
Structural bootstrapping - A novel, generative

mechanism for faster and more efficient acquisition of

action-knowledge

Florentin Wörgöttera,i, Chris Geibb,c,i, Minija Tamosiunaitea,d,i, Eren Erdal
Aksoya, Justus Piatere, Hanchen Xionge, Ales Udef, Bojan Nemecf, Dirk

Kraftg, Norbert Krügerg, Mirko Wächterh, Tamim Asfourh

aGeorg-August-Universität Göttingen, Bernstein Center for Computational
Neuroscience, Department for Computational Neuroscience, III Physikalisches Institut -

Biophysik, Göttingen, Germany
bSchool of Informatics, Edinburgh, United Kingdom

cCollege of Computing and Informatics, Drexel University, Philadelphia, USA
dDepartment of Informatics, Vytautas Magnus University, Kaunas, Lithuania
eInstitute of Computer Science, University of Innsbruck, Innsbruck, Austria

fHumanoid and Cognitive Robotics Lab, Dept. of Automatics, Biocybernetics, and
Robotics, Jožef Stefan Institute, Ljubljana, Slovenia

gCognitive and Applied Robotics Group, University of Southern Denmark, Odense,
Denmark

hInstitute for Anthropomatics and Robotics, Karlsruhe Institute of Technology,
Karlsruhe, Germany

iThese authors have contributed equally to this work.

Abstract

Humans, but also robots, learn to improve their behavior. Without existing
knowledge, learning either needs to be explorative and, thus, slow or – to
be more efficient – it needs to rely on supervision, which may not always be
available. However, once some knowledge base exists an agent can make use
of it to improve learning efficiency and speed. This happens for our children
at the age of around three when they very quickly begin to assimilate new
information by making guided guesses how this fits to their prior knowledge.
This is a very efficient generative learning mechanism in the sense that the
existing knowledge is generalized into as-yet unexplored, novel domains. So
far generative learning has not been employed for robots and robot learning
remains to be a slow and tedious process. The goal of the current study is to
devise for the first time a general framework for a generative process that will
improve learning and which can be applied at all different levels of the robot’s

Preprint submitted to IEEE Trans. Auton. Develop. April 25, 2015

IEEE Transactions on Autonomous Mental Development, accepted for publication (2015).
(c) 2009 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale
or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.

cognitive architecture. To this end, we introduce the concept of structural
bootstrapping – borrowed and modified from child language acquisition – to
define a probabilistic process that uses existing knowledge together with new
observations to supplement our robot’s data-base with missing information
about planning-, object-, as well as action-relevant entities. In a kitchen
scenario, we use the example of making batter by pouring and mixing two
components and show that the agent can efficiently acquire new knowledge
about planning operators, objects as well as required motor pattern for stir-
ring by structural bootstrapping. Some benchmarks are shown, too, that
demonstrate how structural bootstrapping improves performance.

Keywords: Generative Model, Knowledge Acquisition, Fast Learning

2

Introduction

It has been a puzzling question how small children at the age of three
to four are suddenly able to very quickly acquire the meaning of more and
more words in their native language, while at a younger age language acqui-
sition is much slower. Two interrelated processes are being held responsible
for this speeding-up. The primary process is semantic bootstrapping where
the child associates meaning from observing their world with co-occurring
components of sentences. For example, if the word “fill” is consistently ut-
tered in situations where “filling” occurs, then the meaning of the word can
be probabilistically guessed from having observed the corresponding action
again and again [1, 2]. Once a certain amount of language has been ac-
quired, a second process – named syntactic bootstrapping – can speed this
up even more and this is achieved by exploiting structural similarity between
linguistic elements. This process can take place entirely within language and
happens in a purely symbolic way without influence from the world. For
example, if a child knows the meaning of “fill the cup” and then hears the
sentence “fill the bowl”, it can infer that a “bowl” denotes a thing that can
be filled (rather than a word meaning the same thing as “fill”) without ever
having seen one ([1, 3, 4, 5, 6, 7, 8, 9] see [10] for a comparison between se-
mantic and syntactic bootstrapping). Thus, the most probable meaning of a
new word is being estimated on the basis of the prior probability established
by previously encountered words of the same semantic and syntactic type in
similar syntactic and semantic contexts.

These two generalization mechanisms – semantic and syntactic bootstrap-
ping – are very powerful and allow young humans to acquire language without
explicit instruction. It is arguable that bootstrapping is what fuels the explo-
sion in language and conceptual development that occurs around the third
year of child development [8, 11].

In general “the trick” seems to be that the child possesses at this age
already enough well-ordered knowledge (grammar, word & world knowledge)
which allows him/her to perform guided inference without too many un-
knowns. Grammar and word-knowledge are highly structured symbolic rep-
resentations and can, thus, provide a solid scaffold for the bootstrapping of
language. Symbolic representations, however, do not stop short at human
language. For robots, planning, planning operators, and planning languages
constitute another (non-human) symbolic domain with which they need to
operate. Thus, it seems relatively straightforward to transfer the idea of se-

3

mantic and syntactic bootstrapping to the planning domain for robot actions.
The current paper will first address this problem.

The question, however, arises whether related mechanisms might also
play a role for the acquisition of other, non-linguistic cognitive concepts, for
example the properties of objects and tools. Briefly, if you know how to peel
a potato with a knife, would there be a way to infer that a potato peeler
can be used for the same purpose? This example belongs to the second set
of problems addressed in this study: How can a cognitive agent infer role
and use of different objects employing the knowledge of previously seen (and
used) objects, how can it infer the use of movement and force patterns, etc.?

The goal of the current study is to address one complex scenario all
the way from the planning-level down to sub-symbolic sensorimotor levels
and implement (different) bootstrapping processes for the fast acquisition of
action knowledge. The only requirement for all these different bootstrapping
mechanisms is that there exists a well-structured scaffold as a basis from
where on different inference processes can take place. The different scaffolds,
thus, form the structures upon which bootstrapping can be built. Hence, we
call these processes “structural bootstrapping”.

One can consider structural bootstrapping as a type of semi-supervised
probabilistic learning, where an agent uses an internal model (scaffold) to
quickly slot novel information (obtained for example by observing a human)
into appropriate model categories. This is a generative process because exist-
ing knowledge is generalized into novel domains, which so far had not been
explored. The advantage of such a bootstrapping process is that the agent
will be able to very quickly perform these associations and grounding needs
only to take place afterwards by experimenting in a guided way with the
new piece of knowledge. Evidently, as this is based on probabilistic guess-
work, bootstrapping can also lead to wrong results. Still, if the scaffold is
solid enough all this can be expected to be much faster and more efficient
than the much more unstructured and slow process of bottom-up exploration
learning or than full-fledged learning from demonstration. Thus, structural
bootstrapping is a way for the generative acquisition and extension of knowl-
edge by which an agent can more efficient redeploy what it currently knows,
but where its existing knowledge cannot be directly employed. The distinc-
tion between syntactic and semantic components is, however, less evident
when considering structural (e.g. sensori-motor) elements. It will become
clear by the examples below that structural bootstrapping often contains
both aspects.

4

Here we will show that one can implement structural bootstrapping across
different levels of our robotics architecture in the humanoid robot ARMAR-
III [12, 13] trying to demonstrate that bootstrapping appears in different
guises and will, thus, possibly not be limited to the case studies presented in
this paper. As a major aspect, this work is meant to advocate structural boot-
strapping as a way forward to a more efficient extension of robot-knowledge
in the future. Early on we emphasize that the complexity of the here-shown
aspects prevents exhaustive analyses. After all we are dealing with very com-
plicated and possibly human-like cognitive generative (inference) processes
for which children and adults need years of experience to reach their final
efficiency.

The paper is structured in the following way. First we provide an overview
of the bootstrapping idea, then we show details on the system, processes, and
methods. Next we show six different types of structural bootstrapping at
different levels. This will be followed by some benchmarks and a discussion
section which also includes the state of the art in robot knowledge acquisition.

Overview

The goal of this work is to use a humanoid robot (ARMAR III) to demon-
strate several ways to perform structural bootstrapping at different levels of
its intrinsic cognitive architecture. Thus, we define a traditional 3-layer archi-
tecture consisting of a Planning level, a Mid-level, and a Sensorimotor Level
[14]. In order to perform a task, the robot first needs to make a (symbolic)
plan. The mid-level acts as a symbol-to-signal mediator (explained below)
and couples the planning information to the sensorimotor (signal) level. The
sensorimotor level then performs execution but also sensing of the situation
and the progress and potential errors of the robot’s motor actions. Details
of the actual sensorimotor control loops shall be omitted here for the sake of
brevity (see e.g. [14] for this).

Every layer uses different syntactic elements; for example the Planning
layer uses Planning Operators. But all syntactic elements will always be
embedded in their layer-specific scaffold. For the Planning layer its is the
Planning Language that defines how to arrange and use the Planning Op-
erators. Hence the Planning Language is the scaffold of this layer. Similar
structural relations between syntactic elements and scaffolds are defined for
the two other layers.

5

Plan

1) Planning
 Operator

2) Mid-Level
 Descriptor

3) SM-Level
 Information

Executable

P
la

n
n

in
g

 O
p

e
ra

to
rs

Outcome

PKS [15], CCG [16]

SEC [17]

ROAR [18],
DMP [19, 20, 21]

Figure 1: Structure of an Executable and its link to the robotics plan.

The general structural bootstrapping idea is now rather simple: Seman-
tic and/or syntactic similarity at the level of the scaffold is used to infer,
which (known) syntactic entities can take the role of which other (unknown,
but currently observed) syntactic entities. In other words: Using the ap-
propriate layer-specific scaffold, the robot makes inferences about the role
of an observed but “incomprehensible” entity, for which the machine does
not have any representation in its knowledge base. Based on these inferences
the unknown entity can be replaced with one that is known (one, for which
their is an entry existing in the knowledge base). This replacement will al-
low the machine to continue with its planned operation ideally without any
additional information.

Structures

To allow bootstrapping we need to define the actual data structures,
which are used by the robot for execution of a task and which need to be set
up in a way to allow for structural bootstrapping, too (Fig. 1).

At the top layer we use a conventional robotics planner [15] to create a
plan for a given task. The plan consists of a sequence of Planning Operators.
As such these planning operators cannot be executed by a robot. Thus,
to achieve this, we define a so-called Executable, which consists of several
components using methods from the literature:

6

1. a planning operator, by which the Executable is linked to the Plan
[15, 16], together with its

2. mid-level descriptors [17] and

3. all perception and/or control information from the sensorimotor level
for executing an action [18, 19, 20, 21].

Hence, during execution the different planning operators are called-up
and each one – in turn – calls the belonging Executable, which contains the
required control information to actually execute this chunk of the plan.

Some of these aspects are to some degree embodiment specific (most
notably the control information), some others are not. Note, the structure of
an Executable is related to the older concept of an Object-Action-Complex
(OAC, [22, 23]). OACs had been defined in our earlier works as rather
abstract entities [23], the Executables – as defined – here extend the OAC
concept by now also including planning operators and are finally defined in
a very concrete way (to actually allow for execution, which had not yet been
the case for the OAC).

Essential to this is work is that we use the concept of bootstrapping now
in the same way at these three levels. The syntactic representations used
to compute aspects of a given level are level-dependent where we have the
following syntactic representatives:

1. planning operators,

2. syntactic structure of mid-level descriptors, and

3. perceptual (sensor) and control (motor) variables.

Therefore, we employ different (grammatical) scaffolds for the bootstrap-
ping:

1. planning language,

2. semantic event chains (SECs1 [24, 17]), and

3. sensorimotor feature/parameter regularity

from where the bootstrapping commences.

1Semantic Event Chains (SECs) encode for an action the sequence of touching and
untouching events that happen until the action concludes. A more detailed description is
given in the Methods section below.

7

Plan A Plan B

1) Planning
 Operator

2) Mid-Level
 Descriptor

3) SM-Level
 Information

1) Planning
 Operator

2) Mid-Level
 Descriptor

3) SM-Level
 Information

Known

Known

Observed

Observed

ExecutableExecutable

P
la

nn
in

g
O

pe
ra

to
rs

1) Compare at an „outer“
(grammatical) level

2A) infer
missing
planning
operators

2B) infer missing
executable components

(1A)

(1B)

Outcome Outcome

Figure 2: Schematic of structural bootstrapping.

Implementing Structural Bootstrapping at different levels

Figure 2 shows a schematic representation of the bootstrapping processes
implemented here. A known plan A (left) consists of a set of planning opera-
tors (black bars) and each has attached to it an Executable consisting of the
planning operator itself, a mid level descriptor and sensorimotor level infor-
mation. The plan, being executed, also has a certain “outcome”, which can
be considered as the goal of this action sequence. An observed plan B (right)
of a similar action (with similar goal), will normally consist of many plan-
ning operators which are identical or highly similar to the ones of the known
plan and also the outcome will be similar or the same. Still some planning
operators may be dissimilar and hence unknown to the agent (white bars).
In the same way, individual newly observed Executables (right) may contain
unknown components (white). The goal of bootstrapping is to fill in all this
missing information. To the end, first (1) the respective entities, Plans (1A)
or Executables (1B), will be compared at an “outer”, grammatical level to
find matching components. This way, in the second step one can try to infer
the respective missing entities, planning operators (2A) or components of the
Executables (2B).

Hence, a central statement is that structural bootstrapping always “prop-
agates downward”. It uses type-similarities of entities from one level above to

8

define the missing syntactical elements of the currently queried (lower) level.
Plan similarities are used to infer planning operators, Executable similarities
to infer Executable parameters such as objects, trajectories, forces, poses,
and possibly more.

The main difficulty for implementing structural bootstrapping is to define
appropriate scaffolds on which the bootstrapping can be based where – as
described – the goal is to create novel information by generative processes
which compare existing knowledge with newly observed one, without having
to perform an in-depth analysis.

In the following we will now provide the details of the performed experi-
ments, where we will show six different examples of structural bootstrapping
for the different layers. These examples should allow the reader to more
easily understand the so-far still rather abstract concept of structural boot-
strapping.

Setup, procedures and specific problem formulation

Scenario (task)

ARMAR operates in a kitchen scenario. The task for the robot is to
pour two ingredients (e.g. flour and water) and mix them together to obtain
batter. For this the robot has the required knowledge to do it in one specific
way (by using an electric mixer), but will fail whenever it should react flex-
ibly to a changed situation (e.g. lack of the mixer). The goal of this work
is to show that bootstrapping will quickly provide the required knowledge
to successfully react to such a change. This process is based on observing a
human providing an alternative solution (stirring with a spoon) where boot-
strapping lead to the “understanding” of the meaning of objects and actions
involved.

Prior knowledge

As bootstrapping relies on existing knowledge we have provided the robot
with several (pre-programmed) Executables and we assume that the robot
knows how to:

• pick up an object;

• put down an object;

• pour an ingredient;

9

• mix with an electric mixer.

In addition, robot has learned earlier to execute one apparently unrelated
action, namely:

• wipe a surface with a sponge [25, 26, 27].

Furthermore the robot has a certain type of object memory where it has
stored a set of objects together with their roles, called the Repository of ob-
jects with attributes and roles (ROAR). This prior knowledge can be inserted
by hand or by prior experience. It allows objects to be retrieved by their
attributes, and attributes of novel objects to be inferred, based on proximity
in a low-dimensional, Euclidean space in which both, objects and attributes,
reside [18].

The following entries exist in the ROAR:

• Sponge, rag, brush = objects-for-wiping with outcome: clean surface

• Mixer tool ends, whisks, sticks = objects for mixing with outcome:
batter or dough.

Furthermore we have endowed the machine with a few recognition proce-
dures:

• The robot can generate and analyze the semantic event chain (SEC)
structures of observed (and own) actions by monitoring an action se-
quence using computer vision. Thus, the machine can recognize known
actions at the SEC level [24, 17].

• The robot can recognize known objects (tools, ingredients, batter) using
computer vision [28, 29, 30].

• The robot can explore unknown object haptically [31] and extract ob-
ject features such as deformability and softness [32, 33, 25]

Problem definition

The problem(s) to be solved by structural bootstrapping are defined by
several stages as spelt out next:
Normal System Operation: If all required entities are present (mixer, ingre-
dients, containers, etc.) the robot can make a plan of how to make batter

10

and also execute it.

System Break-Down: Planning and execution will fail as soon as there is no
mixer.

Alternative: The robot observes a human making batter by stirring the dough
with a spoon.

Goal: The robot should find a way to understand the newly observed action
and integrate it into its knowledge base and finally be able to also execute
this.

Problem: The robot has no initial understanding of

• the planning requirements,

• the objects involved, and

• the movement patterns seen

in the newly observed stirring action. For example the robot does not know
how to parameterize the rhythmic trajectory. Also, it does not know what
a spoon is. Furthermore, the robot does not have any planning operator for
stirring with a spoon in its plan-library.

Requirement (for the purpose of this study): The process of understanding
the new action should happen without in-depth analysis of new actions con-
stituents (hence without employing exploration based processes) but instead
by using bootstrapping.

Methods - Short Summary

To not extend this paper unduly, methods are only described to the details
necessary to understand the remainder of this paper. References to specific
papers are provided where more details can be found.

Planning Methods

In this project, we are using the so-called Combinatory Categorial Gram-
mars (CCGs) [16] to address the planning problem. CCGs are in the family

11

of lexicalized grammars. As such they push all domain specific information
into complex categories and have domain independent combinators that al-
low for the combination of the categories into larger and larger categories. As
we have already alluded to, at the planning level, structural bootstrapping
is a specialized form of learning new syntactic categories for known actions.
A number of different methods have been suggested for this in the language
learning literature [34, 35] for this project however we will be applying a
variant of the work by Thomford [36]. However, we note that to do the kind
of learning that we will propose it will be critical that the same syntactic
knowledge, which is used by the system to plan for action, is also used to
recognize the plans of other agents when observing their actions. This is not
a new idea, however, there are very few AI planning and plan recognition
systems that are able to use the exact same knowledge structures for both
tasks.

Imagine that, as in our example, the high level reasoner knows about a
plan to achieve a particular goal. It knows all of the actions that need to be
executed, and for each action has encoded as CCG categories the knowledge
necessary to direct its search for the plan. Further we suppose the same
knowledge can be used to parse streams of observations of actions in order
to recognize the plan being executed by others.

Now suppose the agent sees the execution of another plan that achieves
the same goal. Let us assume that this new plan differs from the known plan
in exactly one action. That is, all of the actions in the new plan are exactly
the same as the actions in the known plan except for one action. Since the
agent knows that the plan achieved the same goal, and it knows the CCG
categories for each action that would be used to recognize the original plan,
it is not unreasonable for the agent to assume that the new action should be
assigned the same CCG category as its opposite action in the known plan.

If this addition is made to the grammar the agent now knows a new
plan to achieve the goal and will immediately know both how to recognize
others executing the plan and how to build the new plan for the goal itself
(at the higher “abstract” level). The system will have performed structural
bootstrapping at the planning level.

In this case, the system will have leveraged knowledge about the outcome
of the observed plan being the same as the previously known plan, along with
syntactic knowledge about how the previously known plan was constructed
to provide new syntactic knowledge about how to construct and recognize
the new plan.

12

Methods for the Mid-Level: Semantic Event Chains (SECs)

Semantic Event Chains [24, 17] encode in an abstract way the sequence
of events that occur during a complex manipulation. They are used for two
purposes: (1) Every event provides a specific temporal anchor point, which
can be used to guide and temporally constrain the above described scene and
motion analysis steps. And (2) the SEC-table itself (see Fig. 3 b), is used to
define the mid-level of an Executable.

Fig. 3 shows the corresponding event chains extracted for a stirring action.
SECs basically make use of image sequences (see Fig. 3 a, top) converted into
uniquely trackable segments. The SEC framework first interprets the scene as
undirected and unweighted graphs, nodes and edges of which represent image
segments and their spatial touching or not-touching relations, respectively
(see Fig. 3 a, bottom). Graphs hence become semantic representation of
the relations of the segments (i.e. objects, including hand) presented in
the scene in the space-time domain. The framework then discretizes the
entire graph sequence by extracting only the main graphs, which are those

������ �� ������� � � � � �
����� �� ����� � � � � �

���

���

��� ���

Figure 3: A real action scenario: “Stirring liquid with a spoon”. (a) Sample original key
frames with respective segments and graphs. (b) Corresponding SEC where each key frame
corresponds to one column. Possible spatial relations are N, T, and A standing for “Not-
touching”, “Touching”, and “Absence”, respectively (A does not happen here.). Shaded
box shows a sample relational transition. (c) Object identities derived from segments (d)
Complete trajectory information for the hand. Trajectory segment for the time-chunk
covered by shaded box in (b) is indicated in gray color.

13

where a relation has changed (e.g. from not-touching to touching). Each
main graph, thus, represents an essential primitive of the manipulation. All
extracted main graphs form the core skeleton of the SEC which is a sequence
table (the SEC-table), where columns correspond to main graphs and rows
to the spatial relations between each object pair in the scene (see Fig. 3 b).
SECs consequently extract only the naked spatiotemporal relation-patterns
and their sequentiality, which then provides us with the essence of an action,
because SECs are invariant to the followed trajectory, manipulation speed,
or relative object poses.

Columns of a SEC represent transitions between touching relations. Hence,
they correspond to decisive temporal moments of the action and, consequen-
tially, they allow now to specifically pay attention “at the right moment when
something happens” to additional action relevant information (such as ob-
jects, poses, and trajectories). Fig. 3 (c-d)) illustrate syntactic elements of
the manipulation. Manipulated objects, e.g. spoon and liquid, are extracted
from the rows of event chains, i.e. from the nodes of the main graphs. Tempo-
ral anchor points provided by SECs can also be used to segment the measured
hand-trajectory into parts for further analysis.

Sensorimotor Methods

Sensory Aspects: Visual scenes are analysed to recognize objects and their
attributes, measure movement trajectories, and record object poses.

Basic object and pose recognition is performed in a straight-forward way
using pre-defined classes of the different objects which occur during the ac-
tions of “stir”, “wipe”, and “mix” and in addition adding some distractor
objects (e.g., cups, knifes, etc.). Any suitable method can be used for object
detection, recognition, and pose estimation; such as edge-based, statistical
shape representations [28, 29, 30, 37].

Another important aspect is object recognition for the construction of
the repository of objects with attributes and roles (ROAR).

Our primary input for the ROAR consists of a table such as the one shown
in Table 1.

Objects and attributes are (discrete) labels; values can be categorical,
discrete or continuous. Examples of objects are “bowl” or “knife”; exam-
ples of attributes are “cuts”, “food”, “is elongated”, “gripper orientation for
grasping”, “fillable”, etc. We then use Homogeneity Analysis to project ob-

14

Attribute 1 Attribute 1 Attribute 1
Object A V alueA,1 V alueA,2 V alueA,3

Object B V alueB,1 V alueB,2 V alueB,1

Table 1: ROAR encoding

jects and (attribute) values into the same, low-dimensional, Euclidean space
(the ROAR space) [18]. This projection is set up such that:

• Objects that exhibit similar attribute Values are located close together,

• Objects that exhibit dissimilar attribute Values are located far apart,

• Objects-as-such are close to their attribute Values.

Euclidean neighborhood relations allow us to make the following general
types of inference:

• Attribute value prediction: Say, we have an object of which we know
some but not all attribute Values. We can predict missing attribute
Values by projecting the object into the ROAR and examining nearby
attribute Values.

• Object selection: Say, we have a set of required attribute values. We
can find suitable objects in the vicinity of these Values in the ROAR.

Note we cannot generally expect that very complex object/attribute re-
lations will be faithfully represented in a low-dimensional Euclidean space.
While we are currently working on more powerful representations for such re-
lations, this is a complex research issue [18, 38, 39, 40, 41]. For us the ROAR
is at the moment just a viable way forward, which allows us to demonstrate
different aspects of structural bootstrapping.

Motor Aspects: Trajectory information is encoded by Dynamic Movement
Primitives (DMPs), which were proposed as an efficient way to model goal-
directed robot movements [19]. They can be applied to specify both point-
to-point (discrete) and rhythmic (periodic) movements. A DMP consists of
two parts: a linear second order attractor system that ensures convergence
to a unique attractor point and a nonlinear forcing term. The forcing term

15

Original Plan Observed Plan

testName: xpermixnew;
ini�alState: [];
observa�ons: [
 pickA(le�, beaker, t),
 pourA(le�, liquid1, beaker, mixingBowl),
 placeA(le�, beaker, t),
 pickA(le�, cup2,t),
 pourA(le�, liquid2, cup2, mixingBowl),
 placeA(le�, cup2, t),
 pickA(right, UNKNOBJ, t),
 UNKNACT(UNKNOBJ, liquid1, liquid2, mixingBowl)
];

testName: xpermix;
ini�alState: [];
observa�ons: [
 pickA(le�, beaker, t),
 pourA(le�, liquid1, beaker, mixingBowl),
 placeA(le�, beaker, t),
 pickA(le�, cup2, t),
 pourA(le�, liquid2, cup2, mixingBowl),
 placeA(le�, cup2, t),
 pickA(right, mixer1, t),
 mixA(mixer1, liquid1, liquid2, mixingBowl)
];

Figure 4: Comparing known with observed plan. The arrow indicates where there is a
novel, unknown planning operator found in the new plan. This is also associated with an,
as yet, unknown object (the spoon).

is normally given as a linear combination of basis functions that are defined
along the phase of the movement. The basis functions are either periodic or
nonzero only on a finite phase interval. The type of basis functions decides
whether the DMP defines a discrete or a periodic movement. DMPs have
many favorable properties, e. g. they contain open parameters that can be
used for learning without affecting the overall stability of the system, they
can control timing without requiring an explicit time representation, they are
robust against perturbations and they can be modulated to adapt to external
sensory feedback [19, 42].

Concrete Examples of Structural Bootstrapping

Structural Bootstrapping at the Planning Level

The existing plan of making batter with a mixer is compared to the ob-
served sequence of actions during making batter with a spoon. Due to the
fact that all sub-actions, but one, are identical between known-action and
new-action the agent can infer that the unknown sub- action (stirring with
a spoon) is of the same type as its equivalent known sub-action (mixing
with a mixer). Hence the grammatical comparison of known with unknown
action renders a new (syntactic) planning operator entry for the unknown

16

sub-action. This process is very similar to syntactic bootstrapping as ob-
served in child language acquisition. A semantic element enters here due to
the same outcome of both actions being recognized as batter. We use CCG
as our planning language and we employ the PKS planner [15] for the actual
planning processes of ARMAR III.

The actual inference process makes use of the similarity of known plan with
newly observed plan, where in our example all but one action are identical.

Figure 4 shows the comparison between a known (and executable) plan on the
left and an observed new one (right). Structural (grammatical) one-by-one
comparison shows that there is just one unknown planning operator present.
When the plan recognizer is run on the observed plan it would result in the
following explanation of those observations with the highest probability:

[addIngC(left, liquid1, beaker, mixingbowl),

addIngC(left, liquid2, cup, mixingbowl),

pickC(left, UNKNOBJ, table),

UNKNACT(left, UNKNOBJ, liquid1, liquid2, mixingbowl)]

Note, the category name for the previously unseen action is simply de-
noted as UNKNACT. This is a special purpose category used to complete
the explanation when we have an action that has never been seen before.

Now the agent has been told (or can observe) that the observed plan is
a plan that achieves makeBatterC (making batter), and we will assume that
all of the actions in the observed plan are relevant to the plan. The agent’s
job is to infer a category to replace UNKNACT that allows the completing
of the parse. If the agent wants to build a category to assign to the unknown
action that will result in a complete plan with the goal of makeBatterC, all it
needs to do is walk the explanation from right to left collecting the categories
and adding them to the complex category in order. This will result in the
unknown action being given the following category:

action: UNKNACT(hand, UNKNOBJ, ingredient, ingredient, bowl)

[(((makeBatterC(2, 3, 4))\

{addIngC(0, 2, obj(1), 4)})\

{addIngC(0, 3, obj(2), 4)})\

{pickC(0, 1, table(1)) }];

17

Note the agent also infers the types and co-reference constraints for the basic
category’s arguments from the plan instance. In the above definitions we
have denoted those arguments to the basic categories by numbers indicating
when an argument is bound to the same argument as the action. (i.e. All
references to “0” in the category refer to the hand used in the action because
it is the zeroeth argument for the action. Likewise all reference to “4” in
the category refer to the bowl argument of the action since it is the fourth
argument.)

This category would represent the most restrictive hypothesis about the
plan structure since it will require both that the actions be executed in the
same order (and we know the ingredients can be added to the plan in either
order) and that all of the arguments that co-refer in the example plan must
co-refer in future instances. In this case, it would require that the same hand
be used for all of the ingredient adding and mixing which we know to be
overly restrictive.

If we compare the new category to the category for the known mix ac-
tion (mixA), we can see that the only differences are exactly in these overly
restrictive areas:

1. The ordering of the categories for the add ingredient steps. The known
category is more general allowing the ingredients to be added in any
order while the new learned category has a required order.

2. The co-reference constraints are less restrictive in the known category.
(Note the numbers indicating, which hand is to be used in the addIngC,
are not the same so the plan would not enforce that the same hand be
used.)

At this point, on the basis of the structural information provided by the
parse and the action grammar, the agent has inferred that “UNKNACT”
is equal to (or at least very similar to) “mixA” and the information can be
entered directly into the planning grammar of the agent and forms the top-
level of the corresponding new executable. We will, for convenience, from
now on name it: “stir”, hence we set:

UNKNACT:=stir.

While we have now added a new action to the planning grammar, still
there is massive information lacking for designing the complete (new) exe-
cutable for “stir”, for example there is as yet no understanding existing about
the UNKNOBJ (the spoon) and nothing is known about several other mid-
and low-level descriptors.

18

Hand, Beaker 1 1 1 1 1
Beaker, MixBowl 0 1 1 1 0
Beaker, Liquid2 1 1 1 0 0
MixBowl,Liquid2 0 0 1 1 1

Hand, Mixer 0 1 1 1 0
Mixer, Dough 0 0 1 0 0

Hand, Sponge 0 1 1 1 0
Sponge, Surface 0 0 1 0 0

Hand, Object 0 1 1 1 1 0
Object, Dough 0 0 1 0 1 0

Hand, Object x x x x x x
Object, Dough x x x x x x

Hand, Object 0 1 1 1 0
Object, Dough 0 0 1 0 0

Pouring
Mix (with Mixer)

Stir (was UNKNACT) with Object*
Unknown SEC

SEC from one observation SEC from two observations

Wipe (with Sponge)

*Object = “UNKNOBJ“, before object specification
 Object = “spoon“ after object specification

Hand, Beaker 0 1 1
Beaker, Table 1 1 0

Picking upA)

Hand, Beaker 1 1 0
Beaker,Table 0 1 1

Putting downB)

C) E)

F)

Stir (was UNKNACT) with Object*G1) Stir (was UNKNACT) with Object*G2)

D)

Figure 5: Several important SECs, which occur during the different actions. Headlines
(bold lettering, like “Picking up”, etc.) denote the type-specifiers of the different SECs.
Note, sometimes objects can change. E.g. “Beaker” can be replaced by “Cup2”. A-E)
error-free archetypical SECs from known actions. F) So-far unspecified SEC. G) SECs
from the unknown action extracted from observation of the human performing it. Hence
these SECs might contain errors. G1) one observed case, G2) two observed cases. (In
human terms: G1 corresponds to a case where the spoon had intermittently been pulled
out from the dough (grey box), whereas for G2 it always remained inside until the action
terminated.)

Structural Bootstrapping at the Mid-Level

At the mid-level, we need to define the correct SEC for “stir”. Figure 5
shows SECs for several actions where (F) represents the so-far unknown
SEC for “stir”. Please, ignore panels (G) for a moment. Note, to be able
to treat these tables numerically the intuitive notations from Figure 3 for
non-touching “N” and touching “T” are now changed to “0” and “1” in
Figure 5.

Structural bootstrapping at the mid-level uses as the “outer”, grammat-
ical scaffold the type-similarity of the planning operators (here “stir” and
“mix”) ascertained above. Hence we know that UNKNACT=stir.

Following this conjecture the agent can now with a certain probability

19

assume that so-far unknown SEC for “stir” ought to be identical (or very
similar) to the known one from “mix” and use the “mix”-SEC to define the
mid-level (the SEC) for the Executable of “stir”. The arrow indicates that
the SEC from panel (E) should just be transferred to fill the unknown SEC
in (F) with the same entries.

There is a second line of evidence which supports this. Panels (G1) and
(G2) represent the actually observed SECs of the stirring action here from
a total of three observations of a human performing this. The SEC in panel
(G1) had been observed once and the other twice. By comparing these SECs,
the robot can with some certainty infer that the transfer of (E) to (F) was
correct, because the more often observed SEC in (G2) corresponds to it,
while the SEC from panel (G1) might be noisy as it is a bit different. As
shown in an earlier study [24, 17], more frequent observations are likely to
confirm this even more, but were not performed with the current setup.

Structural Bootstrapping at the Sensorimotor Level

Bootstrapping at the this level is used by the agent to find out how stirring
is actually done (motion patterns), what the meaning of “UNKNOBJ” is, and
which other objects might have a similar meaning. Before going into details
we can quickly state that at the sensorimotor level several bootstrapping
processes can be triggered. We note that bootstrapping is a probabilistic
process and things can go wrong, too. One such example is, hence, also
included. We find that the following processes are possible:

1. Motion

(a) Bootstrapping from SEC-similarities [“wipe” and “stir”] to define
the motion patterns for “stir”.

2. Objects

(a) Bootstrapping from SEC-similarities [“wipe” and “stir”] into the
new action. Here arriving at a false conjecture that “sponges”
could be used for mixing.

(b) Bootstrapping from SEC-similarities [“mix” and “stir”] from the
repository of objects with attributes and roles (ROAR) into the
new action seeking different objects that could potentially be used
for mixing.

(c) Bootstrapping from SEC-similarities [“mix” and “stir”] from the
new action into the ROAR, entering the “spoon” into the category
of objects for mixing.

20

To address the sensorimotor level the agent has to bootstrap from the
mid-level downwards. It can do this by comparing the type-similarities of the
different SECs. For this essentially one calculates a sub-string comparison
of the rows and columns between one SEC and any other [24, 17]. We
obtain that “stir” and “mix” as well as “stir” and “wipe” are 100% type-
similar (compare panels D, E , and G2 in Figure 5), whereas “stir” and
“pour” are only 52% similar, etc. Thus, the agent can infer that syntactical
elements from “mix” and “wipe” might be used to define missing entities at
the sensorimotor level of the Executable.

1a) Motion: Bootstrapping from SEC-similarities “wipe” and “stir” into the
new action for completing motor information

Here we make use of the fact that the SEC for stir is very similar to the
known one from wipe. Figure 6 shows the SECs and the different trajectories
recorded from human observation for both actions. Note that for “wipe” the
complete motor encoding is known and provided by the respective DMP
parameters.

We have in our data-base the following description for “wipe”: Since wip-
ing is essentially a rhythmic movement, we use periodic dynamic movement
primitives to specify the required behavior [27]. Periodic DMPs are defined
by the following equation system [19]

ż = Ωαz(βz(g − y)− z) + f(φ), (1)

ẏ = Ωz, (2)

In the above equations, g is the anchor point of the periodic movement. The
nonlinear forcing term f is defined as

f(φ, r) =

�N
i=1 wiΨi(φ)�N
i=1 Ψi(φ)

r, (3)

Ψi(φ) = exp (hi cos(φ− ci)− 1) ,

where the phase φ is given by
φ̇ = Ω. (4)

Here we assume that a complete parameterization of the DMP for wiping
has been learnt from earlier experiences. Given this the DMP can be easily
modulated by changing:

• the anchor point g, which translates the movement,

21

am
pl

itu
de

am
pl

itu
de

time

x

y

z
Wipe

Stir

Hand, Sponge 0 1 1 1 0
Sponge, Surface 0 01 0 0

Hand, Object 0 1 1 1 0
Object, Dough 0 0 1 0 0

A)

B)

Figure 6: Bootstrapping motor information. SECs (top) and trajectories (bottom) for x,
y, and z coordinates in task space are shown for (A) wipe and (B) stir.

• the amplitude of oscillation r,

• the frequency of oscillation Ω.

These variables can be used to immediately adapt the movement to sensory
feedback.

Bootstrapping progresses by using the concept of temporal anchor points,
which are those moments in time when a touching relation changes (from 0
to 1, or vice versa). These anchor points divide the trajectories in a natural
way (shown by the vertical lines in the figure.)

Bootstrapping now just copies the complete DMP information from “wipe”
to the Executable of “stir” between the respective anchor points only leaving
the constraint-parameters (e.g. amplitude) open as those are given by the
situation (mainly the size of the bowl wherein to stir). Thus, the agent as-
sumes that it can use the motor encoding from “wipe” in an unaltered way

22

to also perform “stir”. We know from own experience that this largely holds
true. Here we can also clearly see the advantages of bootstrapping: we do
not need any process that extracts and generalizes motor information from
the observed example(s) of “stir” (a process which could be more tediously
performed by methods from imitation learning [43, 44, 45]). Instead we just
copy. Clearly, the agent - like any young child - will have to ground this by
trying out the stirring action (see the Discussion section for the “grounding-
issues”). It will possibly then have to adjust the force profile, which is likely
to be much different for wipe and stir. Still, all this is faster than learning
the required motor pattern in any other way. The benchmark experiments
below show this clearly.

2a) Objects: Bootstrapping from SEC-similarities “wipe” and “stir” into the
new action for object use

The SEC-similarities between “wipe” and “stir” allow the agent to also
(wrongly!) infer that the object for wiping (sponge) should be suitable for
stirring, too. Note this may seem unexpected but can happen during any
bootstrapping process due to its probabilistic nature. The use of just one
single scaffold (here the SECs) is not strong enough to allow rigorously ex-
cluding such false conjectures. For this the agent needs to integrate additional
information and, due to the fact that there is a repository of objects with
attributes and roles (ROAR), it can indeed obtain evidence that there has
been an error.

The agent knows that “stir” and “mix” are at the mid-level (SEC) type-
similar action. It finds, however, that sponges are clearly outside the cluster
of objects for mixing (Figure 7 A). This lowers the probability substantially
that sponges should be used for mixing/stirring actions.

Interestingly, children will many times indeed over-generalize and use
“unsuitable” objects for an intended action [46]. It is unknown how the
brain represents this, but – clearly – their representation does apparently
not yet contain the fine grained-ness of an adult representation.

2b) Bootstrapping from SEC-similarities “mix” and “stir” from the ROAR
to find other suitable objects

Here the agent falls back (again) on the similarity of the new SECs of
“stir” with the known one of “mix”. Due to this similarity, the agent knows
that appropriate objects for the novel action might be found in the cluster
of “objects for mixing” in the repository of objects with attributes and roles.

23

Figure 7: Bootstrapping object information. Graphical rendering of the repository of
objects with attributes and roles (ROAR). Depicted are the metric distances between
the different objects and the attribute values that describe their respective roles. A) The
sponge is located far from the attribute value “can be used for mixing”. B) Bootstrapping
allows inferring that a fork, found close to the “mixing” attribute value, could be used also
for “stir”, as “mix” and “stir” are at the SEC-level type-similar. C) Following this SEC-
similarity, a novel object (spoon) with unknown “mixing” attribute may be hypothesized
useful for mixing by the ROAR and also due to other, known attribute values (such as
shape, stiffness, and SEC characteristics of known, observed actions).

Hence it can ask the repository for a tool suitable for mixing and maybe
locate it somewhere else on the table. Clearly this process will lead to an
action relevant result only in those cases where the agent actually find such
an object within reach. Then it can try to use this object for stirring, too.
Again we can draw similarities to our own behavior. Generally this type of
tool-replacement is found for a wide variety of actions where we “define” the
tool according to its planned use. Our own generalization properties may here

24

go far beyond what the ROAR offers to our artificial robotic agent, which
is evident from situations where we “abuse” objects for entirely different
purposes.

2c) Bootstrapping from SEC-similarities “mix” and “stir” from the new ac-
tion into the ROAR to create a new entry

In the last step, the agent can perform one more bootstrapping procedure
to augment the repository of objects with attributes and roles. For this it
analyzes the outcomes of the actions realizing that batter is obtained from
“mixing” and also from the unknown action of “stirring”.

Thus, the agent can enter the new observed tool (spoon) into the ROAR
and can then – by virtue of its resulting position in the ROAR – infer other,
unobserved attribute values (uses), which is a bootstrapping effect. This
way the repository will be extended by a novel entry following a single-shot
experience. This step, however, does require a parametrization of the new
object according to the features used for the ROAR.

Robotic implementation and benchmark experiments

Note, the actual bootstrapping processes happen “inside the machine”
and any demonstration will, thus, only show that “the robot can do it now”.
To go beyond such mere visual inspection, one needs to show quantitative
results on performance gain by bootstrapping, which will be presented in the
next sections, below.

Still, a complete robotic implementation of these processes is currently
being performed using the our robot systems [47]. For brevity, we will here
show one central part of this implementation demonstrating the required
transfer of human action knowledge (Fig. 8 A) onto the robot. This is the
initial step needed to set up action knowledge in the machine before any
bootstrapping can happen. The robot acquires here the knowledge to perform
mixing with a mixer.

To better be able to extract object relations we have here used a Vicon-
based motion capture system from which we immediately get error-free Se-
mantic Event Chains (Fig. 8 B). The complete action relevant information
is extracted at the respective key frames and encoded into the required Exe-
cutables (Fig. 8 C), which can be used by the robot to reproduce this action
(Fig. 8 D). The complete experiment is described elsewhere [48].

25

