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Abstract. This paper presents a novel part-based geometry model for
3D object classes based on latent Dirichlet allocation (LDA). With all
object instances of the same category aligned to a canonical pose, the
bounding box is discretized to form a 3D space dictionary for LDA.
To enhance the spatial coherence of each part during model learning,
we extend LDA by strategically constructing a Markov random field
(MRF) on the part labels, and adding an extra spatial parameter for each
part. We refer to the improved model as spatial latent Dirichlet Markov
random fields (SLDMRF). The experimental results demonstrate that
SLDMRF exhibits superior semantic interpretation and discriminative
ability in model classification to LDA and other related models.

1 Introduction

During the past decades, computer vision has made remarkable progress in vi-
sual object understanding, e.g. classification, pose estimation and segmentation,
etc. However, most previous study of object modeling is based on 2D images,
in which appearance is the main and only information source for various tasks,
so most attention is focused on increasing the robustness of algorithms to light-
ing changes, intra-class appearance variation and viewpoint variation [4]. Mean-
while, 3D geometry properties of objects have been rarely exploited and used
to increase the expressiveness of object models. Recently, pioneering work [7,13]
has attempted to add 3D geometric information to object models, demonstrat-
ing that the accuracy and robustness of such algorithms can be enhanced with
extra 3D geometry clues. However, there still exists an obvious gap between
2D appearance modeling and 3D geometry modeling with respect to their in-
terpretation and representation abilities, and it has been advocated [7,13] that
robust 3D geometry modeling is highly desirable. Motived by this gap and desire,
this paper puts forward a novel 3D object class geometry model in the light of
state-of-the-art techniques developed in machine learning and computer graph-
ics. Part-based models have displayed merits in 2D appearance modeling [4] for
handling partial occlusion, our 3D geometry model is likewise part-based and
inherits these strengths. The training data of our algorithm are collections of 3D
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Fig. 1. Different object instances of the same class should share similar 3D structure of
composing parts, although their parts can slightly vary from one instance to another.

models of different instances which belong to the same category (Figure 1). The
basic underlying principle of our modeling is the concept that different object
instances of the same class should share similar 3D structure of composing parts,
although their parts can slightly vary from one instance to another. For example,
all bicycles are composed of a frame and two wheels, and the geometric relation
between these three parts are similar across different instances (Figure 1). In this
paper, 3D objects are represented by point cloud data (PCD), which is a gen-
eral and popular representation of 3D shapes and can easily be converted from
other data formats (e.g. meshes). First, for each class, different PCDs of object
instances are aligned using point cloud registration methods. Secondly, the main
learning step is inspired by latent Dirichlet allocation (LDA) [1] and computer
graphics [5]. LDA is a state-of-the-art machine learning tool for discovering la-
tent topics within document collections. Here we apply LDA by considering each
object point cloud as a document, and each part as a topic. With the bounding
box volume discretized into a 3D grid dictionary, the part can be mined out
as a multinomial distribution over the discrete 3D space, and each object is a
multinomial distribution over parts. However, standard LDA ignores the spa-
tial coherence, which is of great importance in our task but not generally taken
into account in natural language applications. Based on discoveries in computer
graphics [5] and other work on LDA [8,11], we develop a spatial latent Dirich-
let Markov random field (SLDMRF) model with extra undirected links between
topic labels and spatial parameters. The proposed SLDMRF can co-segment all
point clouds simultaneously under a prior of coherence of correspondence, spatial
continuity and spatial smoothness. According to our empirical results (section
3), compared to standard LDA and other related models, SLDMRF can achieve
much more consistent and semantically meaningful segmentations of 3D point
clouds, and the learned class geometry models display better discriminative abil-
ity in classification.

1.1 Related work

The starting point of 3D geometry modeling in visual object understanding is the
difficulty in dealing with appearance variation due to different viewpoints. There
have been several attempts to embed 3D geometric information into object mod-
els [2,3,7,13], and all of them have reported improvement in accuracy and robust-
ness, although different 3D geometry information are exploited and modelled in
their work. In [2] 3D object shapes are probabilistically modelled as continuous
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distributions in R3 with a kernel density estimator (KDE). However, that work
explicitly addresses neither category-level tasks nor semantic segmentation. Ob-
jects are considered as Gausssaian mixtures and expectation-maximization (EM)
is applied to estimate corresponding Gaussian parameters and weights. One ob-
servation of Gaussian-mixture-based segmentation is that discovered parts rarely
display good semantic interpretability since usually the part geometry is too com-
plex to be modelled as a Gaussian (section 3.1). Other work attempts to improve
the expressiveness of object geometry models in different ways. For example, De-
try et al. [3] represent objects as hierarchically-organized spatial distributions of
distinct feature types, but did not seek to produce semantically-meaningful seg-
mentations. Other models [7,13] extract 3D geometry information at the class
level. However, in [7] the segmentation is again based on Gaussian mixtures
and EM, and most [13] do not model object classes in a part-based manner
to avoid segmentation. Meanwhile, another thread of segmentation-based visual
modeling is the application of Latent Dirichlet allocation (LDA) in computer
vision [10,11,8]. LDA was originally developed to discover hidden topics in text
corpora by clustering words into different topics [1]. Standard LDA, however,
ignores spatial coherence, which is problematic in vision applications. Therefore,
spatial LDA (SLDA) [11] and Latent Dirichlet Markov random fields (LDMRF)
[8] were put forward to produce better, spatially-coherent segmentations. In
addition, with higher emphasis of the smoothness of parts and consistent cor-
respondences, 3D segmentation in computer graphics [5] constructs graphs with
neighboring intra-links and correspondence inter-links among objects, and min-
cut is used on graphs for segmentation.

The main contribution of this paper is an extension of LDA for 3D object
class geometry modeling, which we refer to as Spatial Latent Dirichlet Markov
Random Fields(SLDMRF). The proposed model is built with inspiration from
recent advances in different fields [1,11,8,5], and it yields superior interpretability
and representational capability in modeling 3D object class geometry.

2 3D Object Class Geometry Modeling

With the point cloud representations of 3D object shapes, the alignment of
different instances of the same class is achieved with point cloud registration
algorithms. While any suitable registration procedure can be used, we adopted a
novel method [12] since it is very efficient and robust to non-rigid transformation,
which suits the case of intra-category shape variation. An example of aligning
dogs is displayed in Figure 2.

2.1 Latent Dirichlet Allocation

LDA [1] is a generative model that utilizes the information of co-occurring words
to find out hidden topics shared by documents. In LDA, each document is con-
sidered as a finite mixture of topics; each topic is a finite mixture of words. The
graphical model of LDA is shown in Figure 3(a). The generative process of LDA
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Fig. 2. Alignment of different dog instances by point cloud registration [12]. Left:
original 3D shapes of different dog instances; middle: point clouds generated from the
shapes on the left; right: three views (top, profile, front) of the point clouds (middle)
after alignment.
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Fig. 3. (a) Graphical model of LDA; (b) Application of LDA to model 3D object cate-
gories; (c) Construction of 3D dictionary by discretizing the 3D space of the bounding
box.

is as follows: (1) for each topic k ∈ [1,K], a multinomial parameter θk over
words is sampled from Dirichlet prior β; (2) for each document m ∈ [1,M ],
a multinomial parameter πm over K topics is sampled from Dirichlet prior

α; (3) for each word w
(n)
m , n ∈ [1, Nm] in document m, a topic label z

(n)
m is

first sampled from multinomial distribution z
(n)
m ∼ Multinomial(πm), then the

word w
(n)
m is sampled from the multinomial distribution parametrized with θ

z
(n)
m

,

w
(n)
m ∼ Multinomial(θ

z
(n)
m

). Hyperparameters α and β define the Dirichlet priors

governing the parameters of multinomial distributions. Usually α and β are set
in a symmetric manner and using low values [6]. In [10], LDA is applied on a
collection of images. Each image is considered as a document, objects correspond
to topics, and visual words are generated using vector quantization on extracted
features. In our case, however, LDA is utilized for 3D object class geometry
modeling with objects of the same category as documents, and parts shared by
different instances correspond to topics (Figure 3(b)).

3D Dictionary. In our task, LDA is expected to work effectively under the
assumption that different objects of the same category should share very similar
structure. Therefore, when LDA is applied on each collection of categorical object
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point clouds, the co-occurring patterns are the 3D space occupied by 3D points.
In each collection, all instances can be aligned to a canonical pose, based on which
the 3D space of the bounding box is discretized into a grid, where each block
represents a 3D word. Therefore, when transferring point clouds to corresponding
documents, word wk will replace 3D point xi if xi lies within block wk. In this
way, the discovered part actually is a distribution over 3D space, and a category
is a mixture of these distributions. The concept of dictionary discretization is
illustrated in Figure 3(c).

For label inference and parameters learning in LDA, a collapsed Gibbs sam-
pling [6] can be formulated as

qLDA(z(n)
m = k) ∝

N
(k)

−mn,w
(n)
m

+ β
w

(n)
m∑W

w (N
(k)
−mn,w + βw)

· (N(m)
−mn,k + αk) (1)

where N
(k)
−mn,w is the number of words in the corpus with value w assigned to

topic k excluding the nth word in document m, and N
(m)
−mn,k is the number of

words in document m assigned to topic k excluding the nth word in document
m. From (1), it can be seen that LDA prefers to cluster together those words
that often co-occur in the same document. Therefore, simply applying LDA on
the 3D dictionary, unfortunately, is not expected to work because it misses a lot
of spatial and correspondence information, which is not meaningful in the text
processing case: (1) Spatial coherence is an important issue when LDA is applied
in vision applications [11,8]. For example, in all point clouds of dogs, 3D words
located in the hip and in the head will always co-occur. So by using (1), the hip
and head of dogs can be clustered into a part, which is a spatially (of course also
semantically) unreasonable segmentation. (2) Correspondence coherence is like-
wise important. LDA can find synonyms by finding their co-occurring patterns
in documents. However, the “synonyms” in the 3D dictionary are identified by
spatial correspondence. For example, in Figure 2, the legs of different dogs can
rarely match exactly due to different species or standing poses. However, since
all legs are close and correspond to each other, they should be clustered into the
same part.

2.2 Spatial latent Dirichlet Markov random field

To enhance the spatial coherence, in Spatial LDA (SLDA) [11] 2D images are de-
composed into small overlapping regions, which are used as documents to ensure
that the pixels belonging to one part should be close to each other. Latent Dirich-
let Markov random fields (LDMRF) [8], on the other hand, construct Markov
random fields on the part label variables to enhance the local spatial coherence.
However, both of them ignore the correspondences across the segmentations of
different instances. Inspired by these improved versions of LDA and consistent
co-segmentation in computer graphics [5], we put forward a novel spatial latent
Dirichlet Markov random field (SLDMRF) that inherits virtues from both SLDA
and LDMRF. However, rather than being a simple combination of SLDA and
LDMRF, the proposed SLDMRF goes beyond them in several ways.
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(a) Left: for each word (red block),
there are two types of connec-
tions in SLDMRF: neighboring spa-
tial connections (blue blocks) and
correspondence connections (green
block); right: the normal vector of
each word in the document is es-
timated by using the points lying
within the word.
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(b) Graphical model of SLDMRF: compared
to the standard LDA (Figure 3(a)), there are
extra directed links between topic labels and
spatial Gaussian parameters ck.

Fig. 4. SLDMRF modeling

First, instead of going through all small overlapping sub-volumes as SLDA
does, we explicitly model the positions of all parts by parameters ck such that 3D
words that share the same label k are likely to be close to ck. Second, similarly
to LDMRF, SLDMRF constructs a Markov random field on the neighboring
label variables. However, different from LDMRF, we assign different potential
functions based on the prior that the segmentation boundaries should be located
at the point where abrupt curvature changes take place. The potential function
is defined as

g(zi, zj) = δ(zi, zj) exp(|〈oi, oj〉|) (2)

where δ(zi, zj) equals 1 when zi and zj are neighbors, and 0 otherwise (Fig-
ure 4(a)), and oi, oj are the normal vectors estimated by using the points lying
within word i and j respectively (Figure 4(a)). Last but not least, SLDMRF en-
hance the correspondences of segmentation across different instances. Inspired
by the co-segmentation used in [5], we construct inter-connections between cor-
responding parts across different objects, and correspondences are matched by
finding the nearest neighbors in other objects after alignment. In this way the
segmentation can be more consistent within a category. The potential function

g(z
(i)
m , z

(j)
n ) for correspondence connections is set in the same way as spatial con-

nections (2); δ(z
(i)
m , z

(j)
n ) is 1 if z

(i)
m and z

(j)
n are nearest neighbours of each other,

and 0 otherwise. Because the part weights are already taken into account by
LDA (parameter π), the labels within the Markov random fields are modeled
as:

p(Z) ∝ exp
(∑

(i,j) g(zi, zj)
)

(3)

The graphical model of SLDMRF is presented in Figure 4(b). Hyperpa-
rameters µ0 and V0 (similar to α, β) specify the Gaussian prior of part po-
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sitions ck ∼ N (·;µ0,V0). Given the part position ck, the label is sampled as
zi ∼ N (ŵi; ck,Λ), where ŵi denotes the 3D coordinates of word wi. Since we do
not expect the label distribution to be truly Gaussian, Λ is set relatively large.

The joint probability of 3D words in SLDMRF p({w(n)
m }M,Nm

m=1,n=1, |α, β) is:

1

Q

M∏
m=1

Nm∏
n=1

(∫
πm

∫
θ
z
(n)
m

∫
c
z
(n)
m

p(πm|α)

K∑
z
(n)
m =1

(
p(z(n)

m |πm)p(w(n)
m |θz

(n)
m

)

N (w(n)
m ; c

z
(n)
m
,Λ)N (c

z
(n)
m

;µ0,V0)
)
×

∏
x,y∈z̃(n)

m

√
exp(g(z

(n)
m , z

(y)
x ))

) (4)

where x, y ∈ z̃
(n)
m denotes the set of all word labels (the yth word in the xth

document) connected with z
(n)
m , i.e. δ(z

(n)
m , z

(y)
x ) = 1, and Q is the normalization

term induced by Markov random fields.

2.3 Inference and learning

Similar to the inference and learning in LDA, based on (4), we can develop
a collapsed Gibbs sampler by integrating out πm,θz(n)

m
, c

z
(n)
m

in SLMRF. The

sampler can be more easily interpreted as a “combined” sampler by using clues
from LDA, MRF and Guassian mixtures:

q∗(z(n)
m = k) ∝ qLDA(z(n)

m = k) · qM (z(n)
m = k) · qc(z(n)

m = k) (5)

where qLDA(z
(n)
m = k) is the collapsed Gibbs sampler of LDA (1),

qM (z(n)
m = k) ∝

exp
(∑

(zj ,z
(n)
m )

g(zj , z
(n)
m = k)

)
∑

h exp
(∑

(zj ,z
(n)
m )

g(zj , z
(n)
m = h)

) (6)

is the Gibbs sampler based on the Markov random field, and

qc(z
(n)
m = k) ∝

N (ŵ
(n)
m ;µ

(k)
l ,Λ

(k)
l )∑

hN (ŵ
(n)
m ;µ

(h)
l ,Λ

(h)
l )

(7)

is a collapsed Gibbs sampler of Gaussian mixtures, with

Λ
(k)
l

−1
= Λ−1

0 + lΛ−1 µ
(k)
l = Λ

(k)
l

2

(
µ0

Λ2
0

+
lŵ(k)

Λ2

)
(8)

where l is the number of words which are labeled with k, and ŵ(k) is the mean
of 3D coordinates of words which are assigned to part k until the current iter-
ation. Similar to [6], parameters {πm}Mm=1, {θk}Kk=1 can be estimated after the
convergence of Gibbs sampling:

π(k)
m =

N
(m)
k + αk∑K

k=1(N
(m)
k + αk)

θ
(w)
k =

N
(k)
w + βw∑W

w (Nk
w + βw)

(9)

Since hyperparameter α, in our case, is categorical part weight, we estimate it by
simply compute the average of πm: α = 1

M

∑M
m=1 πm. In addition, parameters

{ck}Kk=1 are read out as {µk
l }Kk=1 (8).
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3 Experiments

To evaluate the proposed model, 5 object classes (cars, bikes, dogs, motorcycles,
airplanes) from the Princeton shape benchmark (PSB) [9] database are used.
Since 3D shapes in the PSB are represented as triangulated meshes, we convert
them to point clouds by uniformly sampling points within triangles.

3.1 3D Object class geometry modeling

For comparison, LDA [1], LDMRF [8] and Gaussian Mixtures (GM) models are
tested on the same data (aligned point clouds of categorical instances). Since
LDMRF requires manual interference (semi-supervision), to avoid human bias
during comparison, here we construct the same Markov random fields for both
LDMRF and SLDMRF so that LDMRF can also work in an unsupervised man-
ner. All four models are implemented with Gibbs sampling for label inference
and learning. To ensure fairness, the same part number and iteration number
(200) is applied. A test example of motorcycle modeling is presented in Figure
5. LDA does not find consistent and meaningful parts because of the intra-class
variation (each object is labeled as a part since LDA only focuses on co-occurring
patterns). LDMRF, on the other hand, discovers some locally continuous and
consistent segments on different objects. However, the global spatial coherence of
parts is poor; parts are shattered. GM establishes more globally obvious segmen-
tation pattern by finding more consistent and meaningful parts. Nevertheless,
GM ignores local spatial coherence, so parts are not well segmented; they tend
to be of blob shape and to overlap each other. By contrast, SLDMRF produces
best convincing segmentations in terms of consistence, local and global spatial
coherence and semantic meaning. The SLDMRF modeling results of other four
object classes are illustrated in Figure 6.

3.2 Geometry model classification

To illustrate the parts learned by SLDMRF is more accurate, and thus more
discriminative, we conduct quantitative comparisons on classification task. Since
LDA and LDMRF are far from being qualified for practical part-based modeling,
here we are only concerned with the comparison between GM and SLDMRF. 3D
shapes of 5 object classes are divided into training (70%) and test sets (30%).
The model learning is conducted in the same way as in section 3.1. Although
Markov random fields and spatial parameters greatly assists in segmentation
and model learning of SLDMRF, they are not used in the final category mod-
els. A learned bicycle model is shown in Figure 6(e). It can be seen that the
part position information and neighboring correlation are already encoded in
the categorical part parameter θ. Therefore, for the sake of simplicity and com-
putation feasibility, we only use learned LDA as our 3D object category models
for classification. To test an object M∗, it is first aligned to the canonical poses
of different class models. In SLDMRF case, the likelihood that M∗ belongs to a
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Fig. 5. Comparison of segmentation by using LDA, LDMRF, GM and SLDMRF,
SLDMRF qualitatively yields more reasonable segmentations than the others.

(a) (b) (c) (d) (e)

Fig. 6. SLDMRF modeling of dogs (a), cars (b), airplanes (c) and bikes (d); (e): the
learned part parameters θk of bikes.

class x ∈ {cars, bikes, dogs, motorcycles, airplanes} is computed as:

p(M∗|Mx) =

|M∗|∏
i=1

{∑
k

∫
π

p(wi|θk)p(k|π)p(π|α)

}
(10)

where |M∗| is the number of points in object M∗. By contrast, in the GM case:

p(M∗|Mx) =

|M∗|∏
i=1

{∑
k

N (wi;θk)πk

}
(11)

Since no other prior knowledge is given, the classification can be done in a
maximum-likelihood fashion. A global model learned with one single multino-
mial distribution on 3D dictionary is also provided as baseline for comparison.
The classification performances of GM, SLDMRF and global model are evalu-
ated using confusion matrices. The comparison in in Figure 7 demonstrates that
SLDMRF is superior to GM with respect to discriminative ability in classifica-
tion.
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(a) (b) (c)

Fig. 7. The classification confusion matrcices of 5 object classes with SLDMRF (a),
GM (b) and global model (c).

4 Conclusion and Discussion

We improved LDA model for geometry modeling with better semantic interpre-
tation and promising discriminative capabilities. Meanwhile, learning and appli-
cation of the model require good initial alignment, which is difficult for noisy
and partial occluded 3D point cloud in practice. So a promising future work is to
cooperate 3D geometry model with 2D image models to describe both structure
and appearance, which thus enhance model’s expressiveness and practical value.
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