARNING OF AFFORDANCES

A. Affordance representation

In this paper, affordances of an object (affo) correspond to

the list of effects generated by the set of available actions:

affo = (εoa1
, εoa2

, ...)

where εoa1
is the discrete effect created on object o by action

a1. For example, a lying cylinder affords rollability when

pushed from one side, pushability when pushed from another

side, and liftability when grasped. The affordances of this

cylinder are represented by the list of effects created with push

and grasp actions, i.e. {rolled, pushed, lifted}.
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Fig. 2. Potential input/output links of the affordance predictors in a setup
with three low-level features and three single-object actions.

A robot can predict the effect of an action on an object

based on the visual properties of the object and/or through

reasoning over how the object is affected by other actions.

In this paper, we will call the first source of information as

‘low-level features’ of objects, and the second source as ‘high-

level features’. While the low-level features such as size and

shape are previously defined by the programmer, the high-level

features will be learned by the system. These features are used

as inputs to Pred operator that predicts the effect of action ai
on object o as follows:

εoai
= Predai

(o) = Predai
(feato, affo\εoai

)

Above, feato = (fo
1 , f

o
2 ..) corresponds to the low-level fea-

tures. High-level features, on the other hand, are represented

by affo, which encodes ‘other affordances’, i.e. the effect

predictions for other actions:

affo\εoai
= {Predai

(o)|ai 6= aj}

Actions that involve interaction with single objects and with

pairs of objects are called single-object actions and paired-

object actions, respectively. Likewise, affordances that are

offered by single objects and pairs of objects are called single-

object affordances and paired-object affordances, respectively.

Fig. 2 gives the general input/output structure for an affor-

dance prediction system in a setup that includes three different

types of pre-defined low-level features, and three single-object

actions. Each predictor takes low-level features and the effect

predictions of other actions as inputs. The links illustrated

by the dashed lines correspond to only potential connections,

which are selectively established by the learning system only

if the corresponding links are necessary for predictions. While

establishing the links, cyclic dependencies are not allowed

because a predictor can produce an output only if all its inputs

are available. In our previous work [31] we did not need to

disallow cyclic dependencies because predicted features were

attached to object identities, obliterating the need to re-predict.

Note that outputs of predictors before initialization are fixed

to non-existing effect categories (-1).

For simplicity, we described the effect prediction mecha-

nism using actions that involve interactions with single objects.

This prediction mechanism also supports actions that involve

Fig. 3. Input/output of the affordance predictors in a setup with two low-
level features, one single-object actions, and one paired-object action. In order
to give a clear picture, we used a two action setting and showed only the
important information.

more than one object. In multi-object case, features and affor-

dances of all the involved objects are used as input attributes

of the corresponding action predictor. Fig. 3 illustrates the

potential links in a setup with two low-level features, one

single-object action, and one paired-object action. In paired-

object actions, the predictor takes the following form:

ε(o1,o2)ai
= Predai

(feato1 , feato2 , aff(o1,o2)\ε(o1,o2)ai
)

Paired-object affordances, therefore, correspond to the col-

lection of effects obtained from single-object actions for each

object, and paired-object actions for each pair:

aff(o1,o2) = (εo1a1
, εo1a2

, ...εo2a1
, εo2a2

, ..., ε(o1,o2)ai
, ε(o1,o2)aj

)

Multi-class Support Vector Machines (SVMs) with Radial

Basis Function kernels and optimized parameters are used

to learn these predictors [33]. Although we used a batch

version of SVM as implemented in LibSVM library [34] for

practicality, incremental versions, which are more suitable in

active learning setups, were also shown to provide similar

performance [35]. Our focus in this paper is how to discover

the connection structure and learning order of these predictors.

Therefore the details of prediction mechanisms have minor

importance, and one can replace SVMs with their favorite

classification method as long as the following active learning

principles are preserved.

B. General learning approach

We followed an active learning approach to train the com-

plete prediction system. This learning is achieved in episodes,

whose major steps are summarized in Fig. 4. In the first step,

the action that has the highest learning progress is selected

for exploration. Next, a number of objects that are maximally

different from the previously selected objects are selected.

Based on the observed effects on these objects, the effect

predictor of the corresponding action is updated by updating

the SVM classifiers described in previous paragraph. During

this update, the input links for this predictor are also found

and these established connections are registered to the system.
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Fig. 4. Summary of one learning episode.

C. Active selection of actions

The first step of each episode is to select which action to

explore next. As mentioned in Section I, we used Intrinsic

Motivation (IM) criteria in active selection of the action.

In its original formulation [3], IM can adaptively partition

exploration space into distinct regions and guide the agent

towards the regions that are neither too complicated nor too

simple. The medium difficulty is formalized by guiding the

agent to regions that provide maximal learning progress. In a

similar manner, our system actively selects the actions with

maximal learning progress. Learning progress (LP ) of an

action is defined based on the actual increase in the mean

prediction accuracy of the predictor of the corresponding

action(Predai
):

LPai
(t+ 1) = γai

(t+ 1)− γai
(t+ 1− τ)

where γai
(t + 1) and γai

(t + 1 − τ) are defined as the

current and previous mean prediction accuracies of the effect

predictor, and τ is a time window, set to 2.

Here we define mean prediction accuracy by empirically

setting a smoothing parameter θ to 5:

γai
(t+ 1) =

∑θ

j=0 γai
(t+ 1− j)

θ + 1

where predictor accuracy of the action (γai
(t)) is equal to

the ratio of the correct predictions on objects explored by the

action at step t. This is only a local measure that approximates

the real accuracy. This local value fluctuates substantially

especially in the beginning of the learning as the immature pre-

dictors display highly variable performance for small number

of samples. Therefore, smaller θ values would lead to highly

fluctuating learning progress, whereas larger θ values would

over-average accuracies losing the resolution to compute the

increase. We used this local accuracy measure in our online

incremental learning setup as the robot cannot access to ground

truth, i.e. it cannot know the effect categories of the objects

without actually executing its actions on all of them in a real

setting.

Finally, the next action to be explored is selected based on

the above learning progress criteria using ǫ-greedy strategy

[36].

atsel =







ar if t < tinit

ar if ζ < ǫ

argmaxai
LPai

(t) otherwise

where atsel denotes the selected action at learning step t, 0 ≥
ζ ≥ 1 is a uniform random number, and ǫ is set to 0.10. This

IM based action selection strategy requires an initial random

exploration phase where the learning progress (LP ) of each

predictor is initialized. tinit is empirically set to 48 interactions.

D. Active selection of objects

After selecting the action, the system needs to decide which

objects to interact with this action. For this, we propose a

heuristic that maximizes the diversity of the objects used in

training of the corresponding predictor. The system chooses

an object from the available set of objects with maximal

distance to the set of already interacted objects (Oused). The

distance between pairs of objects can be computed by calcu-

lating the distance between feature vectors that represent the

corresponding objects. However, each object feature channel is

represented in a different metric, therefore the distance would

depend on the relative weighting of the features in different

channels. For example, while feature channel corresponding

to object shape is encoded by histograms, dimension feature

channel is encoded in meters. As it is not straightforward to

combine these values directly, we propose a heuristic that

computes the Euclidean distance in a feature channel space

that is randomly selected in each time it is called:

osel = argmax
o1∈O\Oused

∑

o2∈Oused

distc(o1, o2)

where O, Oused, and O\Oused correspond to the set of all

objects, the set of objects used for training the corresponding

predictor, and the set of the objects not used yet. c corre-

sponds to the feature channel where distance is calculated,

and is uniformly sampled from the set of low-level features

{size, shape, distance}. If the predictor of the selected action,

Predasel
, takes input from other effect predictions, a random

effect prediction from the corresponding set ({εai
|ai 6= asel})

is used instead:

osel = argmax
o1∈O\Oused

∑

o2∈Oused

‖εo1ai
− εo2ai

‖
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In each episode, we chose four objects if asel is a single-

object action, and four pairs of objects if asel is a paired-

object action. Empirically, we observed that this active object

selection strategy is effective only if it is applied in the

initial training steps for each predictor. If it is applied for

complete training, the choice of objects degenerates probably

because the whole range of diversity cannot be represented

by the available features, thus the overall performance of

the predictors decrease. Therefore, we applied this active

object selection strategy in the first 12 steps, which is a

value empirically found. After 12 steps, osel is always selected

randomly from O\Oused.

E. Active selection of input connections

The input connections of the Predasel
(therefore input/out-

put connections of the whole system) are updated in this

step. For this, the minimal set of input connections that can

achieve maximum available prediction accuracy for Predasel

is selected. One of the feature selection methods, which

generates near-optimal feature sets [37], namely Sequentialfs,

is used for this purpose. Each input connection in our system

correspond to either a low-level feature channel or prediction

of another action. The algorithm starts with an empty input

set. At each iteration, a new input is selected and added to

the input set of previous iteration. In order to select this

new input, all candidate inputs are separately added to the

previous input set and separate candidate input sets are formed.

Then, the candidate input sets are evaluated through 10-fold

cross-validation on trained predictors. The best performing

candidate set is then transferred to the next iteration. In the

experiments, we eliminated the ones that have no effect in

accuracy increase, finalizing the most distinctive inputs for

each trained predictor Pred. Therefore, we expect minimal

redundancy in the input connections. Finally, in order to avoid

cyclic predictions, the output of Predai
is not considered as a

potential/candidate input for Predaj
, if the output of Predaj

is previously selected as an input for Predai
.

IV. EXPERIMENT SETUP

1) Low-level object features: The system can visually de-

tect the objects in the environment using the depth information

of Kinect sensor, and compute a number of features from

the point cloud data. feat represents the continuous low-level

feature vector that combines various visual properties of the

object. It is composed of three different channels, which are

feature vectors themselves:

feato = (dimo, shapeo, disto)

dim represents the dimensions of the object in three dif-

ferent axes. shape corresponds to the distribution of normal

vectors obtained from the local surfaces on the point cloud.

Normal vectors are obtained using Point Cloud Library [38],

normal estimation package. This distribution is encoded by

histograms of normal vectors, where each component in dif-

ferent axis is regarded separately. 8 bins are used to discretize

the distribution in each axis, making the total size of shape

Fig. 6. Sample interactions observed during
stack action execution on different object pairs. See
http://www.cmpe.boun.edu.tr/∼emre/material/TCDS2016/ for the robot
videos and the source code used for learning.

feature vector is 3 × 8 = 24. Finally, in order to capture

the local discontinuities and distribution of distances in the

neighborhood of each voxel, we use dist feature channel. For

each voxel, the neighboring voxels are identified in the 2-

d depth image, and distances to the neighbors are computed

along each four direction. For each direction, we created a

histogram of 20 bins with bin size of 0.5cm, obtaining a

4× 20 = 80 sized vector for the dist.

2) Actions: The robot 1 is equipped with a number of

manually coded actions that enable single and multi object

manipulation. The robot can poke a single object from dif-

ferent sides using front-poke, side-poke, and top-poke actions.

It can also stack one object on the other using stack action,

where it grasps the first object, moves it on top of the other

one and releases it.

3) Interaction Dataset: An interaction dataset, which is

composed of (object, action, effect) tuples, is generated to

run and analyze our method. 83 objects with different sizes,

shapes, and affordances were used for this purpose (Fig. 5).

The low-level visual features of these objects were computed

by placing them on the table and by extracting the point

cloud using the Kinect sensor. Note that object detection

procedure and computed features were verified in real world

robot execution experience in [17]. A number of sample robot

interactions that involve some of these objects are given in

Fig. 6 and Fig. 4 where different effects can be observed.

With three single-object actions, and one paired-object action,

1The robot system is composed of a 7 DOF Kuka Light Weight Robot
(LWR) arm placed on a vertical bar similar to human arm, a A 7 DOF 3
fingered Schunk gripper mounted to the robot arm, and a Kinect sensor placed
over the ‘torso’ with a view of the table in front of the robot. Because the
main focus of this paper is not on physical execution of the robot, we will
omit the details concerning the robot setup.

http://www.cmpe.boun.edu.tr/~emre/material/TCDS2016/ 
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Fig. 5. Objects used in the experiments.

the total number of possible interactions with these objects

is 3 × 83 + 1 × (83 × 83) = 7138. As we aim for a

systematic analysis of the system behavior with large number

of learning runs, we would like to collect and store the dataset

in the beginning, and use the interaction samples whenever

necessary. On the other hand, making over 7000 interactions

is not feasible in the real world. It is also not critical to validate

our method as our method is designed as a general approach

for inter-dependent affordance learning rather than solving

specific affordance problems in real-world settings. Therefore,

we used a human expert, who observed the actions of the

robot on different objects, and generalized his observations to

other objects in order to manually fill-up the effect fields of

the interactions 2.

4) Action effects: The effect of an action on a single object

depends on various properties of the object being interacted.

The same poke action generates different effects on different

objects or even on the same objects in different orientations.

For example, when poked from side, a lying cylinder will roll

away, an upright thick cylinder will be pushed, an upright

thin cylinder will topple down, and a lying hollow cylinder

will stay still if the robot finger would go through the hole.

When paired-object actions are considered, the effect depends

on the properties of both objects and the relations between

these properties. For example, while an ‘inserted-in’ effect

is generated when a small cylinder is stacked on an upright

bigger hollow cylinder, a ‘tumbled’ effect is observed if the

big cylinder is not upright. Based on our previous work where

effect categories were self-discovered in single-object actions

[13] and in paired-object actions [17], and based on our

observations obtained from the sample real-robot executions

2Predicting the effects of actions on different objects without any ref-
erence to the real world performance of the robot has the risk of creating
a human-biased interaction dataset. In order to reduce this risk, the human
physically ‘simulated’ the actions on objects when it was difficult to assess the
effect. For example, it is difficult to predict whether containers of similar sizes
would be inserted, stacked or tumbled, when one is released on top of another
one. To disambiguate these situations, the human expert dropped the object
physically from some height with a small offset, and stored the generated
effects. While this approach should be enough to collect the interaction dataset
for our purpose, if one aims to verify a real-robot solution, the uncertainty in
action level should be better addressed by the actual execution of the actions.
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Fig. 7. The action selected for exploration and learning in each iteration of
online learning of affordances. If an action is selected for learning in learning
step t of a run r, the rth row of the corresponding action is marked with a
dot (•) at learning step t. As shown, more complex actions, e.g. stack, are
learned later based on Intrinsic Motivation selection mechanism. This might
be due to the fact that learning stack affordance is more difficult compared to
others, and stack prediction of the effect of stack action requires learning of
high-level attributes, i.e. single-object affordances, of both objects. Note that
before the time-point shown with vertical line, the system is in its random
exploration phase, i.e. randomly selects the actions to learn.

mentioned in the previous paragraph, the following effect

categories are defined:

• Poke-effects: {pushed, rolled, toppled, resisted, nothing}
• Stack-effects: {stacked, inserted, covered, tumbled}

V. EXPERIMENT RESULTS

Using the database of 83 objects, 4 actions, and their corre-

sponding effects, we applied active learning of affordances

method to discover the learning order (Section V-A) and

prediction structure (Section V-B) of the affordance learn-

ing system. Furthermore, we verified that with the structure

emerged, the learning of complex affordances significantly

speeds up especially in the beginning of the learning trials

(Section V-C).

In order to statistically analyze the system, we generated

50 separate learning runs that start with random seeds. In

other words, our analysis provides the results from 50 different
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affordance prediction structures that are trained with the same

method but with different random seeds. These seeds affect

action and object selection in different ways. First of all, in

each run, the objects and actions are shuffled to avoid the

effect of position of the elements in the lists. Next, ǫ-greedy

action selection strategy, random channel selection in object

distance calculation, and finally random object selection all

use random selection from uniform distributions.

A. Discovered exploration and learning order

This section provides the obtained learning order of the

affordance predictors. The learning order of predictors can

be analyzed by examining the order and frequency of the

corresponding actions that are selected during each iteration

of the online learning of the complete system. The selected

action for exploration in each learning step is shown in Fig. 7.

The vertical line in the figure corresponds to the point where

the system goes from random exploration to intrinsically

motivated exploration phase. As the effect of paired-object

actions depend on the relations between the properties of two

objects, stack is a more complicated action, difficult to learn.

As shown, the less complex poke actions are learned first, and

more complex stack action is learned later. Prediction of the

stack action can also benefit from simple-affordances (as we

will show in the next section). Thus, stack action is explored

and learned automatically after all other simpler actions are

explored. In the figure, the stack action is observed to be

explored also in the beginning of the learning in a number

of steps either because of momentarily increases in local

accuracy or due to the ǫ-greedy strategy. Fig. 8 provides a more

detailed statistical analysis of the action selection strategy of

the system, where the number of times each action is selected

in each learning step window is provided in mean and standard

deviation. In detail, each point on a line at learning step t in

Fig. 8(a) corresponds to the number of times the corresponding

action is selected within a window of ±40 steps, averaged

along the 50 runs. The bars in Fig. 8(b) corresponds to the

number of action selections averaged over 50 runs and 80

learning steps. Calculating mean and variance from samples

obtained from different runs enables us to statistically show

the selection preference that is qualitatively visible in Fig. 7.

During the initial exploration phase, which is marked by the

vertical line in Fig. 8(a), the mean action selection frequencies

are similar and the variances are high as the actions are

selected completely randomly. After this phase, as Intrinsic

Motivation selection mechanism steps in, the system starts

selecting actions more systematically. First, it quickly loses

its focus on stack action. There are two visible peaks in

exploration: first, front-poke action and then top-poke action

are explored and learned with visible peaks in frequency. Side-

poke is also explored more compared to stack action in the

beginning. Only towards end (275 interactions) exploration

of the stack action takes lead while others are not learned

anymore. This figure clearly shows that the system shifts its

focus to stack action after learning all other simpler actions,

however there was no such significant difference in learning

order in between side-poke and stack actions. This requires

further analysis of the behavior of the system.

Fig. 9. The evolution of prediction accuracy of each predictor during online
learning. The lines and shades correspond to mean and standard deviation of
50 different runs, respectively.

We plotted the local prediction accuracy γ evolution of each

action in Fig. 9. As shown, the learning progresses of poke

actions are high initially. After around 100 interactions, the

learning progress of side-poke and front-poke slows down,

however the system continues learning from top-poke action.

The learning progress for side-poke and front-poke starts

increasing again after 200 interactions, while the learning

progress of stack action is lower in general. After all actions

are learned sufficiently and there is no further progress, the

learning progress of stack action increases.

B. Discovered affordance prediction structure

This section gives the results of the structure evolution of

the affordance prediction system. Recall that the prediction

structure is defined over the most distinctive inputs that are

discovered to be most effective in predicting affordances. The

ratio of the types of distinctive features used in prediction

in different phases of the active learning are shown in Fig.10.

Each plot in this figure corresponds to the evolution of the used

features and affordances for a different action. One can notice

the following emergent structuring properties and tendencies:

• Shape and dim low-level features are used by all the

predictors in order to predict action effects. Shape fea-

tures, i.e. distribution of the normal vectors, are probably

important in distinguishing rollable objects from pushable

objects. Dimension related properties are also important

in order to differentiate objects that are toppled by front-

or side-poke actions. It is peculiar that dim feature is also

found to be important and used for prediction of top-poke

action effect because size of the objects should have no

influence on how they are affected by top-poke action.

With a closer inspection, we found out that walls of

some hollow objects were not detected by the perception

system, and these hollow objects were perceived as very

thin objects.

• Dist low-level feature was originally designed to capture

the characteristics related to hollowness of the objects.
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Fig. 8. The number of times each action is selected in each learning step. (a) The lines and shades correspond to mean and standard deviation of 50 runs,
respectively. (b) The learning episodes are divided into 6 portions, and statistical analysis on action selection is performed across 80 samples × 50 runs. Means
and standard deviations are provided by the bars and lines over bars. ∗ and ∗∗ correspond to significance levels of p < 0.05 and p < 0.01, respectively.

However, probably shape features capture convexity and

concavity good enough, therefore poke action predictors

did not heavily use dist features.

• Most of the front-poke, side-poke and stack action predic-

tors used predictions of top-poke action predictor. Top-

poke predictor would predict if the object is hollow or

not, therefore we were expecting that it would be used for

predicting stack effects. Top-poke predictor also encodes

rollability to different directions, probably that was why

it was used by other poke action predictions.

• Around 25% of the front-poke predictors used side-poke

and stack predictions, and around 25% of the side-poke

predictors used front-poke and stack predictions. This

result shows that no strict hierarchy appeared between

front-poke and side-poke effect predictors. On the other

hand, around 50% of stack action predictors used pre-

dictions from front-poke and side-poke predictors. We

can suggest that differences in learning order of differ-

ent predictors caused differences in different structuring

strategies.

For illustrative purposes, we weighted directed links in

between predictors based on the frequencies provided in

Fig. 10 at iteration number 400, and obtained the connectivity

graph provided in Fig. 11(a). As shown in the plots, each low-

level feature affects affordance predictions in different levels,

and shape features are observed to be the first discovered

distinctive features, i.e. selected input connections, especially

in the initial phases of development for all actions. However,

more important in the context of this paper, affordances are

observed not to be used in the initial phases, and all of them are

only found to be used in predicting effect of stack action, i.e.

predicting stackability affordances. Note that stack predictor

starts using single-object affordances after around 30 samples,

probably because the single-object affordance prediction was

not good enough before that time-point.

For illustration purpose, we removed the links that have

weights below 25%. In other words, we removed the links

if those links exist in less than 25% of the learning runs.

When the graph is re-arranged, a loose but clear hierarchical

prediction structure emerges as shown in Fig. 11(b).

C. Bootstrapping effect in stack learning

In this section, we analyzed the bootstrapping effect that is

achieved by discovering use of single-object affordances for

predicting paired-object affordances. In order to analyze this

effect, we compared the learning speed with and without use of

inputs from other effect predictions in predicting stack effects.

The system, where effect predictions of other actions along

with low-level features are used, is called ‘with-affordance-

input’. The system where only low-level features are used in

learning and predicting effects of stack actions will be called

‘without-affordance-input’.

When the learning speed of stack affordances is compared

with- and without-affordance-inputs in an active learning set-

ting where all affordances are learned as above, we noticed

no significant difference between learning speeds. We argue

that the bootstrapping is generally achieved in the beginning

of learning the bootstrapped systems are shown to make better

predictions with even small number of learned interactions. As

soon as the number of samples get higher, the bootstrapping

effect is reduced. In our system, stack predictor is trained along

with other predictors, and in the initial phases of its training, it

does not receive correct inputs from other predictors; therefore

we could not achieve such bootstrapping effect.

Next we analyzed the case, where stack predictor learning

starts after learning all poke predictors. Here, we assume

that the system learned the learning order and structure of

affordance predictors, and transfer the learned knowledge for

new objects. Therefore, in this setting, the predicting poke
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(a) Links to front-poke action predictor
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(b) Links to side-poke action predictor
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(c) Links to top-poke action predictor
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(d) Links to stack action predictor

Fig. 10. Evolution of the distinctive features for prediction, where dashed lines correspond distance, shape and dimension features, and solid lines correspond
to the predicted affordances. The percentages are computed across 50 runs.

actions is learned first, and the outputs of the learned predictors

are used as potential inputs. The predictions from poke actions

are also used in active object selection in order to compute

the distance between objects and to maximize the diversity in

training set. We again performed 50 learning runs both with-

and without-affordance-inputs in learning stack effect predic-

tions. In this setting, we can see a significant bootstrapping

effect in learning as shown in Figs. 12(a) and 12(b). Mean and

standard deviation of the group of trained predictors with- or

without-affordance-inputs are shown with the bold line and

the filled areas. As shown in the figures, initial and final

mean accuracies and variances of two different cases are same.

Still, the expected bootstrapping effect in the beginning of the

learning steps are clearly visible in both figures. At the bottom

of each figure, the difference in accuracies between with- and

without-affordance-inputs is given, which is confirmed with

double-side t-test with p < 0.01. The boxes at the bottom

in Fig. 12(a) show that the accuracy of with-affordance-

inputs case becomes 10% higher with 40 training samples,

compared to without-affordance-inputs case with significance

level of p < 0.01. As shown, the bootstrapping effect quickly

increases in the beginning and remains same for some time.

The bootstrapping effect is more significant when the accuracy

is computed with novel pairs. Novel pairs of objects {(o1, o2)}
for stack action corresponds to objects, where {o1} and {o2}
have never been experienced in bottom and top roles during

stacking, respectively. The effect becomes visible after 18 pairs

instead of 22 pairs; and increases to a maximum value of 13%
compared to 10%. This also shows that use of affordances as

inputs in learning and predicting other affordances provides

significant generalization capabilities.

VI. DISCUSSION

In this paper, the action and effect categories are known

by the system. From a developmental point of view, these

categories should be learned by the robot as it is not possible

to predict and design the categorization that is suitable for

the embodiment of the robot especially for unbounded set of

complex actions. Therefore, we believe that it is necessary to

discuss how such categorization can be achieved by interacting

systems. In this section, we will summarize our previous
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(a) Connectivity graph with weighted links (b) Connectivity graph when loose links are removed

Fig. 11. The structure, i.e. input and output connections, obtained at the end of learning.

(a) Test with all pairs.

(b) Test with novel pairs.

Fig. 12. The evolution in prediction accuracy of stack effect predictor. The
accuracy is computed by using all object pairs in (a) and by using only the
novel object pairs in (b). The black bars show the amount of difference in
prediction accuracies between learning systems with and without affordance
inputs, in significance level of p < 0.01.

studies where categorization in action and effect spaces were

self-discovered by a manipulator robot.

a) Learning action categories: We previously showed

that a robot that was initialized with a basic reach- and enclose-

on-contact movement capability, can discover a set of action

primitives by exploring its movement parameter space [39, 12].

In that work, the robot was assumed to have only two basic

movement mechanisms: a basic finger enclose behavior akin

to infants palmar grasp reflex, and one basic arm action, that

generates simple arm movements to transport the hand to the

vicinity of an object. The contact information, sensed during

the approach and possibly after the finger enclosure, is used

to cluster the executed movements, yielding a set of action

primitives such as push, ‘release’, and grasp. In order to learn

more complex actions, such as ‘move-object-over-another’,

we realized an imitation learning strategy where the robot

observed and encoded complex demonstrations into a series

of previously learned primitives with the help of a cooperative

tutor [12]. In that work, inspired from infant development

and motionese framework [40], we equipped the robot with

mechanisms that can detect motion related cues such as pauses

in order to more easily segment the demonstrated behavior

into chunks that can be replicated by previously discovered

action primitives. We argue that simple action categories can

be discovered through exploration, and more complex actions

that are composed of simple categories can be learned through

imitation learning.

b) Learning effect categories: Effect categories are gen-

erally obtained in an unsupervised way by applying clustering

methods to continuous effect space. We previously discussed

that such clustering is sensitive to relative weighting of the

effect features that are encoded in different units and channels.

Furthermore, discovered effect categories should be instrumen-

tal for the latter predictions and reasoning; and completely

unsupervised clustering does not provide any guarantee for

this. Therefore, we proposed a 2-level clustering algorithm

that takes into account the representational differences between

different perceptual channels and utilizes a verification step

that makes sure that the discovered effect categories can be

predicted by the robot [39, 13]. In detail, in the lower level,

channel-specific effect categories are found by clustering in

the space of each channel, discovering separate categories

for channels such as touch, position and shape. In order

to ensure the predictability of the channel-specific effect

categories, classifiers are trained. If a channel-specific effect

category is found not to be predictable, the clustering is re-

done with less number of desired clusters. After finding the

final channel-specific effect categories, in the upper level these

categories are combined to obtain all-channel effect categories

using the Cartesian product operation. The final categories

are only accepted if they are predictable. The discovered

effect categories for push action were ‘disappeared=rolled’,
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‘grasped&disappeared’, ‘grasped’, and ‘pushed’. Similar ideas

were also used by others, where categorization was also based

on the ability to predict the outcome of action execution in

Mugan and Kuipers [41], and categories were utilized if they

appear in the learned rules in Pasula et al. [42]

With increasing complexity of actions, finding effect cate-

gories becomes more difficult. In finding effect categories of

stack action for example, we observed that a naive clustering

in continuous effect space was not effective as the interacting

objects can generate various effects difficult to separate due to

the complex interactions between them [17]. In that case, ap-

plying further exploratory actions on the objects after stacking

helped the system to handle this complexity. For example, after

a stack action, if the robot poked both of the objects one by

one, effect categories were found to be distinguishable when

observations obtained from the following poke actions were

also taken into account. Some discovered effect categories for

stack action were ‘stacked’, ‘inserted-in’, and ‘tumbled’ at the

end.

VII. CONCLUSION

In this paper, we studied how interdependent affordance

learning tasks can be autonomously structured along with the

learning order of its components. In an online learning frame-

work, we showed that intrinsic motivation mechanism, which

select the next action to explore based on learning progress

of the model of that action, can discover such a learning

order where paired-object affordance learning follows single-

object affordances learning. Next, we showed that by using

the most discriminative features for affordance prediction, the

expected hierarchical structure emerged autonomously where

the learning system discovered that predictions of the single-

object affordances are connected to the paired-object affor-

dances. We validated our approach in a real dataset composed

of 83 objects and pairs of these objects along with the effects

of three poke actions and one stack action. The results show

that hierarchical structure and learning order emerged from

the learning dynamics that is guided by Intrinsic Motivation

mechanisms and feature selection approach.

The results further show that a bootstrapping effect in

learning speed of affordances could be achieved with such

a hierarchical structure. This was probably achieved as simple

affordances, which were used as inputs to complex affor-

dances, provide more abstract and generalizable knowledge

compared to low-level visual features. Bootstrapping effect

was visible when generalization was required from learning of

small number of samples, and disappeared in the latter steps

as the system could learn equally well from low-level features

with large number of training samples. Bootstrapping effect

was also more significant in more difficult tasks such as when

the predictors were tested in novel situations. In our system,

the learning order of affordances was not strict, and determined

based on the IM criteria with an approximate measure of

future learning progress. Therefore, the hierarchical structure

only appeared after initialization of learning progress through

some exploration of all actions, and the initial bootstrapping

effect was not observed in this emergent structuring setting.

Other factors such as motor complexity of actions are also

important in deciding which action to explore first, and can

be used to achieve a more strict learning order, and therefore

more significant bootstrapping effect.

In our framework, the system forms forward models [43]

that enable it to predict the changes in the environment in

terms of discrete effect categories. Generative models have

been shown to be effective in learning (object, action, effect)

relations and in making inferences on any element of the

these relations. For example, they can infer the required action

given the desired (object, effect) pair or they can predict

the effect given (action, objects) pair [14]. We discuss that

our ‘discriminative’ model still provides powerful mechanisms

as it can effectively map the continuous object feature and

behavior parameter spaces to the corresponding effects [44]

possibly using complex non-linear functions without any initial

categorization of object properties as in [14, 18]. Furthermore,

while bi-directional relations are not explicitly encoded in our

system, we showed that our robot was able to make predictions

in different directions, and made plans that involved sequence

of actions on automatically selected objects [13].

Our proposed framework, which exploits the idea of active

selection of actions, objects, and connections, is very general

and can be directly applied for a wide-variety of robot learn-

ing tasks and to different robotic platforms. It can also be

extended to continuous actions where action parameters such

as poke direction are used as inputs of the predictors, and to

continuous action effects where powerful regressors are used

for prediction.
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