
A Study of Point Cloud Registration with Probability Product Kernel Functions

Hanchen Xiong Sandor Szedmak Justus Piater
Institute of Computer Science, University of Innsbruck

Technikerstr.21a A-6020, Innsbruck, Austria
{hanchen.xiong, sandor.szedmak, justus.piater}@uibk.ac.at

Abstract

3D point cloud registration is an essential problem in
3D object and scene understanding. In many realistic cir-
cumstances, however, because of noise during data acqui-
sition and large motion between two point clouds, most
existing approaches can hardly work satisfactorily with-
out good initial alignment or manually marked correspon-
dences. Inspired by the popular kernel methods in ma-
chine learning community, this paper puts forward a gen-
eral point cloud registration framework by constructing ker-
nel functions over 3D point clouds. More specifically, Gaus-
sian mixtures based on the point clouds are established
and probability product kernel functions are exploited for
the registration. To enhance the generality of the frame-
work, SE(3) on-manifold optimization scheme is employed
to compute the optimal motion. Experimental results show
that our registration framework works robustly when many
outliers are presented and motion between point clouds is
relatively large, and compares favorably to related meth-
ods.

This copy is for personal use, the final version will be publisehd in the proceedings of the 2013 International Conference on
3D Vision (3DV 2013) c©IEEE 2013

1. Introduction
The past two decades have witnessed great develop-

ment in 3D point cloud acquisition and usage, as increas-
ingly more state-of-the-art stereo vision reconstruction al-
gorithms were developed and affordable range-finder de-
vices emerged. However, there still exist many obstacles
to full exploitation of 3D point clouds, among which 3D
registration plays a fundamental role. Simply speaking, 3D
point cloud registration is the problem of moving a model
point cloudM to achieve the best possible alignment with a
fixed scene point cloud S by minimizing a certain distance
function between them. Mathematically, the motion P from
M to S is a rigid transformation in R3, which is composed
of a 3D rotation R and a translation t. Given f as a distance
function between two point clouds, the problem can be for-
mulated as {R∗, t∗} = arg minR,t f(M,S; R, t). One

can easily form f as the sum of squared distances between
all corresponding points from two clouds if the correspon-
dence information is provided. Unfortunately, however,
there is no existing method which can find the perfectly ac-
curate correspondence between two point clouds. Iterative
Closest Point (ICP) [1], the most popular method for 3D
registration so far, assumes correspondence based on the
closest distance criterion and then computes the transfor-
mation that best aligns the putative correspondences. Two
steps are implemented alternately and iteratively so that
computing either of them will improve the other.

Different from the iterative method, our algorithm avoids
point-wise correspondence search. Instead, we consider
point clouds in their entirety, and compute them as set-
format data in kernel method. In other words, the distance
function f is formulated at the cloud level. First, continu-
ous parametric probabilistic density functions (PDFs) are
established as the representations of point clouds by ap-
plying kernel density estimation (KDE) with Gaussian ker-
nels. Then, with KDE representations, an expected likeli-
hood kernel function is employed to compute the affinity
between two distributions, which corresponds to the simi-
larity between two point clouds. Finally, the optimal pose is
computed to maximize the kernel function, which is equiv-
alent to minimizing the distance function f between two
point clouds.

The key contributions of our work can be summarized
in two points: First, we express 3D point cloud registration
in a kernel method framework with a special case study on
probability product kernel functions. Although the scope
of study in this paper is limited, it can indicate a new per-
spective of the registration problem with more potential ker-
nel functions explored and studied in the future. Secondly,
we exploit the SE(3) on-manifold optimization scheme to
provide an elegant solution to compute the optimal motion.
Since the generality of kernel method and SE(N) opti-
mization, the resulting registration algorithm can be easily
extended to any dimension cases (although we only concern
3D case here).

1

2. Related Work
Since originally proposed [1], ICP and its variants almost

dominate the research literature of 3D point cloud registra-
tion. As briefly mentioned in section 1, at each iteration
of ICP, corresponding pairs are assumed to be found ac-
cording to the nearest-neighbor criterion, based on which
the optimal motion is subsequently computed. It has been
realized that in practice this naive correspondence-search-
assumption can fail if the motion between two point clouds
is large or there exists a large amount of noise. Thus, many
improvements to ICP methods were proposed. All ICP vari-
ants can be explained as iterative cycles of six steps [20]:
(1) Select subsets of two points clouds: in most cases, all
points are used. However, a subset can be randomly sam-
pled to reduce the computational burden if the number of
points is too large. (2) Match corresponding pairs: this
is a key step which has drawn much attention to achieve
improvement. The original version [1] matches pairs by
closest distance. Many other studies tried to improve the
correspondence accuracy by making use of more informa-
tion such as normal vectors [7], curvature [23], and color
[12]. Even some more sophisticated persistent point feature
descriptors [21] were developed to find the exact matches.
(3) Weight the corresponding pairs: Weighting alleviates
the influence of poor correspondence matching. To each
pair should be assigned a weight proportional to the likeli-
hood of the correspondence, which can be computed as the
compatibility of normals or colors [8]. (4) Reject pairs: To
some degree, rejection is equivalent to weighting by only
assigning binary weights w = {0, 1}, so normal orienta-
tion and color compatibility can be computed in the same
way; then a threshold is set to decide which pairs can be ac-
cepted. Some other geometric properties such as inter-point
distance consistency and collinearity consistency [15] can
be also used to filter out weak corresponding pairs. Other
methods reject pairs in which two points do not bi-uniquely
correspond to each other [24], or use weaker notions of con-
sistency such as ε-reciprocal correspondence [17]. (5) Com-
pute an error metric: The error metric is usually designed as
the sum of squared distances between corresponding points.
To enhance the robustness to outliers of correspondences
obtained from previous steps, Trimmed ICP was developed
[4] by using trimmed squares, which is only composed of
square distances with relatively small values. (6) Minimize
the error metric: This is an optimization step with respect to
3D rotation and translation. Usually unit quaternion and the
dual number quaternion methods [25] is used to compute ro-
tation. Although there have been various improvements to
ICP, its applicability is still limited to the scenario in which
two point clouds can be fairly closely aligned in advance,
and noise is low. Therefore, when used in practical appli-
cations, some manual assistance is usually required, which
makes ICP methods barely suitable within fully automatic

systems.
Besides the progress of ICP methods, some other novel

approaches have been proposed from different perspec-
tives. A notable contribution is spectral correspondence [3],
where graphs are constructed based on point clouds, and the
structural properties are extracted with spectral graph theory
to find matching point patterns. Another influential work is
SoftAssign [9], which establishes one-to-many correspon-
dences with different weights, and the registration is solved
as a joint optimization over the transformation and corre-
spondence matrix.

Prior to our work, a related algorithm was proposed by
Jian et al. in [11]. In Jian’s method, each point cloud is sim-
ilarly modelled globally and probabilistically with Gaussian
mixtures, and the optimal motion is computed to minimize
the L2 distance between corresponding Gaussian mixtures.
However, we go beyond their work in several ways: first,
instead of computing L2 distance between two fitted dis-
tributions, we consider the registration problem in a more
general kernel-based framework, which results in more flex-
ibility and extensibility. Secondly, in contrast to the identi-
cal and spherical covariance, we use more elaborately es-
timated bandwidths in KDE with Gaussian kernels to cap-
ture more local structural information of point clouds. Fi-
nally, instead of using unit quaternions, we exploit SE(3)
on-manifold optimization to achieve optimal motion esti-
mation, which yields a rather general registration algorithm.

3. Kernel Methods for Point Clouds

Kernel methods have achieved remarkable success in
many machine learning applications by enabling various
linear models to exploit nonlinear data patterns, such as
SVM and kernel PCA [22]. The kernel function is orig-
inally designed as a trick to efficiently compute the inner
product (similarity) between the images of two data in a
mapped (higher dimension) Hilbert feature space:

K(x, z) = 〈Φ(x),Φ(z)〉 (1)

where x, z ∈ χ and Φ(·) is mapping function from χ to
the feature space. A strength of the kernel method is that
with properly designed kernel functions it can work with
very general types of data, including strings, trees or graphs
[22], without explicit feature maps. As a matter of fact, any
symmetric similarity measurement between two data sets
of certain types can be a kernel function as long as it satis-
fies positive semi-definiteness, and data types are implicitly
embedded into an induced feature space. In this paper, we
are focusing on point clouds, on which kernel methods can
work in the exact same way to compute the similarity by
mapping them into a Hilbert feature space.

3.1. Kernel methods for unordered sets of data

Point clouds can be treated as unordered sets of vectors,
on which different kernel functions have been already de-
veloped and studied [14, 16]. The basic methodology is to
consider all elements in a set as i.i.d. samples from an un-
derlying probability distribution, and thus the distance be-
tween two sets can be computed as the discrepancy between
two corresponding distributions. One can model two sets
probabilistically by fitting them to two distributions whose
PDFs are of a certain parametric form, and then instead
of developing new kernel functions on point clouds, exist-
ing kernel functions on probabilities can be directly used.
Kondor and Jebara developed a Bhattacharyya kernel based
on the Bhattacharyya affinity used in the statistics literature
[14]:

KBha(p, q) =

∫ √
p(x)

√
q(x) dx (2)

where p and q are two distributions. In [16], an expected
likelihood kernel, which behaves as computing the expecta-
tion of either distribution under the other, is applied as

Kexp(p, q) =

∫
p(x)q(x) dx (3)

Both the Bhattacharya kernel and the expected likelihood
kernel are two special cases of probability product kernels
[10] K(p, q) =

∫
p(x)ρq(x)ρ dx with ρ = 0.5 and ρ = 1.

Assuming point clouds M and S are fitted to two distri-
butions φ and ψ respectively, the kernel function on point
clouds can be defined as

K(M,S) =

∫
φ(x)ρψ(x)ρ dx, (4)

and the induced Hilbert feature space corresponds to the fit-
ted distribution (infinite-dimensional feature space) when
ρ = 1, and to the square root of the distribution when
ρ = 0.5.

3.2. Probabilistic modeling of point clouds

In order to apply(4), one has to model point clouds in
a probabilistic form. Because (4) can be efficiently com-
puted without explicit integration if the PDFs of the two
distributions are in the exponential family, the Gaussian
mixture model is usually used [14, 16]. In this paper, to
simplify selecting the number of components, KDE (Ker-
nel Density Estimation) with Gaussian kernel is applied to
construct a Gaussian mixture with Gaussians constructed
on all points. This approach has been followed in other suc-
cessful work [5, 6, 11] to establish a probabilistic form of
point clouds. However, one weakness of KDE in this other
work is that only identical and isotropic covariance is used
to construct corresponding Gaussian kernels, which limits
the representational power to exploit geometric details of

Figure 1. The covariance of the kernel associated with each point is
locally determined from its neighbourhood and thus well captures
local structure.

the point clouds. Therefore, in our algorithm, in order to
capture the local structural information as much as possi-
ble, a full covariance is estimated with the neighboring re-
gion of each point (Figure 1). Given a model point cloud
M = {λ(i)

M ∈ R3}mi=1, a Gaussian kernel can be estab-
lished with its mean equal to the 3D position of each point
and covariance estimated with the surroundings of the point.
Thus the KDE representation of the model point cloud can
be written as

φ(x) =
1

mM

mM∑
i=1

NR3

(
x;λ

(i)
M,Σ

(i)
M

)
(5)

where N
(
x;λ

(i)
M,Σ

(i)
M

)
denotes the normal distribution

with mean λ(i)
M and covariance Σ

(i)
M, and mM is the size

of model point cloud. Similarly, the KDE representation
of the scene point cloud S can be constructed by the same
procedure.

3.3. A kernel function on two point clouds

To put all pieces together, a kernel function on point
clouds can be formulated by substituting (5) into (4). For
the sake of clarity in describing the framework, here we
only study the case of expected likelihood kernel function
(ρ = 1) although other kernel functions can be analogously
derived and explored. Thus (4) can be rewritten as:

K(M,S) =
1

mM

1

mS

mM∑
i=1

mS∑
j=1

GMiSj (6)

GMiSj =
∫
NR3(x;λ

(i)
M,Σ

(i)
M)NR3(x;λ

(j)
S ,Σ

(j)
S) dx

= 1
(2π)3/2|Σ∗|1/2 exp

{
− 1

2λ
∗′Σ∗−1λ∗

}
(7)

where | · | denotes the determinant, and λ∗ = λ
(i)
M−λ

(j)
S and

Σ∗ = Σ
(i)
M + Σ

(j)
S according to Gaussian identities [19].

Figure 2. The SO(3) manifold and its optimization scheme: (1)
start from a rotation matrix R0; (2) use equation (10) as the local
parametrization of the manifold at point R0, and compute the gra-
dient g with respect to w; (3) compute the best move in so(3) by
mapping J(w); (4) map back to SO(3): R0 ← exp(J(w))R0;
(5) repeat step (2)(3)(4) until convergence

4. Optimal Motion Estimation

A motion P can be mathematically represented as a rigid
transformation (the combination of a rotation R and a trans-
lation t) in R3, which corresponds to an element of the Lie
group SE(3) (Special Euclidean group). Similar to [11],
gradient type method is used in this paper to iteratively ad-
just rotation and translation parameters. Due to the orthog-
onality constraint of rotation matrices, unit quaternions are
used as the representations of 3D rotations in [11]. How-
ever, the applicability of unit quaternions is rather limited
because they can only be used in 3D cases. In our algo-
rithm, instead, Lie group SO(3) and its associated Lie alge-
bra so(3) is exploited to provide a novel solution of optimal
rotation estimation. One of the virtue of SO(3) represen-
tation of rotation is that it can be easily extended to any
n-dimension case by analogously using SO(n). SE(3) on-
manifold optimization can be straightforwardly achieved by
combining 3D translation and SO(3) rotation. The study of
SE(3) on-manifold optimization in this paper is very brief,
and of course cannot cover the whole field but only the nec-
essary scope used in this paper. Readers can refer to [2] for
more details on SE(3) and related optimization.

4.1. SO(3) and associated Lie algebra

A rotation matrix R within P is an element of Lie group
SO(3) = {R ∈ R3×3 : RTR = I, |R| = 1}, which is
referred to as Special Orthogonal group because of its or-
thogonal characteristic. It has been always an obstacle in
rotation-related optimization problems due to the orthog-
onality constraint. However, recent studies of SO(3) in
computer vision and related literature [2][18] reveal that the

SO(3) on-manifold optimization can be used to find ap-
propriate rotation matrices efficiently and elegantly without
worrying about the orthogonality constraint. At first, since
SO(3) is a Lie group, it should fulfill the associated condi-
tions (and SE(3) as well) [2], and one of them is closure:
∀R1,R2 ∈ SO(3),R1R2 ∈ SO(3). Secondly, SO(3) is
a smooth manifold embedded in R3, which is a topological
space wherein all elements are rotation matrices (Figure 2).
For each point Ri on the SO(3) manifold, there exists a tan-
gent space, and fortunately, the tangent space of SO(3) hap-
pens to be its associated Lie algebra so(3). In other words,
∀Ri ∈ SO(3),∃Λi ∈ so(3). Intuitively, the tangent space
of the SO(3) manifold can be understood as a vector space
of the derivative of the manifold at point Ri (Figure 2). The
mathematical connection between so(3) and SO(3) is:

so(3)→ SO(3) : R = exp(Λ), Λ ∈ so(3),R ∈ SO(3)
(8)

Lie algebra so(3) is the collection of anti-symmetric matri-
ces, which can be mapped from R3 with a skew operator
J(·) defined as:

w =

 w1

w2

w3

→ J(w) =

 0 −w3 w2

w3 0 −w1

−w2 w1 0

 (9)

Thus, any point that lies within the infinitesimally small
vicinity of a certain point R0 on the SO(3) manifold can
be represented as:

R(w) = exp(J(w))R0 (10)

which provides a mapping from vectors in R3 to a local
neighboring region of R0 on the SO(3) manifold, and in
which the exponential term can be computed using Ro-
drigues formula:

exp(J(w)) = I+J(w)
sin(‖ w ‖)
‖ w ‖

+J(w)2 1− cos(‖ w ‖)
‖ w ‖2

(11)
Finally, in unconstrained optimization problems, gradi-

ent type method is popularly used by iteratively updating
the solution. Thanks to the local parametrization of SO(3)
in (10), we can transform the update of SO(3) to the one
with respect to R3 without worrying about the orthogonality
constraint. Meanwhile, different from usual cases, instead
of computing incremental updates within the same space,
in the SO(3) manifold optimization, after every update of
w, it needs to be projected back to SO(3). Then, the gra-
dient is computed within the local parametrization of the
corresponding neighboring region. The on-manifold opti-
mization scheme of SO(3) is demonstrated in Figure 2.

4.2. SE(3) on-manifold optimization

Since the translation corresponds to vectors in R3, with
the map from R3 to SO(3) in (10), we can straightforwardly

establish a map Ω from R6 to SE(3) manifold as:

Ω : [w,v]′ → {exp(J(w)R0), t0 + v}
s.t. w,v, t0 ∈ R3,R0 ∈ SO(3)

(12)

Based on the kernel method constructed in section 3, each
3D point cloud is represented by KDE, which is a distri-
bution in the form of Gaussian mixtures. Thus the rotation
and translation on point clouds correspond to rotating and
shifting distributions. On one hand, both rotation and trans-
lation can affect means of Gaussians; on the other hand,
since the covariance is invariant to translation, only rotation
will be taken into account. With SVD decomposition of the
covariance matrix, we have Σ = USU ′, where S is a diag-
onal matrix with eigenvalues as diagonal entries, and U is a
matrix composed of eigenvectors, so the rotation will only
change the orientation of eigenvectors but preserve the mag-
nitude of their corresponding eigenvalues. Thus the KDE of
the model point cloud after the Euclidean transformations P
is:

φ(x) = P ? φ(x)

= 1
mM

∑mM
i=1 N (x; Pλ

(i)
M, (RU)S (RU)

′
)

= 1
mM

∑mM
i=1 N (x; Rλ

(i)
M + t,RΣ

(i)
MR′)

(13)
Here we abuse notation λ

(i)
M and Pλ

(i)
M for both original

and homogeneous coordinates because there is no ambigu-
ity. By substituting (13) into (5)(6), the objective function
is the kernel function betweenM transformed with {R, t}
and S:

K(MR,t,S) = Kexp

(
φ(x), ψ(x)

)
= 1

mM
1
mS

∑mM
i=1

∑mS
j=1 GMi

R,tSj

(14)

GMi
R,tSj =

1

(2π)3/2|Gij |1/2
exp

(
−1

2
∆ij
′Gij

−1∆ij

)
(15)

where ∆ij = λ
(j)
S −Rλ

(i)
M−t and Gij = RΣ

(i)
MR′+Σ

(j)
S .

Then the optimal motion can be estimated by maximizing
the kernel function (14):

{R∗, t∗} = arg max
R,t

K(MR,t,S)︸ ︷︷ ︸
O

(16)

By substituting (12) into (16), the objective function O is
dependent only on w and v. The gradient can be computed
as (check supplementary material for detailed derivation):

∂O

∂v
=

1

mMmS

mM,mS∑
i=1,j=1

GMi
R,tSj∆′ijG

−1
ij (17)

∂O
∂w

=
∑mM,mS

i=1,j=1

{(
1
2
(∆′ijG

−1
ij)⊗ (∆′ijG

−1
ij)− vec(G−1

ij)′
)

· ∂Gij

∂w
−∆′ijJ(Rnλ

(i)
m)
}
GMi

R,t
Sj

(18)

Where vec(·) operator vectorizes a matrix by stacking its
columns, and ∂Gij

∂w is:

∂Gij

∂w
= (I9 + T3,3)(RΣ

(i)
MΣ′ ⊗ I3)

∂J(w)

∂w
(19)

where In is a n × n identity matrix, T3,3 is a permutation
matrix which satisfies T3,3vec(A) = vec(A′) for any 3×
3 matrix, ∂J(w)

∂w can be easily computed according to the
definition (9).

5. Experiments
With the Jacobian vector {∇w,∇v} computed in

(17)(18), a gradient descent method for point cloud regis-
tration can be summarized as Algorithm 1.

Algorithm 1 3D Point Clouds Registration

Input: two 3D point clouds: M = {λ(i)
M}

mM
i=1 and S =

{λ(j)
S }

mS
j=1;

Output: the optimal motion estimation {R∗, t∗}
1: compute the covariance on each point based on its

neighborhood;
2: start from initial rotation R0 and translation t0

3: while 1 do
4: compute the gradient {∇w,∇v}with current Rn and

tn according to (17)(18);
5: if both∇w and∇v are small enough then
6: return Rn and tn;
7: end if
8: map the update of w back to SO(3): Rn+1 ←

exp(J(∇w))Rn;
9: direct update translation: tn+1 ← tn +∇v;

10: set n← n+ 1
11: end while

5.1. Qualitative Experiments

At first, we test our algorithm qualitatively on KIT 3D
database[13]. Since each 3D object model in the database is
in triangulated mesh format, we generate the corresponding
point cloud by first sampling a triangle with the probabil-
ity proportional to its area and then uniformly sampling a
point within the selected triangle. For each point cloud (red
points in Figure 3), a random motion is generated and ap-
plied on it. In addition, either random outliers are added or
random part of object are removed to generate a synthetic
target point cloud (blue points in Figure 3). Some test re-
sults of our registration algorithm is displayed in Figure 3.
We can see that the proposed algorithm can work qualita-
tively well in many challenging cases (registration results in
green frames). However, the algorithm will also fail when
the rotation angle is bigger than 90◦ or due to the overlarge

Figure 3. A sample set of qualitative test of the proposed algorithm on KIT database.

amount of outliers or missing points (registration results in
magenta frames). The instability of the performance stems
from the fact that the algorithm is likely to stuck into local
optimum.

5.2. Quantitative Experiments

To obtain a more precise evaluation of the proposed al-
gorithm, we conduct several quantitative experiments with
different motion scales, outliers and missing portions for
test. In addition, we also implement and run ICP and Jian’s
method [11] for comparison. To ensure the fairness of the
comparison, the same SE(3) optimization strategy and stop
criterion are used for their corresponding objective func-
tions. KIT database is used as well here for quantitative
evaluation and the point clouds are generated in the same
way as section 5.1.

First, we test the robustness of three algorithms on differ-
ent scales of motions. In this experiment, for motion scale i,
the rotation angles of yaw, pitch and roll are i×[20◦, 4◦, 4◦],
and translations are i× [Sx, Sy, Sz], where [Sx, Sy, Sz] are
standard deviations of point clouds in three axes. Differ-
ent motions are applied on the point cloud of each object
(points cloud is sampled with size 1000) to generate a tar-

get point cloud to align with. Since we know the corre-
spondence between the original and target point clouds, the
error for each registration is computed as the average dis-
tance between every pair of corresponding points in two
point clouds. The test result on the database is plotted in
Figure 4(a). We can see that ICP method is very sensitive
to the initial motion. Actually average error of ICP method
is monotonic increasing with respect to motion scale. Jian’s
method and our method work in almost the same pattern.
Both method work rather accurately when the motion scale
i ≤ 4 (rotation angle is smaller than 90◦). However, both
methods will fall into the local minimum (reflectional sym-
metry pose) when the motion scale increase ever since.

Secondly, we test the robustness of three algorithms by
adding different portion (the percentage of point cloud size)
of outliers. Outliers are generated by randomly sampling
within the space around objects. For portion i, the number
of added outliers is i × 10% of the point-cloud size. The
generated outliers are concatenated into the original point
clouds, so the correspondence ground-truth is still available
and the registration error is computed in the same way as
in the motion experiment. To avoid the effect of large mo-
tion, a relatively small motion (motion scale i = 1) is ap-

(a) (b) (c)

Figure 4. Performance comparison of three registration methods on the KIT database with different motion scales, portion of outliers and
portion of missing part respectively.

plied on point clouds. The test result is plotted in Figure
4(b), from which we can see that ICP method is very fragile
when the outliers are present even the amount is small. By
contrast, since structure of point clouds are globally mod-
elled in Jian’s method and our method, they are much more
robust to the presence of outliers. In addition, due to the
local estimated covariance in our method, it can outperform
Jian’s method for all portion i.

Finally, part missing is an usual case because of occlu-
sion. Here we also compare the performance of three al-
gorithms on different portion of missing part. A missing
part is selected by first randomly picking a point and then
removing all points which lie within the neighbourhood of
certain range. For portion i, the number of eliminated out-
liers is i× 6% of the point-cloud size. Since the seed point
is randomly selected, the correspondence ground truth will
not be available between the original point cloud and target
partial point cloud. To measure the registration accuracy,
the full target point cloud is preserved before a random part
is removed, and the registration error is computed as the dis-
tance between full original point cloud and full target point
cloud. Similarly, a relatively small motion (motion scale
i = 1) is applied on point clouds to avoid the effect of large
motion. The test result is displayed in Figure 4(c). It can be
seen that the performance of ICP method is most stable in
missing cases. As for Jian’s method and our method, unfor-
tunately, the global structure will be greatly changed when a
random part is removed, neither of their performance is ac-
ceptable although our method is better than Jian’s method
by making use of local structure information embedded in
the local estimated covariance. However, it should be re-
minded that ICP method can outperform two others in miss-
ing cases only under the condition that the initial motion is
small.

CONCLUSION
We present a full study on how probability product ker-

nel function can be used for 3D point cloud registration. A

general registration framework is developed by incorporat-
ing SE(N) on manifold optimization strategy. According
to empirical test, the proposed registration algorithm is ac-
curate and robust in many challenging cases. However, even
with the help of local estimated covariance, the performance
of our algorithm is still unacceptable when certain part of
point cloud is missing, which points to the future direction
of our research.

References
[1] P. J. Besl and H. D. Mckay. A method for registration of 3-D

shapes. PAMI, 14(2):239–256, 1992. 1, 2
[2] J. L. Blanco. A Tutorial on SE(3) Transformation Parame-

terizations and on-Manifold Optimization. Technical report,
University of Malaga, Sept. 2010. 4

[3] M. Carcassoni and E. R. Hancock. Spectral Correspondence
for Point Pattern Matching. Pattern Recognition, 36(1):193–
204, 2003. 2

[4] D. Chetverikov, D. Svirko, D. Stepanov, and P. Krsek. The
Trimmed Iterative Closest Point Algorithm. In ICPR, pages
545–548, 2002. 2

[5] R. Detry and J. Piater. Continuous surface-point distributions
for 3D object pose estimation and recognition. In ACCV,
volume 6494 of LNCS, pages 572–585, Heidelberg, 2010.
Springer. 3

[6] R. Detry, N. Pugeault, and J. Piater. A Probabilistic
Framework for 3D Visual Object Representation. PAMI,
31(10):1790–1803, 10 2009. 3

[7] J. Feldmar, N. Ayache, and F. Betting. 3D-2D projective reg-
istration of free-form curves and surfaces. Computer Vision
and Image Understanding, 65:403–424, 1997. 2

[8] G. Godin, M. Rioux, and R. Baribeau. Three-dimensional
registration using range and intensity information. In Pro-
ceedings of the SPIE: Videometrics III, volume 2350, pages
279–290, Boston, Massachusetts, USA, Nov. 1994. 2

[9] S. Gold, A. Rangarajan, C. ping Lu, and E. Mjolsness. New
Algorithms for 2D and 3D Point Matching: Pose Estima-
tion and Correspondence. Pattern Recognition, 31:957–964,
1997. 2

[10] T. Jebara, R. Kondor, and A. Howard. Probability Product
Kernels. Journal of Machine Learning Research, 5:819–844,
July 2004. 3

[11] B. Jian and B. C. Vemuri. Robust Point Set Registration
Using Gaussian Mixture Models. PAMI, 33(8):1633–1645,
2011. 2, 3, 4, 6

[12] A. Johnson and S. B. Kang. Registration and Integration of
Textured 3-D Data. In Image and Vision Computing, pages
234–241, 1996. 2

[13] A. Kasper, Z. Xue, and R. Dillmann. The KIT object models
database: An object model database for object recognition,
localization and manipulation in service robotics. The Inter-
national Journal of Robotics Research, May 2012. 5

[14] R. Kondor and T. Jebara. A kernel between sets of vectors.
In ICML, 2003. 3

[15] Y. Liu, L. Li, and B. Wei. 3D shape matching using collinear-
ity constraint. In ICRA, pages 2285–2290, 2004. 2

[16] S. Lyu. A Kernel Between Unordered Sets of Data: The
Gaussian Mixture Approach. In ECML, pages 255–267,
2005. 3

[17] T. Pajdla and L. V. Gool. Matching of 3-D Curves using
Semi-differential Invariants. In ICCV, pages 390–395. IEEE
Computer Society Press, 1995. 2

[18] M. D. Plumbley. Lie group methods for optimization with
orthogonality constraints. In Int. Conf. on Independent Com-
ponent Analysis and Blind Signal Separation, pages 1245–
1252. Springer, 2004. 4

[19] C. E. Rasmussen and C. Williams. Gaussian Processes for
Machine Learning. MIT Press, 2006. 3

[20] S. Rusinkiewicz and M. Levoy. Efficient Variants of the ICP
Algorithm. In 3DIM, pages 145–152, 2001. 2

[21] R. B. Rusu, Z. C. Marton, N. Blodow, and M. Beetz. Persis-
tent Point Feature Histograms for 3D Point Clouds. In Int.
Conf. on Intelligent Autonomous Systems, page 477. 2008. 2

[22] J. Shawe-Taylor and N. Cristianini. Kernel methods for pat-
tern analysis. Cambridge University Press, 2004. 2

[23] R. Yang and P. K. Allen. Registering, Integrating, and Build-
ing CAD Models from Range Data. In ICRA, pages 3115–
3120, 1998. 2

[24] L. Zhang, S.-I. Choi, and S.-Y. Park. Robust ICP Registration
Using Biunique Correspondence. In 3DIMPVT, pages 80–
85. IEEE, 2011. 2

[25] Z. Zhang. Iterative point matching for registration of free-
form curves and surfaces. International Journal of Computer
Vision, 13(2):119–152, 1994. 2

