
Efficient, General Point Cloud Registration With Kernel Feature Maps

Hanchen Xiong, Sandor Szedmak, Justus Piater
Institute of Computer Science, University of Innsbruck

Technikerstr.21a A-6020, Innsbruck, Austria
Email: {hanchen.xiong, sandor.szedmak, justus.piater}@uibk.ac.at

Abstract—This paper proposes a novel and efficient point
cloud registration algorithm based on the kernel-induced
feature map. Point clouds are mapped to a high-dimensional
(Hilbert) feature space, where they are modeled with Gaussian
distributions. A rigid transformation is first computed in
feature space by elegantly computing and aligning a small
number of eigenvectors with kernel PCA (KPCA) and is then
projected back to 3D space by minimizing a consistency error.
SE(3) on-manifold optimization is employed to search for the
optimal rotation and translation. This is very efficient; once the
object-specific eigenvectors have been computed, registration is
performed in linear time. Because of the generality of KPCA
and SE(N) on-manifold method, the proposed algorithm can
be easily extended to registration in any number of dimensions
(although we only focus on 3D case). The experimental results
show that the proposed algorithm is comparably accurate
but much faster than state-of-the-art methods in various
challenging registration tasks.

Keywords-kernel method; point cloud registration; SE(3) on-
manifold optimization

I. INTRODUCTION

This copy is for personal use, the final version will be publisehd in the proceedings of the 2013 Canadian Conference on
Computer and Robot Vision (CRV 2013) c©IEEE 2013

3D free-form shape registration is an important problem
in many fields and has sparked a large volume of related
research literature. During the past two decades, 3D point
clouds have become an increasingly more important and
popular data structure to represent 3D shapes. Especially
in contemporary robotics, 3D point cloud registration is an
essential component of autonomous systems to assist in the
perception of 3D objects and environments.

Until now, most existing 3D point cloud registration
algorithms decompose the registration problem into two
parts, correspondence assignment and alignment, because
they argue that computing either of two steps will facilitate
the other. A popular method is Iterative Closest Point (ICP)
[1], which undoubtedly has been most widely used due to its
simplicity in implementation. First, a pseudo correspondence
is established by finding the nearest neighbor of each point.
Then, the optimal rotation and translation are computed so as
to minimize the average of Euclidean distances between all
pairs of corresponding points. These two steps are iterated
until converge. Obviously, the closest-distance criterion for
correspondence is too weak, and therefore ICP can easily
fail in practice when the displacement between two point
clouds or outlier rate is relatively large. To enhance the

accuracy of the correspondence, many improved versions of
ICP were proposed by incorporating color, normal vectors,
curvature, or strategically ignoring some unlikely corre-
spondences [2]. However, despite various improvements,
the hard assignment strategy employed by ICPs causes
problems that require manual assistance in practical appli-
cations. To overcome this limitation, SoftAssign [3] and
EM-ICP [4] were proposed by establishing one-to-many soft
correspondences. Both methods assume that one point may
correspond to all points in the other cloud with different
likelihoods by constructing a correspondence matrix. To
iteratively update this matrix, deterministic annealing is used
in SoftAssign while an Expectation-Maximization (EM)-
style method is employed in EM-ICP. Meanwhile, recently a
Gaussian-mixture (GM) method [5] was developed to avoid
iteratively computing the correspondences and alignment.
GM probabilistically and globally models 3D point clouds as
Gaussian mixtures in R3, and the optimal alignment between
point clouds is computed by minimizing the discrepancy (L2
distance [5]) between their corresponding distributions.

For the task of aligning 3D point clouds M1 = {x(1)
i }

l1
i=1

with M2 = {x(2)
i }

l2
i=1, all methods described above can be

interpreted as optimizing a common objective function:

{R∗,b∗} = arg min
R,b

l1∑
i=1

l2∑
j=1

(
Rx

(1)
i + b− x

(2)
j

)2
wi,j (1)

where wi,j denotes the correspondence between every pair
of x

(1)
i and x

(2)
j . In ICP wi,j ∈ {0, 1}, and (1) is solved

by iteratively updating wi,j in a winner-take-all manner
under a shortest-distance criterion and solving a least-
squares problem with respect to R and b. In EM-ICP,
wi,j is interpreted as the probability of the correspondence,
so a one-way constraint (wi,j ∈ [0, 1],

∑l2
j wi,j = 1)

is implicitly imposed. In SoftAssign, a stricter two-way
constraint (wi,j ∈ [0, 1],

∑l2
j wi,j = 1,

∑l1
i wi,j = 1) is

introduced to enforce globally consistent point correspon-
dences. Although GM does not model the correspondences
explicitly, they can likewise be understood as an instance
of (1) with Euclidean distance replaced by Mahalanobis
distance, and an uniform prior of wi,j = 1

l1l2
for each pair

of i, j. In conclusion, so far 3D point cloud registration can
be achieved either by explicitly modeling correspondences
and laboriously updating them (EM-ICP and SoftAssign), or



by making some fragile correspondence assumptions to sim-
plify the optimization procedure (ICP and GM). In addition,
all these methods share the same computational complexity
of O(n2) 1, which will be a heavy computational burden
if the number of points n is relatively large. Therefore, a
registration solution that can both express realistic priors
over point correspondence matches and can be computed
in a simpler (possibly non-iterative) and cheaper (possibly
non-quadratic time) way is highly desirable. The method
proposed in this paper fulfills both demands. Instead of
doing point-wise correspondence search and computing in
3D space, our method first maps all points to a higher-
dimensional (reproducing kernel Hilbert) feature space using
kernel methods. The optimal transformation in feature space
is then found by aligning Gaussians that approximate the
two mapped point clouds. To project back to the 3D space,
an objective function is constructed based on the fact that
the transformed mapped points should be consistent with
mapped transformed points. Finally, an SE(3) on-manifold
optimization scheme is exploited to provide an elegant and
efficient gradient-type algorithm for registration.

Compared to previous registration methods, the strength
of our method can be summarized in four points: (1)
Although our algorithm was not developed on the basis of
point correspondences, the form of its objective function
(section III-A) suggests that correspondences are implicitly
derived and to large degree it is consistent with the correct
matches; (2) The experimental results (section IV) show that
our method can work accurately and robustly in various chal-
lenging cases (large motion, outlier points); (3) Our method
is much more efficient than other state-of-the-art methods,
actually the computation complexity is O(n log n); (4) By
using Kernel PCA and SE(3) on-manifold optimization, the
algorithm can be used as general point cloud registration
framework with high flexibility and extensibility to any
dimension.

II. RIGID TRANSFORMATION IN HILBERT SPACE
Intuitively, a straightforward way to align point clouds

without point-wise correspondences is to first probabilisti-
cally fit each point cloud to a single Gaussian distribution in
R3 and then align their means (translation) and covariances
(rotation). However, the modeling ability of one single
Gaussian in 3D space is too limited to capture the 3D
point distribution of real-world objects, i.e. the mean and
covariance in R3 are very sensitive to outliers. Inspired
by kernel methods developed for set-format data [6], a 3D
point clouds can be implicitly mapped to a much higher-
dimensional Hilbert feature space, where a single Gaussian
can fit well (Fig. 1) and hence yields higher tolerance to 3D
disturbance in the original point cloud (e.g. outliers or non-
rigid transformation). In addition, by applying kernel PCA,

1the complexity of ICP is O(n logn) if K-d trees are used for searching
for the nearest neighbour

Figure 1. Mapping point clouds from 3D space to an infinite-dimensional
Hilbert space, where a single Gaussian is sufficient to model distributions
of complex shape.

the eigenvectors of covariances can be efficiently computed
and aligned without explicit computation in feature space.

A. Probabilistic modeling in Hilbert space

Inspired by kernel methods that have been widely used in
machine learning, in order to map all points in a point cloud
M = {xi}li=1 to a higher, possibly infinite-dimensional
feature space, we can define a kernel function on 3D points
K(xi,xj). Then, a feature map can be implicitly induced
by satisfying

K(xi,xj) = 〈φ(xi), φ(xj)〉 (2)

where φ is the corresponding feature map: R3 → H, and
H is referred to as the reproducing Hilbert feature space.
Since the structure of M can be far too complicated in R3,
to ensure that one single Gaussian is capable of modeling
the distribution of {φ(xi)}li=1 in H, in this paper we select
the kernel function as the radial basis function (RBF)

K(xi,xj) = exp
−‖xi − xj‖2

2σ2
(3)

because the induced feature map is a scaled Gaussian
probability density function (PDF),

φ(xi) = f(ξ|xi) = exp
−‖ξ − xi‖2

2σ2
, (4)

i.e., φ(·) corresponds to an infinite-dimensional feature map.
With all points mapped into feature space, a Gaussian

(mean and covariance) in H can be easily fitted by using
maximum likelihood estimation (MLE):

µH =
1

l

l∑
i=1

φ(xi) =
1

l
φ(M)>1l (5)

ΣH =
1

l

l∑
i=1

(φ(xi)− µH) (φ(xi)− µH)
> (6)

where φ(M)> = [φ(x1), φ(x2), · · · , φ(xl)] and 1l is an l-
dimensional vector with all elements equal to 1.

B. Kernel PCA

To achieve the alignment between two covariances, their
eigenvectors should be computed first. However, this com-
putation is non-trivial in feature space. Kernel principal
component analysis (KPCA) [7] is a technique developed



to compute eigenvectors in feature space without explicit
computation in H. Here we briefly review the procedure of
KPCA with its application to 3D point clouds.

Assuming all points are already centered in feature space,
the covariance ΣH of the Gaussian can be estimated as

ΣH =
1

l

l∑
i=1

φ(xi)φ(xi)
> (7)

which is a symmetric bilinear form on H. Analogous to
the symmetric covariance matrices in the finite-dimensional
case, its nonzero eigenvalue λk and corresponding eigenvec-
tor uk should satisfy

λkuk = ΣHuk. (8)

By substituting (7) into (8), we have

uk =
1

λk
ΣHuk =

l∑
i=1

αki φ(xi) (9)

where αki = φ(xi)
>uk

λkl
. Therefore, all eigenvectors uk with

λk 6= 0 must lie in the span of φ(x1), φ(x2), . . . , φ(xl), and
(9) is referred to as the dual form of uk. By left-multiplying∑l
j=1 φ(xj)

> on both sides of equation (8), we have

l∑
j=1

φ(xj)
>λkuk =

l∑
j=1

φ(xj)
>ΣHuk

⇔ λk

l∑
i,j=1

αkiK(xi,xj) =
1

l

l∑
i,j=1

αkiK(xi,xj)
2

⇔ lλkα
k = Kαk

(10)
where K is an l × l kernel matrix with Kij = K(xi, xj),
αk = (αk1 , α

k
2 , . . . , α

k
l )>. It can be seen that {αk, ηk =

lλk} is actually an eigenvalue-eigenvector pair of matrix
K. Therefore, by using dual forms of eigenvectors, the
eigenvector decomposition of ΣH can be transformed to the
decomposition of the finite matrix K. In addition, because
all uk should be unit vectors:

1 = u>k uk = 〈αk,Kαk〉 = ηkαk>αk (11)

the αk should be normalized as:

αk ← αk√
ηk

(12)

However, though the point cloud can be easily centered in
3D space, it does not mean it is also centered in feature
space. By replacing φ(xi) with φ̃(xi) = φ(xi) − µ, the
corresponding kernel matrix K̃ is

K̃ = K− 1

l
EK− 1

l
KE +

1

l2
EKE (13)

where E denotes an l × l matrix with all entries equal
to 1. After similar eigenvector decomposition (10) and

(a) (b) (c) (d)

Figure 2. (a) A point cloud of table tennis racket; (b–d) reconstruction
using the first 1–3 principal components. For each point in the bounding-
box volume, the darkness is proportional to the density of the Gaussian in
the feature space H.

normalization (12) steps, we obtain eigenvectors

ũk =

l∑
i=1

α̃ki (φ(xi)− µ) = φ(M)> (Il −
1

l
E)︸ ︷︷ ︸

IE

α̃k (14)

where Il is an l × l identity matrix and α̃ is the kth
eigenvector of the matrix K̃.

As analyzed in [6], it is misleading and wasteful to use
full covariances, so only a small number of eigenvectors are
sufficient to capture the structural property of the covariance
ΣH. Fig. 2 displays an example of a table tennis racket point
cloud. Its Gaussian distribution in the feature spaceH can be
well reconstructed using only 3 of its principal components
associated with top largest eigenvalues.

C. Alignment of Gaussians

Assume the task is to align a point cloud M1 = {x(1)
i }

l1
i=1

with M2 = {x(2)
j }

l2
j=1, instead of computing the optimal

alignment in 3D space directly, we can alternatively first
align them in feature space, and then project them back
to R3 (section III). With the modeling procedure above
applied on M1 and M2, the alignment of two point clouds in
feature space corresponds to aligning two Gaussians. In this
paper, we assume D eigenvectors are computed for the co-
variance of each point cloud: Ũ1 =

[
ũ1
1, . . . , ũ

k
1 , . . . , ũ

D
1

]
,

Ũ2 =
[
ũ1
2, . . . , ũ

k
2 , . . . , ũ

D
2

]
. Therefore, the rotation in

feature space RH is estimated by simultaneously aligning D
pairs of corresponding eigenvectors: Ũ2 = RHŨ1. Because
different eigenvectors of each point cloud are orthogonal to
each other, based on the computation result in (14), it is easy
to derive:

RH = Ũ2Ũ
>
1

= φ(M2)> IE
2

(
D∑
k=1

α̃k2α̃
k>
1

)
IE
1︸ ︷︷ ︸

Θα

φ(M1) (15)

Since the rotation (15) can be applied only if M1 has already
been centered in feature space, to fully align two Gaussians,
the translation in feature space bH obviously should equal
the mean of the Gaussian that models M2 in feature space:

bH = µ
(2)
H =

1

l2
φ(M2)>1l2 (16)
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Figure 3. The consistency error is defined as the discrepancy between
φ(Rxt + b) and RHφ̃(xt) + bH.

Now we can align two Gaussians in feature space with
{RH,bH} computed in (15) and (16). However, due to
the infinite-dimensional feature map defined in (4), there
still exist two obstacles to be overcome: First, (15) and (16)
cannot be computed in an analytic form; secondly, there is no
trivial way to map {RH,bH} back to 3D space. Fortunately,
by designing a consistency error (section III-A), these two
issues can surprisingly be solved simultaneously in a very
smooth and elegant manner.

III. CARTESIAN POINT CLOUD ALIGNMENT

In this section we will project the rotation and translation
in the feature space H back to 3D space by minimizing
a specifically-designed consistency error (Fig. 3). It turns
out that the final objective function can be constructed and
solved without explicit computation in feature space. In
addition, further connections with other registration methods
will be exposed by discovering the hidden commonality
among their objective functions. To enhance the generality of
the proposed algorithm, an SE(3) on-manifold optimization
scheme is employed to search for the optimal transformation.

A. Consistency Error

Instead of tediously finding the inverse function φ−1(·)
corresponding to the definition in (4) and applying it to
{RH,bH} to map them back to 3D space {R,b}, here
we define a novel consistency error between φ(Rxt + b)
and RH (φ(xt)− µ1) + bH based on the fact that mapping
after transformation should be consistent with transformation
after mapping (Fig. 3). Therefore, we can find the optimal
rotation and translation in 3D space by minimizing the
average consistency error:

{R∗,b∗} = arg min
R,b

1

l1

l1∑
t=1

‖Ψt −Φt‖2 (17)

Because ‖Φ(x)‖2 is the integration over the square of a
Gaussian, which preserves constant under any translation b
and rotation R, and Ψt is fixed, by substituting (15) and
(16) into (17), we have

{R∗,b∗} = arg max
R,b

1

l1

l1∑
t=1

Ψ>t Φt

= arg max
R,b

1

l1

l1∑
t=1

K(Rx
(1)
t + b,M2)>ρt︸ ︷︷ ︸
O

(18)

(a) (b)

Figure 4. (a) Two identical point clouds with exactly the same point
permutation. (b) Visualization of ρti computed for all pairs of points.

ρt = Θα

(
K(x

(1)
t ,M1)− 1

l1
K11l1

)
+

1

l2
1l2 (19)

where K(Rx
(1)
t + b,M2) is an l2-dimensional vec-

tor with K(Rx
(1)
t + b,M2)i = K(Rx

(1)
t + b,x

(2)
i ),

and K(x
(1)
t ,M1) is an l1- dimensional vector with

K(x
(1)
t ,M1)j = K(x

(1)
t ,x

(1)
j ). It can be seen that by

employing the kernel trick (2), we can elegantly avoid
computation in the feature space H in both (18) and (19).

B. Relation to Other Approaches
As analyzed in section I, most existing registration meth-

ods can be unified to a general objective function (1) with
different correspondence assumptions or iterative update
strategies. The objective function (18) can be easily extended
as follows:

{R∗,b∗} = arg min
R,b

l1∑
t=1

l2∑
i=1

−K(Rx
(1)
t + b,x

(2)
i )ρt,i (20)

By considering −K(·, ·) as an exponential distance and
replacing ρt,i with wt,i, it turns out that surprisingly our
method (20) is also a special case of (1), although we
arrive there from a completely different starting point. This
suggests that ρt,i somehow implicitly encodes the corre-
spondence likelihood between x

(1)
t and x

(2)
i as well. To

verify this argument experimentally, in Fig 4(a) there are
two identical point clouds with exactly the same point
permutation. We compute ρti for all pairs of points in Fig
4(b). It can be seen that Fig 4(b) shows a very evident
diagonal pattern with uniformly distributed noise, which is
the reflection of our prior knowledge. However, different
from most of other approaches, we do not model wt,i
explicitly or update them iteratively. Instead, ρt,i is derived
from eigenvector alignment in feature space and only need
to be computed once.

There is another way our method is related to Gaussian
mixtures. By relaxing the non-negative coefficient constraint
in the definition of Gaussian mixtures, each eigenvector
in (14) can be considered as a pseudo Gaussian mixture
with φ(·) defined as in (4). In this way, instead of aligning
two Gaussian mixtures in 3D space, what our method is
actually doing is to simultaneously align D pairs of Gaussian



Figure 5. The SE(3) manifold and its optimization scheme: (1) start from
a rotation matrix P0; (2) use equation (26) as the local parametrization of
the manifold at point P0, and compute the gradient with respect to {w,v};
(3) compute the best move in se(3) by mapping the update of {w,v}; (4)
map back to SE(3): P1 ← exp(Λ)P0; (5) repeat step (2)(3)(4) until
convergence

mixtures in feature space, and then implicitly maps back to
original 3D space.

C. SE(3) on-manifold optimization

When solving the optimization problem (18), the orthog-
onality constraint of the rotation matrix R must be taken
into account: R>R = I. This constraint is a common
obstacle in various rotation-related optimization problems,
which drove many researchers to alternatives such as unit
quaternions [5] or dual quaternion number [8]. However,
although all these methods can work satisfactorily for 3D
rotation, they are difficult to be extend to higher dimensions.
Although we only focus 3D point cloud registration here,
to make our algorithm more general, here we employ an
SE(3) on-manifold optimization scheme [9], which can
be easily adapted to rotation matrices in any dimension.
Another virtue of SE(3) on-manifold optimization is that
combined with gradient computing, an elegant optimizer
can be developed based on its associated Lie algebra to
circumvent the orthogonality constraint.

Each rotation and translation in 3D space {R,b} can be
jointly treated as a Euclidean transformation P in R3 by
using homogeneous coordinates. From now on, x is used to
denote homogeneous coordinate, and x for the original one:

x> = [x>, 1] (21)

and correspondingly,

P =

[
R b

01×3 1

]
(22)

One specific P is actually an element of Lie group SE(3)
(Special Euclidean Group), which is a smooth manifold
embedded in R3. Intuitively, the SE(3) manifold can be
considered as a topological space wherein all points are 4×4
Euclidean transformation matrices, and at each point, there

exists a tangent space Λ, which happens to be its associated
Lie algebra se(3) . The mathematical connection between
SE(3) and se(3) is

se(3)→ SE(3) : P = exp(Λ) (23)

where exp(·) denotes the exponential map. The tangent
space se(3) can be considered as a linearization of the SE(3)
manifold within the infinitesimally small vicinity of certain
point P0, so inversely, the exponential map works as a ‘de-
linearization’. All concepts described above are illustrated
in Fig. 5. The Lie algebra se(3) is a collection of matrices
of the form

Λ =

[
J(w) v
01×3 0

]
(24)

where J(w) is an skew-symmetric matrix, which can be
constructed from a 3D vector w with a skew operator J(·):

w =

 w1

w2

w3

→ J(w) =

 0 −w3 w2

w3 0 −w1

−w2 w1 0

 (25)

and v is an usual 3D vector. Therefore, Therefore, when
exp(Λ)→ I3 (e.g. computing gradient), we can establish a
straightforward map from R6 to the local neighboring region
of P0 on manifold as

P = exp

([
J(w) v
01×3 0

])
·P0 (26)

Last but not least, combination with a gradient-type
method yields an final optimization procedure for SE(3)
parameters. By using (26), we can see that when computing
the gradient with respect to w and v, the orthogonality
constraint will be avoided, and therefore, the constrained op-
timization problem in SE(3) (18) is naturally and smoothly
transformed to a much simpler, unconstrained problem in
R6. Meanwhile, different from conventional gradient meth-
ods, instead of computing gradient and updating within the
same space, in SE(3) on-manifold optimization, after every
update of {w,v}, it need to be mapped back to SE(3),
and subsequently the gradient is computed with the local
parametrization of the corresponding neighboring region.
The whole procedure of SE(3) on-manifold optimization
scheme is illustrated in Fig. 5.

D. Reduction of Computational Complexity
If we reexamine the objective function O (18), an inter-

esting property can be leveraged to significantly reduce the
computation complexity:
〈Φt,Ψt〉

= φ(Px
(1)
t )

>
(

D∑
k=1

ũ
k
2 ũ

k>
1

(
φ(x

(1)
t )− µ1

)
+ µ2

)

=

D∑
k=1

〈ũk
2 , φ(Px

(1)
t )〉〈ũk

1 , φ(x
(1)
t )− µ1〉+ 〈µ2, φ(Px

(1)
t )〉

=

D∑
k=1

〈ũk
2 , φ(Px

(1)
t )〉〈ũk

2 ,RHφ(x
(1)
t )− µ1〉+ 〈µ2, φ(Px

(1)
t )〉

(27)



where we can see that φ(Px
(1)
t ) and RHφ(x

(1)
t )− µ1 are

projected onto D eigenvectors
{
ũk2

}D

k=1
respectively, and

an additional projection of φ(Px
(1)
t ) onto µ2. Therefore,

the computation of the objective function is actually done

in a space spanned by D eigenvectors
{
ũk2

}D

k=1
and one

µ2, which is a subspace of H. We denote this subspace by
S. The feature map of each point φ(xi) can be projected
onto S in the following way:

S (φ(xi)) =

D+1∑
k

βi,krk (28)

where rk are referred to as D + 1 reference vectors in S,
and βi,k are the corresponding coefficients used to express
S (φ(xi)). In other words, in S, only D+1 reference vectors,
of which D should be linearly independent, can represent
any S(φ(xi)). Therefore, to ensure that Φt and Ψt are
consistent with each other for all points x

(1)
t in M1, we

only need to align D + 1 predefined reference vectors. In
practice, we can randomly select D + 1 S(φ(xi)) because
they are very likely to be linear independent in S. Thus, the
objective function can be simplified to

{R∗,b∗} = arg max
R,b

1

D + 1

D+1∑
t=1

K(Rx
(1)
St

+ b,M2)>ρt (29)

where S denotes the randomly selected subset of M1. To
practically apply SE(3) on-manifold optimization on the
objective function O (29), we compute the derivatives of
(29) w.r.t. w and v as follows:

dO

d [w>,v>]>
=

1

D + 1

D+1∑
t=1

(
dO

dPx
(1)
St

dPx
(1)
St

d [w>,v>]>

)
(30)

where

dO

dPx
(1)
t

=

l2∑
j=1

ρSt,jK
(
Px

(1)
St
,x

(2)
j

) 1

σ2

(
x
(2)
j −Px

(1)
St

)>
(31)

∂Px
(1)
St

∂w
=
∂ exp(Λ)P0x

(1)
St

∂w
=
[
J(P0x

(1)
St

),03×1

]>
(32)

∂Px
(1)
St

∂v
=
∂ exp(Λ)P0x

(1)
t

∂v
= [I3,03×1]> (33)

IV. EXPERIMENTS

A. Implementation details

Since the computed eigenvectors (14) are of no direction,
there could be 2D possible alignments for D eigenvectors
in feature space. Fortunately, according to experiment, we
found that D = 3 is actually enough to make sufficiently
good alignment. Therefore, one has to compute all 8 pos-
sible alignments in feature space and project them back to
R3, then the final optimal one is picked by checking the
accumulated distances between every pair of corresponding
points in two clouds, and we use shortest distance as the
correspondence here. An outline of the proposed algorithm

is given in Algorithm 1. In practice, to speed up the
convergence of the algorithm, some sophisticated stepsize
tricks can also be added. In addition, we also find that in
Algorithm 1 computing eigenvectors (line 2) is the most
time-consuming part, so in our implementation, fast-PCA
[10] is employed to accelerate the computation.

Algorithm 1 3D Point Cloud Registration

Input: M1 = {x(1)
i }

l1
i=1 and M2 = {x(2)

j }
l2
j=1, x ∈ R3

Output: the optimal motion estimation P∗ which can
align M1 with M2

1: construct two matrices K̃1 and K̃2 (13)
2: compute eigenvalue-eigenvector pairs for K̃1 and K̃2:
{αm,k, ηm,k} m = 1, 2

3: normalize eigenvectors (12)
4: select D = 3 eigenvectors with largest eigenvalues for

both M1 and M2

5: randomly select a subset of N ≥ D + 1 size from M1

6: set initial P0 randomly
7: compute Θα (15) with the subset
8: while 1 do
9: compute the gradient ∇w and ∇w with current Pn

(30–33)
10: if both ∇w and ∇v are small enough then
11: return Pn

12: end if
13: map the update of w and v back to SE(3) (26)
14: set n← n+ 1
15: end while
16: repeat line 7–15 2D times with different sign com-

binations of eigenvectors, and select the final optimal
P∗ which yields the minimal accumulated distances
between every pair of closest points in PnM1 and M2

B. Qualitative Evaluation

For the sake of visualization, we first test our algorithm
on some toy point clouds to see how it work qualitatively.
In Figure 6, some test examples on handwritten letters
are displayed. It can be seen that in rather challenging
circumstances, i.e. (1) the motion between two point clouds
is arbitrarily large (Figure 6(a)), (2) a large portion of
outliers are added (Figure 6(b)), (3) nonrigid transformation
is applied (Figure 6(c)), the proposed algorithm can still
discover roughly correct corresponding points 2 between two
point clouds (green lines in Figure 6) and make qualitatively
acceptable alignment.

C. Quantitative Evaluation

To obtain a more precise and convincing evaluation of
the the proposed algorithm, KIT database [11] is used for

2the correspondence for point x(1)
t is determined by finding the index

j∗ = arg maxj∈[1,l2] ρtj
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Figure 6. Test of the proposed algorithm in typical challenging circumstances for registration: (a) large motion; (b) outliers; (c) nonrigid transformation

Figure 7. Some test results on KIT 3D object database

more intensive test (some test results can be seen in Figure
7). In addition, for quantitative comparison, ICP method,
Gausssian Mixture(GM) and SoftAssign 3 are implemented
as well. To ensure fairness, the same SE(3) on-manifold
optimization strategy is employed for their corresponding
objective functions. Since the objects in KIT database is in
triangulated mesh format, point clouds are generated by first
sampling a triangle with the probability proportional to its
area and then uniformly sampling a point from the selected
triangle.

First, we test the robustness of four algorithms on different
scales of motions. In our experiment, for motion scale i, the
rotation angles of yaw, pitch and roll are i × [30◦, 5◦, 5◦] ,
and translations are i× [Sx, Sy, Sz], where [Sx, Sy, Sz] are
standard deviations of point clouds in three axes. Different
motions are applied to the point cloud of each object (points
cloud is sampled with size 1000) to generate a target point
cloud to align with. Since we know the correspondence
between the original and target point clouds, the error
for each registration is computed as the average distance
between every pair of corresponding points in two point

3the comparison in [12] has reported that SoftAssign and EM-ICP
perform similarly, so we are not going to include EM-ICP in our experiment

(a) (b)

Figure 8. Test of four registration algorithm on (a) different scales of
motions; (b) different portion of outliers added.

clouds. The test result is plotted in Figure 8(a). We can
see that four algorithms can work similarly well for small
motions (scale i = 1). However, as i increases, the accuracy
of ICP, GM and SoftAssign decrease, although GM and
SoftAssign are much more robust than ICP for intermediate
motions (scale i = [2, 3]). Our method, by contrast, performs
consistently well for all scales of motions. A test example
is displayed in Figure 9(a), from which we can see that the
instability of ICP, GM and SoftAssign stems from the fact
that they are likely to to stuck into local optimum when the
motion is large (although the local optimum can be avoided
by setting up many intial poses, it would take more time to
guarantee that the global optimum is found).

Secondly, we test the robustness of four algorithms by
adding different portion (the percentage of point cloud size)
of outliers which are randomly sampled within the space
around objects. The generated outliers are concatenated into
the original point clouds, so the correspondence is still
available and the registration error is computed in the same
way as in the motion experiment. To avoid the effect of
large motion, a relatively small motion (motion scale i = 1)
is applied to all point clouds. The test result is plotted in
Figure 8(b). We can see that SoftAssign is most stable for
the case in which outliers are presented, GM and our method
are slightly worse, and ICP is very sensitive to outlier even
when the portion is small. A test example is displayed in
Figure 9(b), from which we can see that except ICP, the
result of other three algorithms are acceptable.

Last but never least, efficiency is a significant strength
of our method, which enables it can be used for real



(a) (b)

Figure 9. Comparison of four registration algorithms: (a) motion scale i = 5; (b) outlier portion= 0.8.

100 200 500 1000 2000
Our method 1.172 1.489 2.162 5.126 21.165

ICP [1] 0.012 0.023 0.051 0.154 0.469
GaussianMixtures [5] 1.859 3.998 15.245 43.570 172.4

SoftAssign [3] 2.059 4.801 83.925 592.1 3812

Table I
AVERAGE EXECUTION TIME (SECONDS)

time applications. As we can see in Algorithm 1, after
computing eigenvectors for kernel matrices, the complexity
of computing optimal motion is linear to the size of points
n. Since the complexity of fast PCA is O(n log n) [10],
the overall complexity of Algorithm 1 is O(n log n). To
compare the efficiency, all four algorithms are implemented
in Matlab and run on the same hardware platform (usual i7
intel core laptop). Point clouds of all objects are generated
with 5 different sizes (100, 200, 500, 1000, 2000), on which
four algorithms are tested respectively. For each point cloud,
a randomly generated motion is applied and random portion
of outliers are added (to get an approximate average). Note
that in this experiment we are only concerned about the
running time, so the algorithms will stop when they converge
even if the registration is bad. The average execution time
(in seconds) of four algorithms on five set of point clouds
are presented in Table I. We can see that the complexity of
our algorithm is the same as ICP O(n log n), and it is much
faster than SoftAssign and Gausssian Mixtures(GM) with
complexity O(n2) (however, SoftAssign is usually more
expensive than GM because it needs to iteratively update
correspondence matrix).

CONCLUSION

We introduced a novel point cloud registration algorithm
based on kernel-induced feature maps, kernel PCA and
SE(3) on-manifold optimization. The framework is theoret-
ically elegant, and exhibits robustness and accuracy in fairly
challenging circumstances. It is quite general and flexible
to be extended to different dimensions and intra-category
instances alignment . Remarkably, it outperforms most other
methods in terms of efficiency.
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