
Integrating Multi-Purpose Natural Language

Understanding, Robot’s Memory, and Symbolic

Planning for Task Execution in Humanoid Robots

Mirko Wächtera,∗, Ekaterina Ovchinnikovaa, Valerij Wittenbecka, Peter
Kaisera, Sandor Szedmakd, Wail Mustafac, Dirk Kraftc, Norbert Krügerc,

Justus Piaterb, Tamim Asfoura

aKarlsruhe Institute of Technology (KIT), Adenauerring 2, 76131, Karlsruhe, Germany,
lastname@kit.edu

bUniversity of Innsbruck (UIBK), Technikerstr. 21a, 6020 Innsbruck, Austria,
firstname.lastname@uibk.ac.at

cUniversity of Southern Denmark (SDU), Campusvej 55, 5230 Odense M, Denmark,
firstname@mmmi.sdu.dk

dAalto University, Konemiehentie 2, 6020 Espoo, Finland, firstname.lastname@aalto.fi

Abstract

We propose an approach for instructing a robot using natural language to solve

complex tasks in a dynamic environment. In this study, we elaborate on a

framework that allows a humanoid robot to understand natural language, de-

rive symbolic representations of its sensorimotor experience, generate complex

plans according to the current world state, and monitor plan execution. The

presented development supports replacing missing objects and suggesting possi-

ble object locations. It is a realization of the concept of structural bootstrapping

developed in the context of the European project Xperience. The framework

is implemented within the robot development environment ArmarX. We eval-

uate the framework on the humanoid robot ARMAR-III in the context of two

experiments: a demonstration of the real execution of a complex task in the

kitchen environment on ARMAR-III and an experiment with untrained users

in a simulation environment.

Keywords: structural bootstrapping, natural language

understanding, planning, task execution, object replacement,

∗Corresponding author

Preprint submitted to Robotics and Autonomous Systems November 21, 2017

humanoid robotics

1. Introduction

One of the goals of the humanoid robotics research is to model human-like

information processing and the underlying mechanisms for dealing with the real

world. This especially concerns the ability to communicate and collaborate

with humans, adapt to changing environments, apply available knowledge in

previously unseen situations. The concept of structural bootstrapping introduced

in the context of the Xperience project [1] addresses mechanisms of employing

semantic and syntactic similarity to infer which entities can replace each other

with respect to certain roles. For example, if the robot is asked to bring a

lemonade but cannot find it in the kitchen, the robot can suggest to replace

it with another beverage, e.g. a juice, based on the similarity of both objects

being drinkable. Thus, structural bootstrapping allows the robot to reason

about an observed novel entity and its potential functionality and features.

Earlier experiments demonstrated how structural bootstrapping can be applied

at different levels of a robotic architecture including a sensorimotor level, a

symbol-to-signal mediator level, and a planning level [2, 3, 4].

Structural bootstrapping is related to the concept of affordances – latent

“action possibilities” available to an agent towards an object, given agent capa-

bilities and the environment [5]. For example, a bowl can afford pouring into it

or stirring in it and a knife can afford cutting with it. Object affordances can

also be used to support object categorization and infer potential object replace-

ments. For example, if two containers afford pouring into them, then they are

interchangeable towards this action. In the context of structural bootstrapping,

the interplay between the symbolic encoding of the sensorimotor information,

prior knowledge, planning, plan execution monitoring, and natural language

understanding plays a significant role. Natural language (NL) commands and

comments can be used to set goals for the robot, update its knowledge, and

provide it with feedback. Symbolic representations of object affordances can be

used for object replacement. Symbolic representations of robot’s observations

are required to generate realistic plans. Plan execution monitoring is needed to

check if a plan was executed successfully and to solve encountered problems, e.g.

replace missing objects. The main aspects and contributions of the manuscript

are:

• We elaborate on a framework that allows the robot to understand natural

language, generate symbolic representations of its sensorimotor experi-

ence, generate complex plans according to the current world state, and

monitor plan execution. The framework is implemented within the robot

development environment ArmarX 1, see also [6]. The developed natural

language understanding (NLU) pipeline is intended for a flexible multi-

purpose human-robot communication. Given human utterances, it gen-

erates goals for a planner, symbolic descriptions of the world and human

actions, and representations of human feedback. It grounds ambiguous NL

constructions into the sensorimotor experience of the robot and supports

complex linguistic phenomena, such as ambiguity, negation, anaphora,

and quantification without requiring training data. The NLU component

interacts with related components in a system architecture such as the

robot’s memory, a planner, and a replacement manager.

• We address the mapping of sensorimotor data to symbolic representations

required for linking the sensorimotor experience of the robot to NLU and

symbolic planning and describe how a symbolic domain description is gen-

erated from the robot memory each time an NL utterance needs to be

interpreted.

• We introduce the novel Replacement Manager (RM) component of the

framework, which is responsible for finding possible locations of missing

objects as well as replacing missing objects with suitable alternatives. The

RM utilizes a variety of replacement strategies based on robots previous

1
armarx.humanoids.kit.edu

armarx.humanoids.kit.edu

experience, common-sense knowledge extracted from text corpora, visual

object features, and human feedback.

Parts of the cognitive architecture presented in this manuscript rely on our

previous work. The concept of structural bootstrapping is introduced in the

European project Xperience and in [4]. The ArmarX framework is introduced

in [6]. Our NLU pipeline and the mapping of sensorimotor data to symbolic rep-

resentations are first presented in [7]. The common sense knowledge extraction

from text is described in [8], while the first experiment on object replacement

based on text-derived knowledge is described in [3]. Vision-based object re-

placement is in focus of [9]. The learning framework for computing probable

replacements is outlined in [10, 11].

The novelty of this manuscript lies in realization of the concept of structural

bootstrapping within a control architecture of a humanoid robot and the demon-

stration of how this concept allows for grounded cognitive behaviors in a complex

setting requiring human-robot communication and collaboration. More specif-

ically, we introduce a novel component of the architecture – the Replacement

Manager, which implements both previously developed and novel replacement

strategies, see Sec. 5. We extend existing components of the architecture, such

as NLU and plan execution and monitoring, with novel functionality allowing

the components to interact with the RM, see Sec. 4 and 6.

For testing the framework, we design and conduct two novel experiments,

see Sec. 7. We test the developed framework on the humanoid robot ARMAR-

III [12] in a scenario requiring planning based on human-robot communication.

Two experiments are described. First, we present a demonstration of the sce-

nario execution on ARMAR-III in a kitchen environment. Second, we test how

well the framework can be employed by untrained users. To do so, we ask the

subjects to control the robot in a visual simulation environment by using natural

language.

The remainder of the article is structured as follows. After presenting the

general system architecture in Sec. 2, we present the domain description gener-

ation from the robot’s memory (Sec. 3). Sec. 4 introduces the natural language

understanding pipeline and Sec. 5 presents the Replacement Manager. Sec. 6

briefly presents the planner employed in the experiments and discusses how plan

execution and monitoring are organized in our framework. Experiments on the

humanoid robot ARMAR-III and in a visual simulation environment are pre-

sented in Sec. 7. Related work is discussed in Sec. 8, while Sec. 9 concludes the

manuscript.

2. System Architecture

The system architecture is implemented within the robot development envi-

ronment ArmarX [6] and is shown in Figure 1. The system architecture consists

of six major building blocks: robot’s memory, domain generation, natural lan-

guage understanding, replacement manager, planning, as well as plan execution

and monitoring.

Robot’s
Memory

Domain
generation NL understanding

Planning Plan execution &
monitoring

table

on

Replacement
managerN

ov
el

 c
om

po
ne

nt E
xt

en
de

d
co

m
po

ne
nt

s

Figure 1: The system architecture.

The robot’s memory is represented within MemoryX, one of the main mod-

ules of the ArmarX architecture (see Sec. 3). The memory stores and offers sym-

bolic and sub-symbolic information about prior knowledge, long-term knowledge

and knowledge about the current world state. Domain descriptions in symbolic

form are generated from the robot’s memory (see Sec. 3). The domain de-

scriptions are also used by the NL understanding component for grounding and

generating the domain knowledge base, see Sec. 4. The developed multi-purpose

NLU framework can distinguish between a) direct commands that can be exe-

cuted without planning (Go to the table), b) plans requiring commands that are

converted into planner goals, which are processed by a planner (Set the table),

c) descriptions of the world that are added to the robot’s memory and used by

the planner (The cup is on the table), and d) human feedback (I’m fine with

it). The goal generated by the NLU component is passed to the Replacement

Manager that checks for each object in the goal if this object and its location

are in the domain description (Sec. 5). If an object or its location are unknown,

then the component suggests available alternatives. NLU also provides the Re-

placement Manager with context-based affordances for mentioned objects. After

suggesting a replacement, the Replacement Manager waits for a human confir-

mation or rejection, which is provided by the NLU component. If a replacement

is confirmed, then the goal is rewritten and passed to the planner together with

the domain description. The planner takes a domain description and a goal as

an input. It generates a plan, which is a sequence of grounded atomic actions

(see Sec. 6.1). Plan execution is performed by the Plan Execution & Monitoring

component, which also verifies if the plan is executed correctly (see Sec. 6.2).

Each time an NL utterance is registered and processed by the NLU pipeline

and the planner, the robot’s memory is updated and the required actions are

added to the task stack to be processed by the Plan Execution & Monitoring

component. If the plan execution fails e.g. because of missing objects, the com-

ponent queries the Replacement Manager for suitable replacements. Otherwise,

the planner is called to re-plan according to the current world state. Human

comments and feedback can be used to update the world state in the robot’s

memory before or during action execution and are considered by the robot to

adjust its plan accordingly.

2.1. Integration into the robotic platform

Integration of existing algorithms in a complex robotic platform poses sev-

eral challenges. First of all, algorithms, e.g. for object localization, that are

used on robotic service platforms in a dynamic environment, rather than in a

controlled lab environment, have to be highly robust and real-time capable. An-

other challenge concerns the interfaces between the algorithms and the robotic

hardware.

In the robot development environment ArmarX employed for the proposed

system, generic interfaces were designed in an Interface Definition Language

(IDL) to allow seamless exchange of implementations of different algorithms.

Communication between different programming languages is realized with the

middleware Internet Communication Engine [13], which provides transparent

network communication and interfacing between many different programming

languages with minimal overhead. New components can be easily added to the

system with the minimal effort of implementing a corresponding interface. For

example, new replacement strategies can by added to the Replacement Manager

dynamically and will be used in future calls of the Replacement Manager. More

details on ArmarX can be found in [6].

3. Robot’s Memory and Domain Description Generation

The goal of the domain generation component is to map sensory data to sym-

bolic representations. Since each symbol depends on a different combination of

sensory data, we design the mapping procedure in a modular and extensible

way. First, sensorimotor experience is turned into continuous sub-symbolic rep-

resentations (e.g., coordinates of objects, the robot, and robot’s hands) that are

added to the robot’s memory. These continuous representations are mapped

to object and location names. Finally, symbolic representations describing the

world state that are represented by predicates are generated.

3.1. Memory Structure

MemoryX, a central part of the robot development environment ArmarX, is

responsible for storing and representing different types of robot knowledge in

different memories: prior knowledge memory, long-term memory, and working

memory that provide symbolic entities like actions, objects, states, and loca-

tions. Each memory element, called memory entity, is represented by a name-

value map. Memory entities are organized as a hierarchy, where every entity

can be a parent of another entity. For example, the type cup can have a parent

container, which has a parent object. If a parent has a feature attached,

this feature is also available for its children. This hierarchy is also used as an

ontology to define meta classes and specify common affordances or attributes of

objects. For example, in order to specify that objects from a certain class are

graspable, we add the class graspable as a parent for this class.

The prior knowledge contains persistent data inserted by the developer, e.g.

accurate object 3D models, environmental models, and affordances as object-

action associations extracted, for example, from text (see Sec. 5). The long-term

memory consists of knowledge stored persistently, e.g. common object loca-

tions that are learned from the robot’s experience during task execution and

persistently stored as heat maps [14]. The working memory contains volatile

knowledge about the current world state, e.g. object existence and position

or relations between entities. The working memory serves as an intermediate

data storage between sensorimotor experience and the symbolic high-level rep-

resentation. The working memory is updated by components like the robot

self-localization, object localization, or natural language understanding, when-

ever they receive new information.

To deal with uncertainties in sensory data, each memory entity value is

accompanied by a probability distribution. In case of object locations, new

data is fused with the data stored in the memory using a Kalman-filter.

3.2. Mapping sensorimotor data to symbols

In order to map sensorimotor experience to symbols, in this study, we em-

ploy the raw sensory data used by the components of self-localization, visual

object recognition, and robot kinematics. For the self-localization, we use laser

scanners and a 2D map of the environment. The self-localization is used to nav-

igate on a labeled 2D graph, in which location labels are defined by a 2D pose

of the location and a variance of the pose. For the visual object recognition,

we use the RGB stereo vision with the texture-based [15] or color-based [16]

approaches. The robot kinematics is used to calculate position of the robot’s

hands, which is used to determine if an object is grasped. Since the robot does

not have sensors in its hands, we assume that the object is grasped if the pose

of the object in the working memory is close enough to the robot hand pose.

The mapping of continuous sensory data into discrete symbolic data is done

by predicate providers. Each world state predicate is defined in its own predicate

provider module, which outputs a predicate state (unknown, true, false) by

evaluating the content of the working memory or low-level sensorimotor data.

Examples of the predicate providers are: grasped represents an object being

held by an agent using a hand; handEmpty represents a state of a robot’s hand;

objectAt and agentAt represent object and robot locations, correspondingly;

leftgraspable and rightgraspable represent the fact that an object at a

certain location can be grasped by the corresponding hand of the robot. Table 1

shows the full list of predicates that are calculated based on the sensor data.

Predicate providers can access other components (e.g., the working mem-

ory, robot kinematics information, long-term memory) to evaluate the predicate

state. For example, the objectAt predicate provider uses the distance between

the detected object coordinates and the center coordinates of the location label

to determine if an object should be considered to be currently at this location.

Only those objects that are required for fulfilling a particular task are tracked

during the action execution. Higher level components operating on a symbolic

level generate requests for a particular object to be recognized at a particular

location. Other objects are not tracked to reduce the system load and avoid the

Predicate with types Description Calculation description

inHand(object, hand, robot) object is in hand of robot
Distance between object and

hand < ǫ1

objectAt(object, location) object is at landmark location
Distance between object and

location < ǫ2

agentAt(robot, location) robot is at landmark location
Distance between robot and

location < ǫ3

handEmpty(robot, hand) hand of robot is empty Distance of hand to all objects > ǫ4

grasped(robot, hand, object) object is grasped with hand of robot Distance of hand to object < ǫ5

leftGraspable(object)
Left hand grasp is known for object and it is

currently at a suitable location for the left hand
Object position in bounding box

rightGraspable(object)
Right hand grasp is known for objectand it is

currently at a suitable location for the right hand
Object position in bounding box

Table 1: Predicates calculated from sensor data.

Predicate with types Description

open(door) door is open

clean(location) cleaning action was performed at location

stirred(container) stirring action was performed in container

substanceIn(substance,container) substance was poured into container

stackable(location) more than one object can be located at location (e.g. sink)

toPutAway(object) object needs to be put away into a predefined location

(e.g. dirty utensils go into the sink)

inHandOfHuman(object,human) object was handed to human

Table 2: Non-observable predicates.

false positive object recognition.

The validity of the generated predicates relies both on the sensor data and

the memory state. Let us consider the grasped predicate as an example. The

employed robot ARMAR-III does not have any sensor in his hands. Therefore,

the grasped predicate is defined by the distance between the object and the

hand. The localization algorithms we apply are not precise enough to localize

the grasped object in the hand, which makes it difficult to determine whether

the object is grasped or not. We solve this problem by introducing the virtual

attachment of the grasped object to the hand. By default, the grasping action

is expected to be successful. Thus, it is assumed that the grasped object is

virtually attached to the hand, i.e. it is moving synchronously with the hand

with an increasing position uncertainty, until a new localization data is available.

This strategy can fail if the grasping action was not successful. In this case, the

robot keeps assuming that the object is in the hand, until the object is visually

localized as still being at the original location.

Additionally, predicates that cannot be perceived by the robot, called non-

observable predicates, are tracked and stored in the robot’s memory. These

predicates are either inserted by the human via speech or are inferred from the

actions of the robot. An example of a non-observable predicate is open applied

to a door. Currently, ARMAR-III cannot perceive a door being open or closed.

However, it needs to access the state of the door in order to plan, for example, for

grasping an object from the fridge. By default, the robot assumes all doors being

closed. After it has performed the door opening action, it adds the predicate

open applied to the door into its memory. The human can also update the

memory of the robot by saying ”The door of the fridge is open/closed”. In the

experiments described in Sec. 7, we use non-observable predicates that are listed

in Table 2.

3.3. Domain Description Generation

Figure 2 shows how the robot’s memory is used to generate a symbolic do-

main description consisting of static symbol definitions and problem specific

definitions. The symbol definitions consist of types, constants, predicate def-

initions, and action descriptions, while the problem definitions consist of the

symbolic representation of the current world state represented by predicates

and the goal state that should be achieved. Types enumerate available agents,

hands, locations, and object classes stored in the prior knowledge. Constants

represent available instances, on which actions can be performed, and are gen-

erated using entities in the working memory. Each constant can have multiple

types, such that one is the actual type of the corresponding entity, and others

are parents of that particular type including transitive parentship. For exam-

ple, instances of the type cup are also instances of graspable and object. This

Figure 2: Components involved in the domain description generation.

type hierarchy is important for specifying actions over a particular set of types,

e.g., the grasping action has the type graspable as a parameter to ensure that

grasps are only planned on graspable objects. The domain generator derives ac-

tion representations from the long-term memory, where they are associated with

specific robot skills represented by statecharts as described in [17]. Each action

is associated with a set of preconditions and effects represented by predicates.

The generated domain description is used by the NLU component as well as

by the Replacement Manager and the planning component. The NLU compo-

nent uses the domain description to create a knowledge base and to ground NL

references and the Replacement Manager uses the description to check if objects

in the planner goal and their locations are known to the robot. The planning

component uses it as the knowledge base for plan generation.

4. Multi-Purpose Natural Language Understanding

The purposes of the NL understanding component are a) to ground NL ut-

terances to actions, objects, and locations stored in the robot’s memory, b) to

distinguish between commands, descriptions of the world, and human feedback,

c) to provide context-based affordances for mentioned objects, and d) to gen-

erate representations of each type of the NL input suitable for the downstream

components (goal for the planner, object context for the Replacement Manager,

feedback for the plan execution and monitoring component). Our approach is

based on the abductive inference used for interpreting NL utterances as obser-

vations by linking them to known or assumed facts, see [18].

The NL understanding pipeline shown in Fig. 3 consists of the following

processing modules. The speech input is processed by a speech recognition

component2 that converts it into text. The text is then processed by a se-

mantic parser that outputs a logical representation of it. This representation

together with observations stored in the robot’s memory and the lexical and

domain knowledge base constitute an input for an abductive reasoning engine

that produces a mapping to the domain, i.e. symbolic labels known to the

robot. The mapping is further classified and post-processed. The pipeline is

flexible, i.e. each component can be replaced by an alternative. We use the

implementation of the abduction-based NLU that was developed in the context

of knowledge-intensive large-scale text interpretation [20].

Robot’s
memoryText

blabla
blabla

Semantic
parser

Logical
form

a(x) ^ c(x,y)

Abductive
reasoner

Lexical & domain
knowledge base

Domain
mapping
goal#a(x) ^
world#b(y)

Classifier
Type
goal:a(x)
world:b(y)
command:d(x)

Postprocessing

Figure 3: Natural language understanding pipeline.

2In the experiments described in this manuscript, we used the speech recognition system

presented in [19].

4.1. Logical form

We use logical representations of NL utterances described in [21]. In this

framework, a logical form (LF) is a conjunction of propositions and variable

inequalities, which have argument links showing relationships among phrase

constituents. For example, the following LF corresponds to the command Bring

me the juice from the table:

∃e1, x1, x2, x3, x4 (bring-v(e1, x1, x2, x3) ∧ thing(x1) ∧ person(x2) ∧ juice-n(x3)

∧ table-n(x4) ∧ from-p(e1, x4)),

where variables xi refer to objects thing, person, juice, and table and variable

e1 refers to the eventuality of x1 bringing x2 to x3; see [21] for more details.

In the experiments described below, we used the Boxer semantic parser [22].

Alternatively, any dependency parser can be used if it is accompanied by an LF

converter as described in [23].

4.2. Abductive inference

Abduction is inference to the best explanation. Formally, logical abduction

is defined as follows:

Given: Background knowledge B, observations O, where both B and O are

sets of first-order logical formulas,

Find: A hypothesis H such that H ∪ B |= O,H ∪ B 6|=⊥, where H is a set of

first-order logical formulas.

Abduction can be applied to discourse interpretation [18]. In this framework,

logical forms of the NL utterances represent observations, which need to be

explained by the background knowledge. Where the reasoner is trying to link

parts of the logical form to what is already known from the overall context

and the background knowledge. The reasoner introduces assumptions, if it is

provided with incomplete information. The reasoner prefers minimal hypotheses

to those that introduce more assumptions.

Suppose the command Bring me the juice from the table is turned into an

observation oc. If the robot’s memory contains an observation of a particular

instance of juice being located on the table, this observation will be concate-

nated with oc and the noun phrase the juice will be grounded to this instance

by the abductive reasoner.

Another example is the disambiguation between a command (Put the juice

on the table) and a world description (The juice is on the table), which depends

on the presence of the action predicate. This disambiguation can be performed

by using the following two background axioms:

goal#objectAt(e1, x1, x2) → put-v(e1, Robot, x1) ∧ on-p(e1, x2)

world#objectAt(x1, x2) → on-p(x1, x2),

where prefixes goal# and world# indicate the type of information conveyed by

the corresponding linguistic structures. In the case of the command, the first

axiom will be applied, because it will explain more atomic observables (put and

on). This axiom represents the fact that commands like Robot, put x1 on x2

imply that there is a goal of x1 being located at x2. In the case of the world

description represented by the bare on prepositional phrase, the second axiom

will be applied. This axiom describes the semantics of the bare on prepositional

phrase not attached to a verb and represents the fact that x1 is located at x2.

We use a tractable implementation of abduction based on Integer Linear

Programming (ILP) [20]. The reasoning system converts a problem of abduc-

tion into an ILP problem, and solves the problem by using efficient techniques

developed by the ILP research community. Typically, there exist many hy-

potheses explaining an observation. In the experiments described below, we

use the framework of weighted abduction [18] to rank hypotheses according to

plausibility and select the best hypothesis. This framework allows us to de-

fine assumption costs and axiom weights that are used to estimate the overall

cost of the hypotheses and rank them. As the result, the framework favors

minimal (shortest) hypotheses as well as hypotheses that link parts of obser-

vations together and support discourse coherence, which is crucial for language

understanding, see [24]. However, any other abductive framework and reasoning

engine can be integrated into the pipeline.

4.3. Lexical and domain knowledge base

In our framework, the background knowledge B is a set of first-order logic

formulas of the form

Pw1

1 ∧ ... ∧ Pwn

n → Q1 ∧ ... ∧Qm,

where Pi and Qj are predicate-argument structures or variable inequalities and

wi are axiom weights.3

Lexical knowledge used in the experiments described below was generated

automatically from the lexical-semantic resources WordNet [25] and FrameNet

[26]. First, verbs and nouns were mapped to the synonym classes. For example,

the following axiom maps the verb bring to the class of giving:

action#give(e1, agent, recipient, theme) →

bring-v(e1, agent, theme) ∧ to-p(e1, recipient)

Prepositional phrases were mapped to source, destination, location, instru-

ment, etc., predicates. Different syntactic realizations of each predicate for each

verb (e.g., from X, in X, out of X) were derived from syntactic patterns specified

in FrameNet that were linked to the corresponding FrameNet roles. See [27] for

more details on the generation of lexical axioms. A simple spatial axiom was

added to reason about locations, which states that if an object is located at a

part of a location (corner, top, side, etc.), then it is located at the location.

The synonym classes were further manually axiomatized in terms of domain

types, predicates, constants, and actions. For example, the axiom below is used

to process constructions like bring me X from Y :

goal#inHandOfHuman(e1, theme) ∧

world#objectAt(theme, loc) →

action#give(e1, Robot, recipient, theme) ∧

location#source(e1, loc),

which represents the fact that the command evokes the goal of the given object

3See [23] for a discussion of the weights.

being in the hand of the human and the indicated source is used to describe the

location of the object in the world. The prefixes (e.g., goal#, world#) indicate

the type of information conveyed by the corresponding linguistic structures.

The framework can also handle numerals, negation, quantifiers represented by

separate predicates in the axioms (e.g., not, repeat). For example, the following

axiom is used to process constructions like put N Xs on Y :

goal#objectAt(e1, theme, loc) ∧ #repeat(theme, n) →

action#puton(e1, Robot, theme, loc) ∧ card(theme, n)

The#repeat predicate is further used by the post-processing component that

multiplies predicates containing the corresponding variable (theme) n times.

Negation is represented by the predicate not, e.g., the following axiom maps

the adjective dirty to the domain:

not(e1) ∧ world#clean(e1, x) → dirty-a(e2, x)

Quantification is also represented by a separate predicate. The repeti-

tion, negation, and quantification predicates are further treated by the post-

processing component.

The hierarchy axioms (red cup→cup) and inconsistency axioms (red cup

xor green cup) were generated automatically from the domain description. Ev-

ery type-parent relation in the description was converted into a hierarchy axiom.

If two types share the same parent and do not share any instances, they were

declared to be inconsistent in the knowledge base.

4.4. Object grounding

If objects are described uniquely, then they can be directly mapped to the

constants in the domain. For example, the red cup in the utterance Give me the

red cup can be mapped to the constant red cup if there is only one red cup in

the domain. However, redundant information that can be recovered from the

context is often omitted in the NL communication, see [28]. In our approach,

grounding of underspecified references is naturally performed by the abductive

reasoner interpreting observations by linking their parts together, see Sec. 4.2.

For example, given the text fragment The red cup is on the table. Give it to

me, the pronoun it in the second sentence will be linked to red cup in the first

sentence and grounded to red cup. To link underspecified references to earlier

object mentions in a robot-human interaction session, we keep all mentions

and concatenate them with each new input LF to be interpreted. Predicates

describing the world from the robot’s memory are also concatenated with LFs

to enable grounding. Given Bring me the cup from the table, the reference the

cup from the table will be grounded to an instance of cup observed as being

located on an instance of table.

If some arguments of an action remain underspecified or not specified, then

the first instance or the corresponding type will be derived from the domain

description. For example, the execution of the action of putting things down

requires a hand to be specified. In the NL commands this argument is often

omitted (Put the cup on the table), because for humans it does not matter,

which hand the robot will use. The structure putdown(cup,table,hand) is

generated by the NLU pipeline for the first command above. The grounding

function then selects the first available instance of the underspecified predicate.

In future, we consider using a clarification dialogue, as proposed, for example,

in [29].

4.5. Context-based affordances

Object replacement depends on the corresponding object affordances. For

example, a spoon can be replaced by a fork in the context of eating or by a knife

in the context of stirring. Potential affordances can be extracted from the dialog

context. For example, if the human says I’d like to drink something. Bring me

some juice, then the affordance of the juice is drinking. In order to provide the

Replacement Manager with this information, we store all verbs mentioned in

the dialog session. When the NLU component generates a new planner goal, for

each domain object label represented by a noun phrase, it selects a verb possibly

representing its affordance. Those verbs are selected, which have the highest

weights in the common-sense affordance database generated from corpora as

described in Sec. 5.1.1. For object labels, for which there is no appropriate verb

in the dialog context, the top affordance from the common-sense affordance

database is provided. Basing the context-based affordance extraction on verbs

is a clear limitation, because any part of speech can refer to an affordance, e.g.,

I’m thirsty. Bring me some juice. In future, we plan to employ lexical-semantic

and world knowledge to reason about affordances.

4.6. Classifier

The classifier takes into account prefixes assigned to the inferred predicates.

For example, the abductive reasoner returned the following mapping for the

command Bring me the cup from the table:

action#give(e1, x1, x2, x3) ∧ location#source(e1, x4) ∧ x1 = Robot ∧

x2 = Human ∧ goal#inHandOfHuman(e1, x3, x2) ∧ world#objectAt(x3, x4)

The classifier extracts predicates with prefixes and predicates related to the

corresponding arguments. The following structures will be produced for the

mapping above:

[goal: inHandOfHuman(cup,Human), world: objectAt(cup,table)]

Actions that do not evoke goals or world descriptions are interpreted by

the classifier as direct commands or human action descriptions depending on

the agent. For example, action#grasp(Human,cup) (I’m grasping the cup) will

be interpreted as a human action description, while action#grasp(Robot,cup)

(Grasp the cup) is a direct command.

The classifier can also handle nested predicates. For example, the utterances

1) Help me to move the table, 2) I will help you to move the table, 3) I will help

you by moving the table will be assigned the following structures, correspond-

ingly:

1. [direct command: helpRequest:[requester: Human,

action: move(Robot,table)]

2. [human action: help:[helpInAction: move(Robot,table)]

3. [human action: help:[helpByAction: move(Human,table)]

The human feedback is currently typed as agreement (e.g., I’m fine with it),

disagreement (e.g., No), or no information (e.g., I don’t know).

4.7. Post-processing

The post-processing component converts the extracted data into the format

required by the downstream modules. Direct commands and human feedback

are immediately processed by the Plan Execution &Monitoring component. Ob-

ject context is used by the Replacement Manager. World descriptions are added

to the robot’s working memory. Goals extracted from utterances are converted

into a planner goal format, so that not predicate is turned into the corresponding

negation symbol, predicates that need multiplication (indicated by the #repeat

predicate) are multiplied, and quantification predicates are turned into quanti-

fiers. For example, the commands 1) Put two cups on the table and 2) Put all

cups on the table can be converted into the following goal representations in the

PKS syntax [30], correspondingly:

1. (existsK(?x1: cup, ?x2: table) K(objectAt(?x1,?x2)) & (existsK(?x3:

cup) K(objectAt(?x3,?x2)) & K(?x1 != ?x3)))

2. (forallK(?x1: cup) (existsK(?x2: table) K(objectAt(?x1,?x2))))

4.8. Processing examples

In the following, we present processing steps for two example sentences.

For simplicity, we do not demonstrate object grounding in these examples. As

described in Sec. 4.4, the grounding is performed by concatenating logical forms

produced by the semantic parser with the earlier object mentions as well as

predicates corresponding to objects known to the robot.

In the example below, two background axioms are employed by the abductive

reasoner. Lexical axiom L1 is derived from FrameNet and maps the phrase

bring from to the giving action class and location indication. Domain axiom

D1 created manually is used to map the giving action class to the goal of the

object being in the hand of a human.

Analysis step Output representation

Text Bring me the juice from the table

Logical form ∃e1, x1, x2, x3, x4 (bring-v(e1, x1, x2, x3) ∧ thing(x1) ∧

human(x2) ∧ juice-n(x3) ∧ table-n(x4) ∧ from-p(e1, x4))

Axioms applied L1: action#give(e1, agent, recipient, theme) ∧

world#objectAt(theme, location) →

bring-v(e1, agent, recipient, theme) ∧ from-p(e1, location)

D1: goal#inHandOfHuman(e1, theme, recipient) →

action#give(e1, robot, recipient, theme)

Abductive inference goal#inHandOfHuman(e1, x3, x2) ∧ world#objectAt(x3, x4)

∧ juice-n(x3) ∧ table-n(x4)∧ human(x2)

Classifier [goal: inHandOfHuman(juice,human),

world: objectAt(juice,table)]

Post-processor [goal: (existsK(?x1 : juice, ?x2: human)

K(inHandOfHuman(?x1,?x2)),

world: objectAt(juice,table)]

The next example illustrates the use of the #repreat predicate used to multiply

goad predicates.

Analysis step Output representation

Text Put two the glasses on the table

Logical form ∃e1, x1, x2, x3 (put-v(e1, x1, x2) ∧ thing(x1) ∧

∧ glass-n(x2) ∧ card(x2, 2) ∧

table-n(x3) ∧ on-p(e1, x3))

Axioms applied L1: action#puton(e1, agent, theme, location)→

put-v(e1, agent, theme) ∧ on-p(e1, location)

D1: goal#objectAt(e1, theme, location) ∧ #repeat(theme, n) →

action#puton(e1, robot, theme, location) ∧ card(theme, n)

Abductive inference goal#objectAt(e1, x2, x3) ∧ #repeat(x2, 2) ∧

glass-n(x2) ∧ table-n(x3)

Classifier [goal: objectAt(glass, table) & repeat(glass,2)]

Post-processor [goal: (existsK(?x1 : glass, ?x2 : table)

K(objectAt(?x1, ?x2)) & (existsK(?x3 : glass)

K(objectAt(?x3, ?x2)) & K(?x1 != ?x3)))]

5. Replacement Manager

The Replacement Manager (RM) has two aims: 1) to replace missing objects

with alternatives and 2) to suggest new potential locations for missing objects.

A welcome side product of the RM is that it serves as a preliminary feasibility

checker for the task before the planning process is started. If objects mentioned

in the goal are not present in the generated domain, the planner will not be able

to find a valid plan and thus does not need to be called.

The RM is evoked after the NLU component produces a goal for the planner

or if the plan execution fails because of a missing object (see Sec. 6.2). For

each object and location name occurring in the goal, the RM checks if they are

contained in the robot’s memory (MemoryX), i.e. the names can be converted

into MemoryX types that have instances with specified locations. If an instance

or its location is missing, the RM attempts a replacement and rewrites the goal

before passing it to the planner.

Figure 4 shows how the RM interacts with other components. A speech

command is processed by the NL Understanding component that generates a

goal for the planner and affordances for each object mentioned in the goal. The

RM queries the domain generator and replaces unknown objects in the goal with

the known ones and makes sure that there are valid locations for instances of

all objects mentioned in the goal by inserting object instance hypotheses into

the working memory. The planner will treat these the same as confirmed object

instances, but all actions using an object instance will fail during execution if

the object instance hypothesis is wrong.

If a suitable replacement has been found, the RM rewrites the goal. The

component passes the goal to the planner that generates a plan. The plan

execution is supervised by the Plan Execution & Monitoring component. If the

plan execution fails because of a missing object, the RM is called again.

The RM is using different replacement strategies, which vary with respect to

the considered input data and range from visual shape estimation to evaluation

of large text corpora. The replacement strategies are subdivided into object and

location replacement strategies as follows.

Adjusted
goal

Speech Command
blablabla

Replacement Manager
Replace objects Find object locations

Replacement Strategies

Plan Execution &
Monitoring

Action execution fails
Object not found

Replan

ReplacePlan goal Object affordances

Execute

NL Understanding Domain Generator

Planner
Figure 4: Interaction between the Replacement Manager and other components.

5.1. Object Replacement

Object replacement is performed when a) an object type mentioned in the

goal is unknown or b) a suitable object could not be found at any known location

of the object during the plan execution. We employ two object replacement

strategies based on shared common-sense affordances and shared visual features

as described below. Object replacement requires human feedback. Therefore

the RM generates a confirmation question for the human and proceeds with the

replacement only if it was confirmed.

5.1.1. Common-sense affordances strategy

The strategy based on shared common-sense affordances employs typical

object affordances generated from textual corpora as described in [8]. For each

noun referring to an object in the domain, we extract affordances expressed by

verbs with assigned scores. This is done as follows. We use a parsed text corpus4

to extract verbs co-occurring with a given noun in the instrument role patterns:

”VERB with (a/the)? NOUN” (cut with a knife), ”NOUN for VERBing” (knife

for cutting) and in the patient role patterns: ”VERB (a/the)? NOUN” (cut the

bread). Stop words are excluded from consideration. As a result, we generate

an affordance database containing entries of the form 〈object, affordance, role,

norm freq〉, where role can be instrument or patient and norm freq is a nor-

malized frequency of the co-occurrence of object and affordance in the patterns,

e.g., 〈juice, drink, patient, 0.866〉. The affordance database is used to gener-

ate a replacement database consisting of tuples of the form 〈object1, object2,

affordance, score〉 indicating that object1 can be replaced by object2 towards

affordance with the confidence equal to score. For example, a spoon is most

likely to be replaced by a fork towards eating, while it is most likely to be

replaced by a stirrer towards stirring.

The confidence score is computed by a relational learning framework in two

steps. First, similarity for object pairs towards affordances is computed. Second,

a function is learned, which generalizes the known relations to all possible object

pairs not observed earlier. The similarity measure is defined as follows.

4In the experiments described below, the Google Books corpus was used,

http://storage.googleapis.com/ books/syntactic-ngrams/index.html.

r(o1, o2|a) =

n f(o1, a) ∗ n f(o2, a) if (o1, a) ∈ D and (o2, a) ∈ D

0 otherwise,
(1)

where D ⊂ O×A is a set of object-affordance pairs such that O is a set of objects

and A is a set of affordances, n f(o, a) is the normalized frequency of the object

o and affordance a co-occurrence. Based on this similarity measure a feature

vector for all object pairs can be constructed, φ(o1, o2) = (r(o1, o2|a), a ∈ A).

Note that φ can be defined for cases not represented in D.

At the second step, a set of functions connecting the object pairs to the

affordances is learned. This step is needed to propose replacements for object o

towards affordance a even if o and a do not co-occur in the affordance database.

It is also needed to learn replacements towards an unknown affordance. In

[3, 10, 11], the learning procedure and related applications are described in

detail. Let us sketch the main idea in this section.

In this approach, the similarity measure r(o1, o2|a) is represented by proba-

bility density functions of Gaussian distribution with expected value r(o1, o2|a)

and with a common standard deviation σ, i.e. ψ(r(o1, o2|a)) = p(.|r(o1, o2|a), σ).

The functions are defined for all affordances a ∈ A as fa : O ×O → Fσ, where

Fσ is the set of all probability functions of normal distribution with standard

deviation σ. These functions can express the uncertainty of the similarity mea-

sure. The functions {fa|a ∈ A} are then represented by a linear operator that

maps feature vectors φ(o1, o2,) of the object pairs into the space of Fσ.

The learning problem consists in maximizing the inner product between

the predicted and the given feature vectors of the similarity scores for all ob-

served object pairs and affordances. This optimization problem is an extension

of the Support Vector Machine, and the Maximum Margin Markov Networks

developed for structured output learning frameworks, see a description and sev-

eral alternatives in [31]. This optimization problem can be solved via its dual

form, the detailed procedure is provided by [32]. After solving the optimization

problem, the predicted similarity score for tuple 〈o1, o2, a〉 can be computed as

follows

ψ(r(o1, o2|a)) = W∗

aφ(o1, o2), (2)

where W∗

a is the optimal solution for affordance a. Since ψ as a feature vector is

a probability density function, the replacement score measure for an object pair

towards an affordance can be derived by taking the expectation with respect to

ψ, i.e.

r̃(o1, o2|a) = E[ψ(r(o1, o2|a))]. (3)

The NL Understanding component generates an affordance for each object

mentioned in the goal as described in Sec. 4. For the object that needs to

be replaced, the shared common-sense affordances strategy searches for the re-

placement towards the LU generated affordance for this object, which has the

highest score in the replacement database. Since the replacement database is

generated from textual corpora, it contains only object names represented by

nouns (”cup” instead of ”bluecup”). The strategy uses the type hierarchy (e.g.,

”bluecup” → ”cup” → ”container”) for finding the replacement. For example, if

”bluecup” needs to be replaced, it will search for replacement options specified

for its parent in the hierarchy. Similarly, if ”cup” is suggested as a replacement,

the strategy will select its leaf child in the hierarchy as an actual replacement

candidate.

5.1.2. Visual features strategy

This strategy compares precomputed affordances of the object to be re-

placed, which are based on its visual features, with affordances extracted from

point cloud data during run-time in the robot’s current field of view. In [9], we

introduced, evaluated and discussed in more detail the strategy presented here.

The affordances are estimated on the basis of object shapes. More specifically,

we utilize the shape representation based on global 3D descriptors to predict

functional properties of objects [33]. For instance, a container shape affords

pouring into it, dropping into it, etc. Fig. 5 shows ARMAR-III applying the

visual features strategy. The perceived point cloud data is projected into the

memory view of the robot. For each dense point cloud cluster (colored point

cloud data), the affordances based on the shape of the cluster are estimated.

In this example, the bowl as well as the basked afford pouring into, stirring,

and dropping into. The grey bowl represents the perceived pose of the bowl

produced by the object recognition system.

Figure 5: Affordances predicated based on shape representations.

Object shapes are described using histograms of relations between pairs of

3D features. First, we segment the scene using RGBD data obtained from the

Kinect sensor. For each segment, we extract planar 3D surface features called

3D texlets [34] that contain position and orientation. Objects are represented

by sets of pairwise relations, defined globally, for all pairs of texlets. We com-

pute geometric relations of two attributes: angle and scale-invariant distance

(i.e., normalized relative to the object size) between 3D texlets. The distance

relation is chosen to be scale-invariant, because what defines a object affor-

dance is usually independent of scale. The final object descriptor is obtained

by binning these two relations in a 2D histogram, which models the distri-

butions of the relations in fixed-sized feature vectors while considering their

co-occurrence. According to previous investigations [33], the binning size is set

to 12 in both dimensions resulting in a feature vector of 144 dimensions. The re-

sulting descriptor is highly discriminative, leading to fast learning and accurate

estimation.

Affordance labels are learned using JointSVM [9]. JointSVM is equivalent

to Structural SVM, which is an extension of SVM for predicting structured

outputs, with a linear output kernel plus a regularization term on the kernel

[35]. As input kernels, we choose polynomial kernels based on previous tests, cf.

[9]. The estimation of both the kernel parameters and the internal parameters

of JointSVM is performed by cross-validation.

JointSVM outputs an indicator vector, i.e. a set of binary labels, defined

on the objects appearing on a scene. The learner treats the full output vector

as one entity, i.e. simultaneously predicts all object labels. The estimation of

the confidence of each affordance label is based on the assumption that if the

predicted vector is close to a known label vector in the training data, then the

confidence should be high, otherwise it is low; see [9] for the implementation.

For estimating if an unknown object with predicated affordances can replace

a known object with known affordances, we compute object similarity. The

similarity measure is defined as follows:

S(y(x)) = Sp(y(x))− Sn(y(x)), (4)

where y(x) are the predicted affordances, and Sp(y(x)), Sn(y(x)) are the positive

and the negative similarity metrics, respectively, cf. [9]. The positive similarity

accounts for the true positive predictions, yp(x), while the negative similarity

accounts for the false positive predictions, yn(x). Both yp(x) and yn(x) are

derived from y(x) by considering the known affordances. Then, Sp(y(x)) and

Sn(y(x)) are defined as follows:

Sp(y(x)) = AV G(yp(x))× TPR(y(x)) (5)

Sn(y(x)) = AV G(yn(x))× FPR(y(x)) (6)

where AV G indicates the mean value and TPR and FPR indicate the true

positive rate (recall) and the false positive rate (fall-out), respectively. Based

on the pre-defined threshold, a potential replacement is estimated to be accept-

able or not. In the experiments described below, we used the threshold of 0.3

estimated as described in [9].

Because it is possible to extract affordances during run-time, the robot can

select an object as a replacement alternative, for which it otherwise does not

have any knowledge. It can also react to changes in the known objects. For

example, a container can be closed or open, which changes its affordances, e.g.,

it can be poured from or into only when it is open.

5.2. Location Replacement

Location replacement happens when the location of all instances of an object

type mentioned in the goal is unknown or when an object could not be found

during the plan execution. For the location replacement, the RM manipulates

the current working memory of the robot and inserts object instances as un-

confirmed hypotheses at the suggested location from the replacement strategy.

We employ three location replacement strategies based on 1) common locations

learned from the previous experience of the robot, 2) common-sense locations

obtained from textual corpora, 3) the human feedback.

5.2.1. Common locations strategy

The strategy based on common locations uses the feature of ArmarX that

allows robots to learn typical locations of the objects from its experience [14].

Since the information about object locations is stored in the robot’s memory

as a set of density distributions of points (see Fig. 6), the distributions have to

be mapped to symbolic location labels that can be processed by the planner.

To do so, we link a location label with the expected value of the corresponding

distribution. When the robot is close enough to the object and can actually see

it, then the assumed location is replaced by the actual observed object position.

This strategy is the most used location strategy, since the confidence of the

location hypotheses is high. When the robot is initialized, the locations of the

objects are unknown. Thus, when a command is received, a location hypothesis

needs to be generated for each implied object.

Recorded object localization results

Figure 6: Previously seen locations of an object (green spheres), which are clustered to density

distributions in order to generate common object locations. The cluster on the right side

represents the top location hypothesis, since the object has been seen there more frequently.

5.2.2. Common-sense locations strategy

The strategy based on common-sense knowledge obtained from textual cor-

pora employs the method for extracting typical object locations from text as

described in [8]. For each pair of (object label, location label) in our domain,

such that the labels are expressed by nouns, we search in the corpus for the

patterns ”OBJECT NOUN (be)? loc prep LOC NOUN”, where loc prep is a lo-

cation preposition, e.g., on, in, at. Using this method, we generate a location

database consisting of the tuples of the form 〈object, location, score〉. Each tuple

proposes a location for a given object, with a confidence score corresponding to

the normalized frequency of their co-occurrence in the corpus. To increase the

likelihood of finding objects, this strategy queries the database not only for the

actual object type, but also all parents of that object type in the type hierarchy.

5.2.3. Human feedback strategy

The strategy based on the human feedback uses object locations communi-

cated by the human, e.g., The corn is in the fridge. As described in Sec. 4, the

NL Understanding component handles world state descriptions including loca-

tion descriptions and updates the MemoryX working memory correspondingly.

Thus, the strategy consists of generating a question for the human asking for a

location of the missing object and monitoring the MemoryX working memory

updates. After MemoryX was updated, the RM invokes the planner, which

replans given the new information. This strategy is a fall-back mechanism that

is used only if all other strategies fail.

6. Planning and Plan Execution & Monitoring

6.1. Planning

We define a plan as a sequence of actions P = 〈a1, .., an〉 with respect to

the initial state s0 and the goal G such that 〈s0, P 〉 |= G. In the experiments

described in Sec. 7, we used the state-of-the-art PKS planner [30]. Any other

symbolic planner can be used instead.

The domain generation and NLU components of our system provide the

planner with a domain description (Sec. 3) and a goal (Sec. 4) represented in

the PKS syntax as input. Below we show the PKS representation of the state

of the world description corresponding to the robot being in the center of the

kitchen and two cups being on the counter top.5

agentAt(robot, kitchen_center),

handEmpty(robot, rightHand), handEmpty(robot, leftHand),

objectAt(cup1, countertop), objectAt(cup2, countertop),

5For simplicity, in this example we skip definitions of types, predicates, and constants

required by PKS.

leftGraspable(cup1), rightGraspable(cup1),

leftGraspable(cup2), rightGraspable(cup2)

The example below shows the PKS definition of the grasp action.

grasp(?a : robot, ?h : hand, ?l : surface, ?o : graspable) {

preconds:

(K(rightGraspable(?o)) & (existsK(?y : rightHand) K(?y = ?h)) |

(K(leftGraspable(?o)) & (existsK(?y : leftHand)K(?y = ?h)))) &

K(agentAt(?a, ?l)) &

K(objectAt(?o, ?l)) &

K(handEmpty(?a, ?h))

effects:

add(Kf, grasped(?a, ?h, ?o)),

del(Kf, objectAt(?o, ?l)),

del(Kf, handEmpty(?a, ?h))

}

The PKS planner returns sequences of grounded actions with their pre- and

post-conditions. Given the domain description example above and the follow-

ing goal: (existsK(?x1 : cup, ?x2 : table) K(objectAt(?x1, ?x2)) &

(existsK(?x3 : cup) K(objectAt(?x3, ?x2)) & K(?x1 != ?x3))) corre-

sponding to the command Put two cups on the table, it generates the plan

below6.

move(robot, kitchen_center, countertop)

pre: agentAt(robot, kitchen_center)

(kitchen_center != countertop)

post: agentAt(robot, countertop)

grasp(robot, leftHand, countertop, cup1)

pre: agentAt(robot, countertop)

6The plan description is shortened for better readability.

objectAt(cup1, countertop)

handEmpty(leftHand)

leftGraspable(cup1)

post: grasped(robot, leftHand, cup1)

!objectAt(cup1, countertop)

!handEmpty(leftHand)

grasp(robot,rightHand,countertop, cup2)

...

move(robot,countertop,table)

...

putdown(robot,leftHand,table, cup1)

pre: agentAt(robot, table)

grasped(robot, leftHand, cup1)

post: handEmpty(robot, leftHand, cup1)

objectAt(cup1, table)

!grasped(robot, leftHand, cup1)

putdown(robot,rightHand,table, cup2)

...

6.2. Plan Execution and Monitoring

The components described in the previous sections are employed by the

Plan Execution and Monitoring (PEM) component. The PEM is the central

coordination component for the command execution. A simplified control flow

for execution of a planning task is shown in Fig. 7. The PEM is evoked when

a new task is sent from an external component (e.g., the NLU component).

Different types of tasks are accepted. For each type of task, the PEM has an

implementation of a ControlMode interface, which knows how to execute this

task type. Currently, a task can be a single command or a list of goals that

should be achieved. Here, we are focusing on the goal task type, which requires

the planner to produce a plan. After a new task was received, the PEM calls the

Domain Generator to generate a new domain description based on the current

Generate domain

Generate plan
Execute plan step

Verify action effectsSuc
ces

s
Fai

lur
e

Tas
k a

chi
eve

d Language Understanding
MemoryX

ArmarX Statechart
framework

Planner

Plan Execution Monitor
Get task

Replace missing objects
& locations Replacement Manager

Figure 7: Plan generation, execution, and monitoring.

Figure 8: Visualization of the robot’s working memory (left) during action execution and the

robot in the real world state (right) at the same moment. The working memory is continuously

updated with perceived and predicted data. Only objects relevant for the current task or that

have been relevant for a previous task are tracked in the working memory.

world state (Sec. 3). This domain description together with the received goal

are then passed to the Replacement Manager, which checks if every object in the

goal and its location are in the domain description. In case of missing objects

or object locations, it replaces them and rewrites the goal. Then the domain

description and the rewritten goal are passed to the planner. If a plan could not

be found, the PEM synthesizes a feedback indicating the failure. A successful

plan consists of a sequence of actions with bound variables as well as pre- and

post-conditions of the actions that are passed back to PEM. These actions are

executed one by one.

Each action that corresponds to a symbolic planning operator is associated

with an ArmarX statechart, which controls the action execution. The ArmarX

statecharts allow us to model robot actions in a hierarchical manner and to

specify control and data flow visually. Due to the hierarchy of statecharts, it is

possible to compose complex skills by using elementary or primitive skills, e.g.

following a trajectory with the tool center point of a robot arm. The primi-

tive skills are based on services provided by the robot development environment

ArmarX [6] such as inverse kinematics, motion planning, and robot’s memory.

Each top-level action, i.e. the execution of a planning operator such as grasp,

is manually designed with respect to the available sensors and algorithms. For

example, the action open uses force-torque-based sensing for grasping the door

handle and impedance control to open the door. The action grasp uses visual-

servoing [36] for precise execution with respect to the object localization. The

actions stirring and wiping use motion learned from demonstration with a spe-

cialization of the action formalism Dynamic Movement Primitives presented in

[37]. A detailed description of the ArmarX statecharts can be found in [17].

Action execution might fail because of uncertainties in perception and execu-

tion or changes in the environment. To account for the changes, pre-conditions

of an action before the execution and its effects after the execution are verified

by the PEM. If action execution failed because of a missing object, then the

PEM calls the Replacement Manager to replace the object or its location. The

world state is continuously updated as well as the working memory based on

sensor-data or prediction models. Fig. 8 shows the visualization of the robot

working memory and the robot in the real world at the same moment dur-

ing the execution of the skill putdown. The world state observer component

is queried for the current world state after each action. If any mismatches be-

tween a planned world state and a perceived world state are detected, the plan

execution is considered to have failed and re-planning is triggered based on the

current world state. Additionally, the statecharts report if they succeeded or

failed; failing leads to re-planning. If an action was successfully executed, the

next action is selected and executed. After the task completion the robot goes

idle and waits for the next task.

7. Experiments

In this section, we describe two experiments: a demonstration of the hu-

manoid robot ARMAR-III and a visual simulation experiment involving un-

trained human subjects. Several specific components involved in our system

have been evaluated in our previous work. The accuracy of the NLU pipeline

was evaluated in [7]. Common-sense knowledge extraction was evaluated in [8].

In [3], object replacement based on common-sense knowledge was tested. In [9],

an evaluation of the visual features replacement strategy was presented. The

object localization was evaluated in [15] and[16]. In this study, we test how all

components work in combination in a complex setting requiring human-object

communication and collaboration.

7.1. Execution on ARMAR-III

We tested our approach on the humanoid robot ARMAR-III [12] in a kitchen

environment. The case study elaborates on the dinner preparation scenario.

In this section, we describe two parts of the Xperience project demo scenario,

which are relevant for this manuscript: 1) salad preparation, 2) bringing a drink.

The accompanying video can be found at https://youtu.be/PyJ5hCW3zQM.

The video of the full Xperience project demonstration can be found at https:

//youtu.be/-8oC-WW5P1I. Apart from the video, the system was also shown

in a live demonstration for the project review of the Xperience project.

In this experiment, the following robot skills were involved: moving, grasp-

ing, placing, stirring, pouring, door opening and closing, handing, receiving.

Fig. 9 shows snapshots of the scenario in chronological execution order.

In the salad preparation part, the human first asks the robot to put a

salad bowl on the sideboard. The command is processed by the NLU compo-

nent, which generates a planner goal. The goal and the domain description are

processed by the planner, which generates a multi-step plan. According to the

plan, the robot moves to the location of the salad bowl, but does not find the

required object at the location. The Plan Execution & Monitoring component

https://youtu.be/PyJ5hCW3zQM
https://youtu.be/-8oC-WW5P1I
https://youtu.be/-8oC-WW5P1I

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 9: Snapshots of cooperative rearranging the room and preparing a dinner.

reports the failure in the plan execution. The Replacement Manager is evoked.

It finds a container that has a similar shape to the original known bowl, Fig. 9a.

The RM suggests the new container as a replacement based on shared visual

features. The goal is rewritten accordingly and passed to the planner, which

produces a new plan that can be executed successfully, Fig. 9b. When the bowl

is on the sideboard, the human asks the robot for help in preparing a salad with

corn and oil. The command is processed by the NLU and a goal is generated,

which implies the corn and the oil being in the bowl and the salad being stirred

in the bowl. The RM finds that the location of the corn is unknown. Since

other location replacement strategies fail, it generates a question for the human

inquiring for the corn location. The human tells the robot that the corn is lo-

cated in the fridge. The utterance is processed by the NLU and MemoryX is

updated correspondingly. After obtaining the feedback from human, the RM

evokes the planner that generates a plan. The robot moves to the fridge, opens

it (Fig. 9c), moves to the sideboard, pours the corn into the bowl (Fig. 9d), puts

the empty can into the sink, and returns to the fridge to close it (Fig. 9e). The

actions of putting the can into the sink and closing the fridge are planned, since

we introduce symbolic rules stating that dirty objects should go into the sink

after being manipulated and that the fridge door should be closed at the end of

each plan execution. After adding the corn, the robot moves to the oil location,

grasps the oil, pours it into the bowl (Fig. 9f), and puts the oil bottle away. The

latter action is also planned, since we define a symbolic rule requiring robot’s

hands to be empty at the end of each plan execution. In the meanwhile, the

human is cutting other salad ingredients and pouring them into the bowl. In

order to mix the salad, the robot requires a stirrer. It moves to the assumed

stirrer location, but it cannot grasp the stirrer. Instead of grasping, the planner

plans a speech request from the human. The human passes the stirrer to the

robot. The robot returns to the bowl, stirs the salad (Fig. 9g), and puts the

stirrer into the sink (Fig. 9h). Finally, the human asks the robot to put the

bowl on the dinning table, which is performed by the robot (Fig. 9i).

In the second part of the scenario, the human is asking for a drink saying

I’d like to drink something. Could you please bring me a lemonade. This com-

mand is processed by the NLU component and a goal of the lemonade being

in the hand of the human is generated. Apart from generating the goal, the

NLU extracts the affordance of drinking for the object ”lemonade”. The goal

and the predicted affordances are passed to the Replacement Manager. The

RM finds that the object ”lemonade” is unknown and attempts a replacement

by using the affordance ”drink”. The object ”multivitamin juice” is proposed

as a possible replacement. The RM generates a confirmation utterance Sorry, I

have no lemonade. But I can bring you a multivitamin juice. After the human

confirms the replacement, the RM rewrites the goal and passes it to the planner.

According to the generated plan, the robot moves to the assumed location of

the juice, but does not find it there. Plan execution fails and the RM is evoked.

The RM component derives another potential location of the juice from the

database of common locations. The robot finds the juice at the new location,

grasps it, moves to the location of the human, and hands the juice over to the

human (Fig. 9j).

7.2. Simulation experiment

In the simulation experiment, we aimed at testing if the framework can be

employed by untrained users. Due to the usage of generic interfaces in ArmarX,

the programs used on the real robot can also be executed without changes in

a simulation environment. To provide the user with information about the

simulation, ArmarX offers a visualization of the simulated scene and the user

can track the robot’s action execution and the effects they have on the scene.

This Graphical User Interface is shown in Fig. 10. The user can interact with

the simulated robot by typing in the text dialog window or by speaking into a

microphone.

We asked the subjects to achieve a given goal by controlling the robot with

natural language commands in the simulation environment. The instructions

were formulated as follows. First, users were advised to communicate with

the robot by typing sentences in the dialog widget. The users were shown the

Figure 10: Graphical User Interface used for the simulation experiments.

(a) Initial scene. (b) Goal table setup.

Figure 11: Instruction scenes.

initial scene with labels assigned to available locations and some of the objects

(Fig. 11a), which could not be easily visually recognized. They were also shown

the goal table setup (Fig. 11b) and asked to achieve it by controlling the robot.

In addition, we specified that the drink on the table can be chosen from a

predefined list of drinks represented by images (e.g. beer, juice, milk) and the

salad should contain ingredients represented by images of corn and oil.

The experiment was run offline on site, with no time constraints. In total,

eight subjects (four male, four female, age 20–60) took part in the experiment.

All subjects had no background in robotics or related areas. The experimenter

was present during the whole time of the experiment to record the experiment

transcript, see Table 3. The experimenter was not giving any instructions or

answering questions.

All subjects were able to solve the tasks using 12.5 utterances on average.

Some subjects provided general task descriptions, e.g. Make a salad with corn

and oil. Others gave detailed commands, e.g. Go to the fridge. Open the fridge.

Take the corn... In total, 103 natural language utterances were processed in this

experiment. The Language Understanding component processed 87 utterances

fully correctly, 3 - partially correctly, and 13 - incorrectly; see examples in

Table 4.

The main source of errors are underspecified commands, e.g. I need milk,

User

id

Text LU RM Memory

update

Planner Exe-

cution

User

feedback

M2 ”Take two

glasses and

put them on

the table”

yes yes:

”glass”

→

”cup”

- - - -

”yes” yes yes - suboptimal:

juice removed

from the table

yes user con-

fused

Table 3: Example experiment transcript. For each input utterance, the transcript records if

each of the evoked components worked correctly. For the first command, the language under-

standing component produced correct goals and passed them to the Replacement Manager,

which produced the suggestion to replace the unknown object ”glass” with the known object

”cup” and the confirmation question for the user. The next utterance ”yes” was correctly

processed by LU; given the confirmation, the RM correctly rewrote the goals; there was no

memory update; the planner produced a suboptimal goal, which implied removing the juice

from the table to free space for putting the cups, while the user asked for the juice to be

placed there earlier; the plan was correctly executed on the robot; the user was confused by

the fact that the juice was removed from the table.

Text LU output Comment

C ”Can you

please set the

table for two

people”

[goal: (existsK(?x1 : cup, ?x2

: placesetting) K(objectAt(?x1,

?x2)) & (existsK(?x3 : cup, ?x4 :

placesetting) K(objectAt(?x3, ?x4))

& K(?x1 != ?x3) & K(?x2 != ?x4))),

context: (table,set)]

P ”Bring a glass

and put it on

the table”

[goal: ((existsK(?x1 : glass, ?x2

: human) K(inHandOfHuman(?x1,?x2)),

(existsK(?x1 : glass, ?x2 : table)

K(objectAt(?x1,?x2))), context:

((glass,bring), (table,put))]

”bring” in-

terpreted as

”bring to hu-

man” instead

of ”bring to

location”

I ”I need milk” [] Underspecified

command,

modality

(”need”) not

recognized

Table 4: Examples of the correct (C), partially correct (P), and incorrect (I) output of the

language understanding component.

Prepare a salad). Introducing clarification questions asked by the robot is a

possible solution to this problem. Another issue concerns processing of the

partial input. For example, if the robot asks about the corn location and the

user answers in the fridge instead of the corn/it is in the fridge, such answer is

not processed correctly. Currently, we do not have a dialog component that waits

for a particular type of input. Instead, we process all types of input all the time.

This problem can be solved in our framework by assigning higher assumptions

weights to certain syntactic constructions (e.g. prepositional phrases without

noun), which will force the abductive reasoner to link them to the previous

discourse. A related issue concerns context-dependent metonymy. For example,

in the utterance Put the salad on the table, the reference salad should be linked

to the bowl, in which the salad has been prepared. Additional domain axioms

are needed to establish this link. One more issue is related to missing lexical

items or their meanings in the knowledge base. For example, the verb put was

defined in our knowledge base as referring to moving an object from one location

to another, while some of the users were using it in the sense of pour, e.g. put

the corn into the bowl.

The Replacement Manager component suggested 6 object replacements, 4 of

which were accepted by the users. It has also generated location hypotheses for

all known objects and asked the users for unknown object locations. One issue

we have encountered with this component were the cases when several replace-

ments of the same type were required in a goal expression. For example, the

command Put two glasses on the table implies that there should be two different

glasses on the table. Since no glasses were available in our kitchen environment,

the RM suggested replacing them with cups and has chosen the type red cup as

a replacement. Since there was only one instance of red cup, the rewritten goal

implying two different instances could not be fulfilled. To tackle this problem,

the RM needs to consider the number of instances of the replaced type and

make the replacement only if the required instances are available.

The working memory was successfully updated during the execution and

after processing human utterances. Given a goal that could be fulfilled and a

domain description, the planner was producing relevant plans. An issue that

we have encountered is that our framework is currently lacking a mechanism

to estimate pragmatic context-dependent relevance of the generated plans. For

example, a user has commanded the robot to put a drink on the table, which the

robot has performed. Some of the following commands may result in a plan that

requires the robot to remove the drink, which may contradict the original inten-

tion of the user. The ability of storing previous goals and generating new plans

without overwriting these goals is a desired functionality for our framework.

The runtime of the main components is depicted in Table 5 and the timing of

the action execution on the real robot is shown in Table 6. The host pc used for

the measurements was an Intel Core i7-6700HQ CPU @ 2.60GHz with 16 GB

Component Average Maximum Minimum

Language Understanding 0.26 s 0.79 s 0.13 s

Visual Features Strategy 2.61 s 4.61 s 1.66 s

Planning System 0.89 s 7.99 s 0.13 s

Action Execution 20.59 s 42.01 s 4.44 s

Table 5: Runtime of the main components in simulation, in seconds.

RAM. The tasks from this simulation experiment were used to measure the run-

time. The NLU component performed its analysis reliably in under one second

(maximum 0.79 s). No input data produced a noticeable delay in the task trig-

gering. The RM and its strategies, except the visual features strategy, are table

look ups of precomputed information, e.g. common sense object replacements,

and thus consumed no significant CPU time. These strategies were omitted

in Table 5. The visual features strategy on the other hand is computationally

expensive and required 2.61 s on average. The run time mainly depends on how

many point cloud clusters (i.e. objects) have been found in the current scene.

The runtime of the planning component highly depends on the specific goal and

the current state of the memory and varies between 0.00015 s and 7.99 s for the

given tasks. The minimum of 0.00015 s was achieved when the goal was already

fulfilled before starting planning. The maximum of 7.99 s was required for the

task set the table for two people, with all objects except the corn already being

in the working memory. The runtime of the action execution was measured per

plan step in the simulation. This measurement includes the full duration of the

robot’s action execution. The runtime is similar on the real robot, but slightly

higher due to smaller joint angle velocities and a higher perception time. The

runtime highly depends on the executed action; in case of the move action it

depends on the traveling distance.

Action Name Average Std. Dev. σ

Grasp 38.9 s 2.2 s

Move 8.5 s 2.6 s

Open 121.8 s 1.7 s

Pour 11.5 s 0.5 s

Putdown 20.5 s 0.7 s

RequestFromHuman 13.7 s 1.5 s

Stir 55.6 s 1.15 s

Table 6: Runtime of the action execution in seconds on the real robot.

8. Related Work

In this section, the related work is organized according to specific aspects

relevant for this article.

Structural bootstrapping and replacement. The concept of structural bootstrap-

ping was introduced in the context of the Xperience project [1]. In [4], it was

demonstrated how structural bootstrapping can be performed at different levels

of a robotic architecture consisting of a planning level, a symbol-to-signal medi-

ator level, and a sensorimotor level. The concept was applied to acquisition of

action knowledge [38], learning action skills based on exploration and interaction

with the environment [2] and replacement of missing objects [3, 4, 9].

In [39], object replacement is carried out based on a similarity measure

utilizing a) object classes with features and affordances coded manually and

b) visual features such as shape and color intensity. In [3], object replacement

is performed by employing the ROAR database of objects with their affordances

and a learning method predicting unobserved object affordances. Along these

lines, we employ structural bootstrapping for object and location replacement

based on object affordances and predicted object locations.

Affordance estimation. Early work on affordance estimation followed a function-

based approach to object recognition for 3D CAD models of objects such as

chairs [40]. Another approach models affordances of objects as a function of

human-object interactions. For example, in [41], 3D geometric properties are

computed for tracked humans and objects in order to describe human-object in-

teractions. In [42], actions and objects in human demonstrations are recognized

and dependencies between them are modelled. In [43], object affordances are

represented by clustered spatial configurations of human-object interactions.

Other researchers focus on defining a subset of attributes for predicting new

object categories [44, 45, 46]. For example, by learning 2D shape and color pat-

terns, attributes of novel objects can be recognized –[47]. In the field of NL pro-

cessing, there exist developed methods for extracting common-sense knowledge

from textual corpora, which can also be applied for mining object affordances,

cf. [48, 49, 50]. For example, [51] use verb-noun co-occurrences in Google Syn-

tactic N-Grams as well as Latent Semantic Analysis and Word2Vec semantic

vectors to extract verbs that are most likely to refer to affordances of objects

represented by given nouns. In our work, we extract object affordances from

visual features, textual corpora, and dialog context.

Grounding NL. Approaches to grounding NL into actions, relations, and ob-

jects known to the robot can be roughly subdivided into symbolic and statisti-

cal. Symbolic approaches rely on sets of rules to map linguistic constructions

into pre-specified action spaces and sets of environmental features. In [52], sim-

ple rules are used to map NL instructions having a pre-defined structure to

robot skills and task hierarchies. In [53], NL instructions are processed with a

dependency parser and background axioms are used to make assumptions and

fill the gaps in the NL input. In [54], background knowledge about robot ac-

tions is axiomatized using Markov Logic Networks. In [55], a knowledge base

of known actions, objects, and locations is used for a Bayes-based grounding

model. Symbolic approaches work well for small pre-defined domains, but most

of them employ manually written rules, which limits their coverage and scal-

ability. In order to increase the linguistic coverage, some of the systems use

lexical-semantic resources like WordNet, FrameNet, and VerbNet [56, 54]. In

this study, we follow this approach and generate our lexical axioms from Word-

net and FrameNet.

Statistical approaches rely on annotated corpora to learn mappings between

linguistic structures and grounded predicates representing the external world.

In [57], reinforcement learning is applied to interpret NL directions in terms of

landmarks on a map. In [58], machine translation is used to translate from NL

route instructions to a map of an environment built by a robot. In [59], Gen-

eralized Grounding Graphs are presented that define a probabilistic graphical

model dynamically according to linguistic parse structures. In [28], a verb-

environment-instruction library is used to learn the relations between the lan-

guage, environment states, and robotic instructions in a machine learning frame-

work. Statistical approaches are generally better at handling NL variability. An

obvious drawback of these approaches is that they generate noise and require a

significant amount of annotated training data, which can be difficult to obtain

for each new application domain and set of action primitives.

Some recent work focuses on building joint models explicitly considering

perception at the same time as parsing [60, 61]. The framework presented in

this article is in line with this approach, because abductive inference considers

both the linguistic and perceptual input as an observation to be interpreted

given the background knowledge.

Our approach to grounding is also in line with [62] proposing to ground

language and other kind of symbolic information to so called Object Action

Complexes (OACs). OACs provide a framework, in which experience is sys-

tematically structured and linked to specific actions, which on the one hand

are described by symbolic state transitions allowing for planning, and on the

other hand, by the relevant sub-symbolic information allowing for reasoning in

continuous and ambiguous signal space. Our mapping of linguistic structures to

predicate providers (Sec. 3) and statecharts (Sec. 6.2) can be seen as a realization

of the OAC framework.

Planning. With respect to the action execution, the existing approaches can

be classified into those directly mapping NL instructions into action sequences

[63, 64, 54] and those employing a planner [65, 56, 53, 66]. We employ a planner,

because it allows us to account for the dynamically changing environment, which

is essential for the human-robot collaboration. Similar to [66], we translate a

NL command into a goal description.

World descriptions. Although most of the NLU systems in robotics focus di-

rectly on instruction interpretations, there are a few systems detecting world

descriptions implicitly contained in human commands [53, 67, 55]. These de-

scriptions are further used in the planning context, as it is done in our approach.

In addition, we detect world descriptions not embedded into the context of an

instruction and process human action descriptions and feedback.

Linking planning, NL, and sensorimotor experience. Interaction between NL

instructions, resulting symbolic plans, and sensorimotor experience during plan

execution has been previously explored in the literature. In [63], symbolic repre-

sentations of objects, object locations, and robot actions, are mapped on the fly

to the sensorimotor information. During the execution of the predefined plans,

the plan execution monitoring component evaluates the outcome of each robot’s

action as success or failure. In [68], symbolic representations are generated based

on several sensorimotor features needed for segmentation and inference of tasks.

In [53], the planner knowledge base is updated each time a NL instruction re-

lated to the current world state is provided and the planner re-plans taking into

consideration the new information. In [65], symbolic planning is employed to

plan a sequence of motion primitives for executing a predefined baking primitive

given the current world state. Replacement of missing objects and re-planning

is performed in [39, 69]. In line with these studies, mapping sensorimotor data

to symbols, plan execution monitoring, as well as object replacement is a part

of our system.

9. Conclusion

We have presented a realization of the concept of structural bootstrapping

in a framework integrating sensorimotor experience, robot’s memory, natural

language understanding, and planning in a robotic architecture developed in

the context of the Xperience project. We showed that the developed framework

is flexible enough to be used for action execution on a humanoid robot in a com-

plex domain and can process input from untrained users in a scenario requiring

human-robot interaction and collaboration.

The limitations of each system component are discussed in detail in the cor-

responding sections. The main issues that need to be addressed in the future

work are a) processing of the underspecified/partial linguistic input, b) incor-

porating pragmatic context-dependent relevance of the generated plans, and

c) equipping the knowledge base with deeper domain knowledge required both

for language understanding and for relevant planning and replacement. Another

current limitation concerns the inability of the framework to learn new objects

and environment models. New objects and information required for interact-

ing with them, e.g. 3D mesh models, object localization descriptors and grasp

information, are currently manually added to the prior knowledge database.

Similarly, a semantic model of the environment has to be developed manually.

The adjustment of the system to a new environment requires landmarks with a

suitable pose for performing various manipulation actions.

Acknowledgements

The research leading to these results has received funding from the European

Union Seventh Framework Programme under grant agreement No 270273 (Xpe-

rience). We would also like to thank M. Do, C. Geib, M. Grotz, M. Kröhnert, D.

Schiebener, and N. Vahrenkamp for their various contributions to the underlying

system, which made this article possible.

[1] Xperience Project, Website, available online at http://www.xperience.

org.

http://www.xperience.org
http://www.xperience.org

[2] M. Do, J. Schill, J. Ernesti, T. Asfour, Learn to wipe: A case study of

structural bootstrapping from sensorimotor experience, in: Proc. of ICRA,

2014.

[3] A. Agostini, M. Javad Aein, S. Szedmak, E. E. Aksoy, J. Piater, F. Wor-

gotter, Using structural bootstrapping for object substitution in robotic

executions of human-like manipulation tasks, in: Proc. of IROS, 2015, pp.

6479–6486.

[4] F. Wörgötter, C. Geib, M. Tamosiunaite, E. E. Aksoy, J. Piater, H. Xiong,

A. Ude, B. Nemec, D. Kraft, N. Krüger, M. Wächter, T. Asfour, Structural

bootstrapping - a novel concept for the fast acquisition of action-knowledge,

IEEE Trans. on Autonomous Mental Development 7 (2) (2015) 140–154.

[5] J. J. Gibson, The theory of affordances, Hilldale, 1977.

[6] N. Vahrenkamp, M. Wächter, M. Kröhnert, K. Welke, T. Asfour, The

ArmarX Framework - Supporting high level robot programming through

state disclosure, Information Technology 57 (2) (2015) 99–111.

[7] E. Ovchinnikova, M. Wächter, V. Wittenbeck, T. Asfour, Multi-purpose

natural language understanding linked to sensorimotor experience in hu-

manoid robots, in: Proc. of Humanoids, 2015, pp. 365–372.

[8] P. Kaiser, M. Lewis, R. P. A. Petrick, T. Asfour, M. Steedman, Extracting

common sense knowledge from text for robot planning, in: Proc. of ICRA,

2014, pp. 3749–3756.

[9] W. Mustafa, M. Wächter, S. Szedmak, A. Agostini, D. Kraft, T. Asfour,

J. Piater, F. Wrgtter, N. Krüger, Affordance estimation for vision-based

object replacement on a humanoid robot, in: Proc. of ISR, 2016, p. in press.

[10] S. Szedmak, E. Ugur, J. Piater, Knowledge propagation and relation learn-

ing for predicting action effects, 2014.

[11] S. Krivic, S. Szedmak, H. Xiong, J. Piater, Learning missing edges via

kernels in partially-known graphs, in: European Symposium on Artificial

Neural Networks ESANN, Computational Intelligence and Machine Learn-

ing, 2015.

[12] T. Asfour, K. Regenstein, P. Azad, J. Schroder, A. Bierbaum,

N. Vahrenkamp, R. Dillmann, ARMAR-III: An integrated humanoid plat-

form for sensory-motor control, in: Proc. of Humanoids, 2006, pp. 169–175.

[13] M. Henning, A new approach to object-oriented middleware, Internet Com-

puting, IEEE 8 (1) (2004) 66–75. doi:10.1109/MIC.2004.1260706.

[14] K. Welke, P. Kaiser, A. Kozlov, N. Adermann, T. Asfour, M. Lewis,

M. Steedman, Grounded spatial symbols for task planning based on ex-

perience, in: Proc. of Humanoids, 2013, pp. 484–491.

[15] P. Azad, T. Asfour, R. Dillmann, Combining Harris Interest Points and the

SIFT Descriptor for Fast Scale-Invariant Object Recognition, in: Proc. of

IROS, 2009, pp. 4275–4280.

[16] P. Azad, D. Münch, T. Asfour, R. Dillmann, 6-dof model-based tracking of

arbitrarily shaped 3d objects, in: Proc. of ICRA, 2011, pp. 5204–5209.

[17] M. Wächter, S. Ottenhaus, M. Kröhnert, N. Vahrenkamp, T. Asfour, The

ArmarX statechart concept: Graphical programming of robot behaviour,

Frontiers - Software Architectures for Humanoid Robotics.

[18] J. R. Hobbs, M. E. Stickel, D. E. Appelt, P. A. Martin, Interpretation as

abduction, Artif. Intell. 63 (1-2) (1993) 69–142.

[19] H. Soltau, F. Metze, C. Fügen, A. Waibel, A one-pass decoder based on

polymorphic linguistic context assignment, in: Proc. of ASRU, 2001, pp.

214–217.

[20] N. Inoue, E. Ovchinnikova, K. Inui, J. R. Hobbs, Weighted abduction for

discourse processing based on integer linear programming, in: Plan, Activ-

ity, and Intent Recognition, 2014, pp. 33–55.

http://dx.doi.org/10.1109/MIC.2004.1260706

[21] J. R. Hobbs, Ontological promiscuity, in: Proc. of ACL, 1985, pp. 60–69.

[22] J. Bos, Wide-Coverage Semantic Analysis with Boxer, in: Proc. of STEP,

Research in Computational Semantics, 2008, pp. 277–286.

[23] E. Ovchinnikova, R. Israel, S. Wertheim, V. Zaytsev, N. Montazeri,

J. Hobbs, Abductive Inference for Interpretation of Metaphors, in: Proc.

of ACL Workshop on Metaphor in NLP, 2014, pp. 33–41.

[24] E. Ovchinnikova, A. S. Gordon, J. Hobbs, Abduction for Discourse Inter-

pretation: A Probabilistic Framework, in: Proc. of JSSP, 2013, pp. 42–50.

[25] C. Fellbaum, WordNet: An Electronic Lexical Database, 1998.

[26] C. F. Baker, C. J. Fillmore, J. B. Lowe, The Berkeley FrameNet project,

in: Proc. of COLING-ACL, 1998, pp. 86–90.

[27] E. Ovchinnikova, Integration of world knowledge for natural language un-

derstanding, Springer, 2012.

[28] D. K. Misra, J. Sung, K. Lee, A. Saxena, Tell me dave: Context-sensitive

grounding of natural language to manipulation instructions, Proc. of RSS.

[29] R. Ros, S. Lemaignan, E. A. Sisbot, R. Alami, J. Steinwender, K. Hamann,

F. Warneken, Which one? grounding the referent based on efficient human-

robot interaction, in: Proc. of RO-MAN, 2010, pp. 570–575.

[30] R. P. Petrick, F. Bacchus, A Knowledge-Based Approach to Planning with

Incomplete Information and Sensing, in: Proc. of AIPS, 2002, pp. 212–222.

[31] G. Bakir, T. Hofman, B. Schölkopf, A. J. Smola, B. Taskar, S. V. N. Vish-

wanathan (Eds.), Predicting Structured Data, MIT Press, 2007.

[32] M. Ghazanfar, A. Prugel-Bennett, S. Szedmak, Kernel mapping recom-

mender system algorithms, Information Sciences 208 (2012) 81–104.

[33] W. Mustafa, N. Pugeault, A. G. Buch, N. Krüger, Multi-view object in-

stance recognition in an industrial context, Robotica (2015) 1–22.

[34] D. Kraft, W. Mustafa, M. Popović, J. B. Jessen, A. G. Buch, T. R.

Savarimuthu, N. Pugeault, N. Krüger, Using surfaces and surface rela-

tions in an early cognitive vision system, Machine Vision and Applications

26 (7-8) (2015) 933–954.

[35] T. Joachims, T. Finley, C.-N. J. Yu, Cutting-plane training of structural

svms, Machine Learning 77 (1) (2009) 27–59.

[36] N. Vahrenkamp, S. Wieland, P. Azad, D. Gonzalez-Aguirre, T. Asfour,

R. Dillmann, Visual servoing for humanoid grasping and manipulation

tasks, in: IEEE/RAS International Conference on Humanoid Robots (Hu-

manoids), 2008, pp. 406–412.

[37] J. Ernesti, L. Righetti, M. Do, T. Asfour, S. Schaal, Encoding of periodic

and their transient motions by a single dynamic movement primitive, in:

IEEE/RAS International Conference on Humanoid Robots (Humanoids),

2012, pp. 57–64.

[38] E. E. Aksoy, M. Tamosiunaite, R. Vuga, A. Ude, C. Geib, M. Steedman,

F. Worgotter, Structural bootstrapping at the sensorimotor level for the

fast acquisition of action knowledge for cognitive robots, in: Proc. of ICDL,

2013, pp. 1–8.

[39] I. Awaad, G. K. Kraetzschmar, J. Hertzberg, Finding ways to get the job

done: An affordance-based approach, in: Proc. of ICAPS, 2014.

[40] L. Stark, K. Bowyer, Function-based generic recognition for multiple object

categories, CVGIP: Image Understanding 59 (1) (1994) 1–21.

[41] H. S. Koppula, R. Gupta, A. Saxena, Learning human activities and ob-

ject affordances from rgb-d videos, The International Journal of Robotics

Research 32 (8) (2013) 951–970.

[42] H. Kjellström, J. Romero, D. Kragić, Visual object-action recognition: In-

ferring object affordances from human demonstration, Computer Vision

and Image Understanding 115 (1) (2011) 81–90.

[43] B. Yao, J. Ma, L. Fei-Fei, Discovering object functionality, in: Proc. of

ICCV, 2013, pp. 2512–2519.

[44] D. Parikh, K. Grauman, Relative attributes, in: Proc. of ICCV, IEEE,

2011, pp. 503–510.

[45] C. H. Lampert, H. Nickisch, S. Harmeling, Learning to detect unseen object

classes by between-class attribute transfer, in: Proc. of CVPR, IEEE, 2009,

pp. 951–958.

[46] X. Yu, Y. Aloimonos, Attribute-based transfer learning for object cate-

gorization with zero/one training example, in: Proc. of ECCV, 2010, pp.

127–140.

[47] V. Ferrari, A. Zisserman, Learning visual attributes, in: Proc. of NIPS,

2007, pp. 433–440.

[48] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. Hruschka Jr, T. M.

Mitchell, Toward an architecture for never-ending language learning., in:

Proc. of AAAI, 2010.

[49] C. L. Teo, Y. Yang, H. Daumé III, C. Fermüller, Y. Aloimonos, A corpus-

guided framework for robotic visual perception, in: Proc. of Workshop on

Language-Action Tools for Cognitive Artificial Agents, 2011, pp. 36–42.

[50] K. Zhou, M. Zillich, H. Zender, M. Vincze, Web mining driven object lo-

cality knowledge acquisition for efficient robot behavior, in: Proc. of IROS,

IEEE, 2012, pp. 3962–3969.

[51] Y.-W. Chao, Z. Wang, R. Mihalcea, J. Deng, Mining semantic affordances

of visual object categories, in: Proc. of CVPR, 2015, pp. 4259–4267.

[52] P. E. Rybski, K. Yoon, J. Stolarz, M. M. Veloso, Interactive robot task

training through dialog and demonstration, in: Proc. of HRI, 2007, pp.

49–56.

[53] R. Cantrell, K. Talamadupula, P. W. Schermerhorn, J. Benton, S. Kamb-

hampati, M. Scheutz, Tell me when and why to do it!: run-time planner

model updates via natural language instruction, in: Proc. of HRI, 2012,

pp. 471–478.

[54] D. Nyga, M. Beetz, Everything robots always wanted to know about house-

work (but were afraid to ask), in: Proc. of IROS, 2012, pp. 243–250.

[55] T. Kollar, V. Perera, D. Nardi, M. Veloso, Learning environmental knowl-

edge from task-based human-robot dialog, in: Proc. of ICRA, 2013, pp.

4304–4309.

[56] D. J. Brooks, C. Lignos, C. Finucane, M. S. Medvedev, I. Perera, V. Raman,

H. Kress-Gazit, M. Marcus, H. A. Yanco, Make it so: Continuous, flexible

natural language interaction with an autonomous robot, in: Proc. of the

Grounding Language for Physical Systems Workshop at AAAI, 2012.

[57] A. Vogel, D. Jurafsky, Learning to follow navigational directions, in: Proc.

of ACL, 2010, pp. 806–814.

[58] C. Matuszek, D. Fox, K. Koscher, Following directions using statistical

machine translation, in: Proc. of ACM/IEEE, 2010, pp. 251–258.

[59] T. Kollar, S. Tellex, M. R. Walter, A. Huang, A. Bachrach, S. Hemachan-

dra, E. Brunskill, A. Banerjee, D. Roy, S. Teller, et al., Generalized ground-

ing graphs: A probabilistic framework for understanding grounded lan-

guage, JAIR.

[60] J. Krishnamurthy, T. Kollar, Jointly learning to parse and perceive: Con-

necting natural language to the physical world, Trans. of ACL 1 (2013)

193–206.

[61] C. Matuszek, N. FitzGerald, L. Zettlemoyer, L. Bo, D. Fox, A joint model

of language and perception for grounded attribute learning, arXiv preprint

arXiv:1206.6423.

[62] N. Krüger, C. Geib, J. Piater, R. Petrick, M. Steedman, F. Wrgtter, A. Ude,

T. Asfour, D. Kraft, D. Omrcen, A. Agostini, R. Dillmann, Object-action

complexes: Grounded abstractions of sensori-motor processes, Robotics

and Autonomous Systems 59 (10) (2011) 740–757.

[63] M. Beetz, U. Klank, I. Kresse, A. Maldonado, L. Mosenlechner, D. Panger-

cic, T. Ruhr, M. Tenorth, Robotic roommates making pancakes, in: Proc.

of Humanoids, 2011, pp. 529–536.

[64] C. Matuszek, E. Herbst, L. Zettlemoyer, D. Fox, Learning to parse natural

language commands to a robot control system, in: Experimental Robotics,

Springer, 2013, pp. 403–415.

[65] M. Bollini, S. Tellex, T. Thompson, N. Roy, D. Rus, Interpreting and

executing recipes with a cooking robot, in: Experimental Robotics, 2013,

pp. 481–495.

[66] J. Dzifcak, M. Scheutz, C. Baral, P. Schermerhorn, What to do and how to

do it: Translating natural language directives into temporal and dynamic

logic representation for goal management and action execution, in: Proc.

of ICRA, 2009, pp. 4163–4168.

[67] F. Duvallet, M. R. Walter, T. Howard, S. Hemachandra, J. Oh, S. Teller,

N. Roy, A. Stentz, Inferring maps and behaviors from natural language

instructions, in: Proc. of ISER, 2014.

[68] K. Ramirez-Amaro, E. Dean-Leon, I. Dianov, F. Bergner, G. Cheng, Gen-

eral recognition models capable of integrating multiple sensors for different

domains, in: Proc. of Humanoids, 2016, pp. 306–311.

[69] S. Konecnỳ, S. Stock, F. Pecora, A. Saffiotti, Planning domain+ execu-

tion semantics: a way towards robust execution?, in: Proc. of Qualitative

Representations for Robots, AAAI Spring Symposium, 2014.

	Introduction
	System Architecture
	Integration into the robotic platform

	Robot's Memory and Domain Description Generation
	Memory Structure
	Mapping sensorimotor data to symbols
	Domain Description Generation

	Multi-Purpose Natural Language Understanding
	Logical form
	Abductive inference
	Lexical and domain knowledge base
	Object grounding
	Context-based affordances
	Classifier
	Post-processing
	Processing examples

	Replacement Manager
	Object Replacement
	Common-sense affordances strategy
	Visual features strategy

	Location Replacement
	Common locations strategy
	Common-sense locations strategy
	Human feedback strategy

	Planning and Plan Execution & Monitoring
	Planning
	Plan Execution and Monitoring

	Experiments
	Execution on ARMAR-III
	Simulation experiment

	Related Work
	Conclusion

