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Abstract. This paper studies how joint training of multiple support
vector machines (SVMs) can improve the effectiveness and efficiency of au-
tomatic image annotation. We cast image annotation as an output-related
multi-task learning framework, with the prediction of each tag’s presence
as one individual task. Evidently, these tasks are related via correlations
between tags. The proposed joint learning framework, which we call joint
SVM, can encode the correlation between tags by defining appropriate ker-
nel functions on the outputs. Another practical merit of the joint SVM
is that it shares the same computational complexity as one single conven-
tional SVM, although multiple tasks are solved simultaneously. According
to our empirical results on an image-annotation benchmark database, our
joint training strategy of SVMs can yield substantial improvements, in
terms of both accuracy and efficiency, over training them independently.
In particular, it outperforms many other state-of-the-art algorithms.

1 Introduction
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Automatic image annotation is an important yet challenging machine learn-
ing task. The importance is based on the fact that the number of images grows
exponentially on the internet, and most of them have no link to semantic tags.
Therefore, automatic annotation is of great significance to generate meaningful
metadata for image retrieval from textual queries. The challenges are usually
considered from two perspectives: first, to directly apply mature binary classi-
fication methods, e.g. Support Vector Machines (SVMs), assumes the indepen-
dence of the labels; secondly, the image data on internet is usually presented in
large volumes, so the desired learning method should be capable of working on
large-scale data with high learning and prediction efficiency. One straightfor-
ward yet naive strategy is to consider each tag’s presence as a binary classifica-
tion problem. Then, multiple SVMs can be trained independently for different
tags. This method, however, will suffer from high computational complexity in
both training and prediction phases when the number of tags is relatively large.
Independently learning multiple SVMs is not expected to work well because it
ignores the correlation between the presences of tags, which is a phenomenal
characteristic of image annotation tasks (e.g., sky and cloud often co-occur). In
this paper, we propose to interpret image annotation as the learning of mul-
tiple related tasks. However, different from most existing multi-task learning
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frameworks [1] in which tasks are related through their inputs, our joint learning
method focuses on the relation between outputs. Our strategy is motivated by
two intuitions. First, by connecting multiple SVM classifiers together, the cor-
relation between their outputs (the presences of tags), presumably, can be more
easily encoded. Secondly, if the outputs of multiple SVMs can be merged into
a single vector entity, the optimization problem can be established and solved
over vectors, greatly reducing the computational complexity. These two objec-
tives, surprisingly, can be easily achieved by summing up the objectives and
constraints in different SVMs, plus an appropriately designed kernel on outputs.

2 Joint Learning of Multiple SVMs

2.1 Support Vector Machines and Input Kernels

In the past two decades, support vector machines (SVMs) have seen remarkable
successes in various domains. The achievements of SVMs mainly stems from
its two advantageous components: maximum margins and input kernels. The
maximum-margin principle is a reflection of statistical learning theory [2] on
linear binary classification. Kernels provide powerful mechanisms enabling the
linear classifier to separate highly non-linear data. The critical observation of
kernel methods is that a kernel function can be defined on a pair of data instances
to implicitly map them to a reproducing kernel Hilbert space (RKHS):

Kφ(x(i),x(j)) = 〈φ(x(i)), φ(x(j))〉 (1)

where x(i),x(j) ∈ Rd are ith and jth input training instances, φ is the feature
map induced by kernel function Kφ, and φ(x(i)) is the representation of x(i) in
the RKHS Hφ. Most popularly, a Gaussian (or radial basis function) kernel

Kφ(x(i),x(j)) = exp

(
−‖x(i) − x(j)‖2

2σ2

)
(2)

is employed because its corresponding RKHS is an unnormalized Gaussian den-
sity function

φ(x(i)) ∝ N (τ ;x(i), σ) (3)

which is of infinite dimension, and thus greatly improves the representational ca-
pability of input data. Given the training dataset {x(i) ∈ Rd, y(i) ∈ {+1,−1}}mi=1

of one binary classification problem, the primal form of training SVM is written

min 1
2 ||w||

2 + C
∑m
i=1 ξ

(i)

w.r.t. w ∈ RHφ×1, b ∈ R
s.t. y(i)

(
w>φ(x(i)) + b

)
≥ 1− ξ(i), ξ(i) ≥ 0, i ∈ {1, . . . ,m}

(4)

where w is a linear hyperplane in Hφ, b is bias term, ξ(i) are slack variables
for the tolerance of noise, and C is trade-off parameter between training error
and max-margin regularization. The computational advantage of kernels become



more obvious when the primal form of SVM (4) is reformulated to its dual form
by introducing Lagrange multipliers αi for each constraints:

max
∑m
i=1 αi −

1
2

∑m
i,j=1 αiαjy

(i)y(j)Kφ(x(i),x(j))

w.r.t. α1, α2, . . . , αm
s.t.

∑m
i=1 αiy

(i) = 0;∀i, 0 ≤ αi ≤ C
(5)

The dual representation of w is
∑m
i=1 αiy

(i)φ(x(i)), and thus the prediction of a
test instance x̂ is

ŷ = sgn
(
w>φ(x̂) + b

)
= sgn

(
m∑
i=1

αiy
(i)Kφ(x(i), x̂) + b

)
. (6)

It can be seen that the kernel function Kφ enables the learning of a infinite-
dimensional w without explicit computation in Hφ. (6) shows that the kernel
function yields a similarity measurement between two input instances.

2.2 Joint SVM

Automatic image annotation tasks seek to predict the presence of tags given
an input image. If we consider prediction of each tag’s occurrence as a binary
classification problem, we can enlist as many SVMs as the number of tags.
Similar to other multi-task learning frameworks [1, 3], we connect the learning
tasks of different SVMs by simply summing up their objectives and constraints
respectively in the primal form

max 1
2

∑T
t=1 ||wt||2 + C

∑T
t=1

∑m
i=1 ξ

(i)
t

w.r.t. w1,w2, . . . ,wT ∈ RHφ×1, b1, b2, . . . , bT ∈ R
s.t.

∑K
t=1 y

(i)
t

(
w>t φ(x(i)) + bt

)
≥ T −

∑T
k=1 ξ

(i)
t

(7)

where t indexes different tags or learning tasks, and T is the total number of tags.

By denoting y(i) = [y
(1)
1 , . . . , y

(i)
T ], b = [ b1T , . . . ,

bT
T ] and W = [

w>
1

T ; . . . ;
w>
T

T ]>, we
can rewrite (7) as a joint SVM:

min 1
2 ||W||

2
F + C

∑m
i=1 ξ̄

(i)

w.r.t. W ∈ RK×Hφ ,b ∈ RK
s.t.

〈
y(i),Wφ(x(i)) + b

〉
≥ 1− ξ̄(i), ξi ≥ 0, i ∈ {1, . . . ,m}

(8)

where ||W||F is the Frobenius norm of matrix W, and ξ̄(i) = 1
T

∑T
t=1 ξ

(i)
t .

One rationale of (7) is that within the joint form of objectives and constraints,
learning easy tasks can help the learning of challenging tasks. For example, if

training data (x(i,), y
(i)
p ) can be easily classified correctly in the pth task (i.e.,

y(i)(w>p x
(i) + b)/T > 1

T ), it can offer some ‘freedom’ to other challenging tasks

before violating constraint
〈
y(i),Wφ(x(i)) + b

〉
H ≥ 1. In addition, a key func-

tionality this joint form (8) can afford is that we can define kernel functions
on outputs y to improve their representational power (e.g. correlations). As-
sume the kernel function defined on outputs are Kψ(y(i),y(j)) (the design of



the output kernel will be explained later) and the corresponding feature map is
ψ : RK → Hψ, then (8) is modified to

min 1
2 ||W||

2
F + C

∑m
i=1 ξ̄

(i)

w.r.t. W ∈ RHψ×Hφ ,B ∈ RHψ×1
s.t.

〈
ψ(y(i)),Wφ(x(i)) + B

〉
≥ 1− ξ̄(i), ξi ≥ 0, i ∈ {1, . . . ,m}

(9)

Interestingly, although derived from a rather different starting point, our joint
SVM (9) is the same as Maximum Margin Regression (MMR) [4], wherein
the motivation is to seek a linear operator in arbitrary tensor product space
ψ(y(i)) ⊗ φ(x(i)). In addition, (9) is also related to structured-output learning
[5] by sharing the same objective, yet with different constraints. Basically, the
differences originate from two types of margins used in (9) and [5]. An empirical
comparison of these two methods on structured-output learning is in [6]. The
solution of the MMR stands close to the Minimum Description Length Principle,
see for example in [7], by providing a highly compressed description to complex
learning problems.

2.3 Output Kernels and Solutions

Similarly to a single conventional SVM, the joint SVM learning (9) can be con-
verted to its dual form

max
∑m
i=1 αi −

∑m
i,j=1 αiαjKψ(y(i),y(j))Kφ(x(i),x(j))

w.r.t α1, · · · , αm
s.t

∑m
i=1 αiψ(y(i)) = 0; ∀i, 0 ≤ αi ≤ C

(10)

with W =
∑m
i αiψ(y(i))φ(x(i))>. It can be seen, with kernel matrix on out-

puts pre-computed, that the computational complexity of joint learning (10) is
the same as the learning of one single SVM (5), which is a great advantage in
efficiency. In this paper, the Gaussian kernel function (2) is used on y, hence
ψ(y(i)) corresponds to an unnormalized density function (which is non-negative
everywhere), and the bias-induced constraint

∑m
i=1 αiψ(y(i)) = 0 will lead to a

trivial solution ∀i, αi = 0. Since the Gaussian kernel is translation invariant, the
bias in output space y has no effect, and we can ignore the bias B in (9) and its
corresponding constraint in (10). Therefore, given a test data x̂, the prediction
φ(ŷ) in Hψ is

ψ(ŷ) = Wφ(x̂) =

m∑
i=1

αiψ(y(i))Kφ(x(i), x̂). (11)

With identical scalar σ, the Gaussian kernel (2) on y can be decomposed into
independent Gaussian kernels on each element yt. To preserve the correlation
between every pair of tags, one simple remedy is to use a full covariance matrix
Σ. Here, we use a scaled empirical covariance from outputs in training data.
Another computational issue is that there is no direct way (say, by inverting
(11)) to map ψ(ŷ) back to ŷ. Therefore, instead of finding a closed form solution,



we can find the optimal solution ŷ∗, out of all possible y ∈ {+1,−1}T , such that
its projection in Hψ is closest to Wφ(x̂):

ŷ∗ = argmaxy∈{+1,−1}T 〈ψ(y),Wφ(x̂)〉
= argmaxy∈{+1,−1}T

∑m
i=1 αiKψ(y(i),y)Kφ(x(i), x̂)︸ ︷︷ ︸

βi

= argmaxy∈{+1,−1}T
∑m
i=1 αiβi exp

(
− 1

2 (y − y(i))>Σ−1(y − y(i))
)
(12)

In general, there is no closed-form solution to (12), so usually approximate dy-
namic programming (ADP) is applied in searching for the optimum ŷ∗. Here,
we employ a simpler strategy. Since the number of tags associated with one
image is relatively small, most of the y in {+1,−1}T space are bad solutions.
Therefore, when the training data size is large, the most likely solutions of (12),
presumably, are covered by the outputs in training data {y}mi=1. Consequently,
we can find the optimum ŷ∗ via

argmax
{y(j)}mj=1

m∑
i=1

αiβi exp

(
−1

2
(y(i) − y(j))>Σ−1(y(j) − y(i))

)
︸ ︷︷ ︸

γij

(13)

where {γij}mi,j=1 were already computed in the training phase, {αi}mi=1 are train-
ing results, and only the computation of {βi}mi=1 is needed during testing.

3 Experiment

In our experiment, we used the Corel5K benchmark dataset with image features
extracted as in [8]. The dataset contains 5,000 images of different scenarios and
objects, out of which 4500 images are used as training data and 500 images are
test data. In the database, there exist 260 tags, and on average each image is
annotated with 3.5 tags. For all images in the database, 15 different features [8]
were extracted.

In our experiment, we applied both a joint SVM and independent SVMs
for comparison. To ensure fairness, in the learning phase, the optimization
problems (5) and (10) were solved with the same coordinate descent method [9].
In addition, for both independent SVMs and the joint SVM, 500 instances of
training data were taken out as validation data to find the best parameter C.
In the testing phase, the performance was measured with precision, recall and
F1 score. To measure the efficiency, training and testing times were recorded as
well. We tried two learners on 15 different input visual features and found that
the global “RgbV3H1” feature yields best results for both cases. All experiments
were run on the same simulation and hardware conditions (Python, Intel Core
i7). The comparison of accuracy and efficiency between independent SVMs and
joint SVM is presented in Figure 1. While the learning and testing time of
independent SVMs scale with the number of tags, the computation time of the
joint SVM approximately equals a SVM for single-tag classification. At the same



Training Testing Testing Performance
Time (sec) Time (sec) Precision Recall F1

Independent SVMs 6285.11 317.20 0.1049 0.1225 0.1130
Joint SVM (Gaussian) 80.68 6.92 0.4078 0.3713 0.3887

Joint SVM (Polynomial) 76.48 9.11 0.3908 0.3565 0.3728
The best result in [10] − − 0.27 0.32 0.292

Fig. 1: Performance of different algorithms.

time, in terms of accuracy, the joint SVM worked much better than independent
SVMs. In addition, to test the higher-order dependency among tags, a 3rd-
degree polynomial kernel function was also applied. The performance of this
type kernel falls very close to that the Gaussian kernel provided. However, it is
worth noting that the proposed joint SVM, with either Gaussian or polynomial
kernel, outperforms many other state-of-the-art methods by a large margin (see
a survey in [10]) on the same database.

4 Conclusions

A novel joint SVM was presented for automatic image tagging. Its superiority
over conventional SVMs is obvious from our mathematical derivation and empir-
ical results. Although, in this preliminary work, simple individual features and
kernels already display good results, yet more improvements are expected when
more features and sophisticated kernels, e.g. multi-kernel learning, are employed,
which is a promising direction of future work.
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