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Learning discrete Markov random fields (MRFs) has been an
important yet challenging machine learning task. In general,
learning Markov random fields (MRF) is intractable due to the
presence of partition function. Persistent contrastive divergence
(PCD), known as a state-of-the-art learning algorithm for Markov
random fields (MRFs), is a Robbins-Monro’s stochastic approx-
imation procedure (SAP) with Gibbs sampling as transitions
(Salakhutdinov, 2010). We conduct an empirical study on a
SAP with an alternative transition: binary Hamiltonian Monte
Carlo. Ususally sampling-based method (e.g. Markov chain
Monte Carlo) is employed for approximation. However, when
the disibution exhibts multiple modes, the standard Metropplois
algorithm will lead to low mxing rate of Markov chains. Hamil-
tonian Monte Carlo (HMC) is a Metropolis algorithm with a pro-
posal distribution analogous to Hamiltonian dynamics. Compared
to random walk in the standard Metropolis algorithm, HMC can
propose a distant jump while still preserving a high acceptance
rate. Suppose that we are interested in sampling from p(x) (where
x ∈ RD). An auxiliary variable q ∈ RD with q ∼ N (q;0,M)
is introduced (usually M = c · ID). A Hamiltonian function can
be constructed as:

H(x,q) = U(x) +K(q) (1)

where U(x), K(q) are negative logarithms of p(x) and p(q).
The changes of x and q over time ν are:

ẋ(ν) =
∂H
∂q(ν)

= M−1q(ν) q̇(ν) = − ∂H
∂x(ν)

= −dU(x)

dx(ν)
(2)

HMC can yield more effective sampling by making use of gradi-
ent information of target distribution’s density function. We can
also see, from (2), that HMC can only be applied on continuous
distributions of which the partial derivatives of the log density
function can be computed. Therefore, applying HMC to sample
from discrete MRFs is not straightforward. However, the ran-
dom variables are discrete in many applications (e.g. computer
vision, natural language processing), Luckily, Zhang et al. (2012)
pointed out that all discrete MRFs can be generally converted to
Boltzmann machines (BMs):

p(x;θ) =
exp (−E(x;θ))

Z(θ)
, E(x;θ) = −

∑
i<j

xixjWij (3)

where x ∈ {−1,+1}D , θ = {Wij}. In addition, Pakman and
Paninski (2013) developed an extension of HMC for binary dis-
tribution to learn Bayesian regression with spike-and-slab prior.
Here we attempt to apply this extended HMC, which we refer to
as binary HMC (bHMC), for our purpose of learning Boltzmann
machines (so also discrete MRFs). Assume that we are interested
in sampling from a Boltzmann machine p(x ∈ {−1,+1}D). An

auxiliary, continuous variable y ∈ RD can be added with its con-
ditional probability on x as a truncated Gaussian:

p(y|x) =
{
c · exp(−y>y

2
) ∀d ∈ [1, D], sign(yd) = xd

0 otherwise
(4)

Hence, instead of sampling x directly, we can sample y first and
take their signs as our desired samples. By making use of orthant
consistency constraint in (4), we can have:

p(y) =
∑
x

p(y|x)p(x;θ) = p(y|x)p(x;θ) (5)

Since y is continuous, we can employ HMC to sample them from
p(y). By substituting (5) into (1) and (2), we can have:

yd(ν) = ud sin(ωd + ν) qd(ν) = ud cos(ωd + ν) (6)

where ud =
√
yd(0)2 + qd(0)2, and ωd = tan−1

(
yd(0)
qd(0)

)
.

In addition, since (6) keeps Hamiltonian function (1) invariant,
change of y,q according to (6) are always accepted. It can be
seen in (6) that (qd, yd) actually moves counterclockwisely along
a circle with radius ud. However, one issue arising from disconti-
nuity of p(y|x) is that when yd hits 0 at time ν∗, whether it will
be reflected from the yd = 0 or cross it depends on the sign of:

q2d(ν
−
∗ )

2
− (E(−xd,x¬d;θ)− E(xd,x¬d;θ)) (7)

where qd(ν−∗ ) is the qd immediately before time ν∗, so it equlals
to ud. (7) can be considered as a pseudo Gibbs sampling. When
E(−xd,x¬d;θ)−E(xd,x¬d;θ) > 0, the probability of switch-
ing sign of xd is lower than not. According to (7), as long as
the energy raise is smaller than a threshold u2

d/2, the switch
still can take place. In addition, with different initializations
of (yd(0), qd(0)), different yd will hit 0 at different time νd∗ ,
so bHMC is a randomly scheduled sampling. Finally, since
yd(Nπ) = y(0) if yd always gets reflected, traveling time is
recommended as T = (N + η)π so as to avoid degeneracy of
samples (η ∈ (0, 1)). In conclusion, bHMC somehow resem-
bles Gibbs sampling but with a different acceptance criterion. To
verify its practical applicabilities, we compared it against Gibbs
sampling in SAP (with different c,N, η) on training a toy Bolt-
mann machine (D = 10), the results are presented as follows.
Our empirical results suggest that the SAP with bHMC is inferior
to the one with Gibbs sampling for learning discrete MRFs.
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3−Step Gibbs Sampling
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