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Abstract. This paper exploits how Bayesian learning of restricted Boltz-
mann machine (RBM) can discover more biologically-resembled early vi-
sual features. The study is mainly motivated by the sparsity and selectiv-
ity of visual neurons’ activations in V1 area. Most previous work of com-
putational modeling emphasize selectivity and sparsity independently,
which neglects the underlying connections between them. In this paper, a
prior on parameters is defined to simultaneously enhance these two prop-
erties, and a Bayesian learning framework of RBM is introduced to infer
the maximum posterior of the parameters. The proposed prior performs
as the lateral inhibition between neurons. According to our empirical
results, the visual features learned from the proposed Bayesian frame-
work yield better discriminative and generalization capability than the
ones learned with maximum likelihood, or other state-of-the-art training
strategies.

1 Introduction

Over the past decades, there have been a large volume of literature dedicated
to model the statistics of natural images in biologically plausible ways. Espe-
cially, the primary visual cortex (V1) has been intensively studied and various
computational models were proposed to reproduce its functionalities [10,6,12].
It has been well documented that mainly V1 simple cells perform an early stage
processing of the visual input signal from the retina and the lateral geniculate
nucleus (LGN). One important property of V1 simple cells is that their receptive
fields are selective in terms of locations, orientations and frequencies, which can
be modelled as Gabor filters. Another characteristic on V1 simple cells is that
their activations are sparse. To be more clear, selectivity means that one neuron
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only strongly responds to a small number types of stimuli while rarely respond-
ing to other types. Sparsity means that the population size of activated neurons
should be small given a stimulus, i.e. only a tiny fraction of neurons are acti-
vated by a stimulus. Since selectivity and sparsity are interpreted as rareness in
lifetime and population domain, sometimes they are also called “lifetime sparse-
ness” and “population sparseness” respectively [12]. It has been hypothesized
that the selective and sparse responses of visual neurons are due to certain
redundancy reduction mechanism, with which the visual cortex is evolved to
encode visual information as efficiently as possible [1]. Based on this hypothe-
sis, a sparse coding strategy was proposed to enhance the coding efficiency, and
has led to Gabor-like representations [10]. Although sparse coding has shown
success in producing receptive fields similar to those of simple cells, yet it was
pointed out that selectivity does not have to be correlated with sparseness in
practice [12]. Moreover, it was even suspected that sparse activations of simple
cells is only an epiphenomenon or side effect of selectivity [2]. (see section 3 for
a detailed analysis). Recently, as another stream of feature learning, restricted
Boltzmann machines (RBMs) have attracted increasingly more attention thanks
to its success in many application domains [7]. However, the capability of RBMs
is rather limited when learning receptive fields of V1 simple cells. To make infer-
ence and learning easier, there is no connection between hidden units in RBMs.
Consequently, given visible data, all hidden units are conditionally independent
to each other (see section 2). It can be easily envisioned that when RBMs are
trained on natural images, many learned features will be rather distributed, un-
localized and repeated, which is far from the (selective and sparse) nature of the
learning task.

Prior work have exploited different strategies to adapt RBMs towards learn-
ing selective and/or sparsely activated neurons [3,9,5] on visual input. However,
most of them focus only on one property and does not ensure sparsity and se-
lectivity simultaneously in reproduced neurons. Usually, these strategies are to
impose certain regularization to bias learning. To overcome this deficiency, in this
paper, we propose to encode an inductive bias about the task as prior probability
on parameters. Then, the parameter estimation can be done within a consistent
Bayesian learning framework, i.e. maximum a posterior (MAP). In particular,
the prior probability on parameters encourages the diversity of neurons’ recep-
tive fields, which performs equivalently to the lateral inhibition between neurons.
The MAP learning is achieved via a Markov chain Monte Carlo (MCMC)-based
simulated annealing. In addition, due to the fact that the parameter space is
high-dimensional and multi-modal, annealing importance sampling (AIS) and
parallel tempering are employed in subroutines to avoid local maxima (see sec-
tion 4). In section 5, we verify our Bayesian learning of RBMs on a bench-
mark database of natural images, comparing to maximum likelihood learning
and other state-of-the-art learning strategies. Our empirical results demonstrate
that neurons in our model display better sparsity and selectivity than in others;
in addition, the features encoded by our neurons via Bayesian learning show
better generalization capabilities than the ones from other learning methods.
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2 Restricted Boltzmann Machine

The restricted Boltzmann machine (RBM) is a two-layer, bipartite neural net-
work, it is a “restricted version” of the Boltzmann machine with only inter-
connections between hidden layers and visible layers. Input data is binary and
N, dimensional, they are fed into N, units in the visible layer v, Ny units in the
hidden layer h are stochastic binary variables, i.e. v € {0,1}*, h € {0,1}"»,
the joint probability of {v,h} is':

p(v,h) = %exp(—E(v,h)) E(v,h) = —v' Wh (1)
where W € RV *Nn ig the matrix of symmetry weights, Z = > v exp(—E(v,h))
is the partition function for normalization. Because of the restricted connections
in RBMs, hidden units h; are independent of each other conditioned on the
visible data v, and similarly, visible units v; are conditionally independent of
each other given h. Given training data D = {v(l)}le, RBM can be learned by
maximizing the average log-likelihood of D:

L
* 1
W™ = arg max L(D) = arg max - Z (log Eh: p(v', h)) (2)

=1

based on(1), the gradient of £(D) is computed as:

L
1
VL(D) = 7 3 By evnmpnv) (VB T) = Ev by (vh) (3)
=1

where E,(-) denotes the expected values with respect to p. Obviously, the sam-
pling v,h ~ p(v,h) makes learning practically infeasible because it requires a
large number of Markov chain Monte Carlo (MCMC) iterations to reach equi-
librium. Fortunately, we can compute an efficient approximation to the exact
gradient: contrastive divergence (CD), which works well in practice [7]. By using
CDyg, only a small number k steps are run in block Gibbs sampling (usually
k =1), and (3) can be approximated as:

1

L
VL(D) =+ > VIpm )T = p(v T O )pm v T] (4)
=1

]l

3 Bias Learning with Selectivity and Sparsity

Simple cells in V1 area are well known to be selective to locations, orienta-
tions and frequencies, and their activations are sparse [10] to visual stimuli. The
concepts of selectivity and sparsity are illustrated in Figure 1(a), where each
row (red) represent how one neuron selectively respond to different visual stim-
uli while each column (blue) describes how many neurons are activated by one
stimulus. Although selectivity and sparsity are related at their average values,

! Bias vectors on visible and hidden units are omitted them for notation simplicity,
but we would like to note that we use such biases in our experiments.
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Fig. 1. Understanding sparsity and selectivity: white circles mean activations while
gray circles denote inactivations. See text for more description.

they are not necessarily correlated [12]. Selective neurons cannot ensure sparse
neuron coding (Figure 1(c)); sparsely activated neurons can also be not narrowly
selective (Figure 1(d)).

Sparse group restricted Boltzmann machine (SGRBM) [9] is a RBM trained
with the CD algorithm plus a [1/I2 norm regularization on the activations of
neuron population. Although /1/I2 norm regularization can ensure sparsity, yet
it can also lead to many “dead” (never respond) and “potential over-tolerant”
(always respond) neurons (see Figure 1(d) and section 5). On the other hand,
a selectivity-induced regularization was used in [3] by suppressing the average
activation probability of each neuron to all training data. One limitation of this
strategy, as argued in [5], is that decreasing average activation probabilities can
not guarantee selectivity, instead, it will result in many similar neurons with
uniformly low activation probabilities to all types of visual stimuli, which prone
to be “dead” as well (see section 5). One closely related work to ours is proposed
in [5], of which the essence is to tune the activation matrix (Figure 1) towards
a target one that is both selective and sparse while maximizing likelihood.

Based on the analysis above, we can see that the motivation of sparsity is
to better differentiate neurons while the goal of selectivity is to avoid “over-
tolerant” neurons. Assume that there exist NV types of visual stimuli and K
neurons, and usually V > K. Obviously, the ideal selectivity rates of neurons
is N/K. At the same time, for sparsity, we also want to prevent the existence of
any duplicate or similar activations in the neuron population. The best scenario
is that there is no overlap among the activations of different neurons (rows in
Figure 1), i.e. K neurons respond to non-overlapping N/K types of visual stimuli
respectively. In the RBM case, the weights W, to some extent, can represent the
activation matrix. For so, a natural choice of biasing parameters is to diversify
the columns of W as much as possible. Here we approach diversification by
minimizing absolute cosine similarities among columns of W:

Np Np T
, W W.,
arg min e e T (5)
w ;; [[W Wkl

where W_; denotes the jth column of W. Note that the denominator in (5) is nec-
essary, because eliminating it will generate many “dead” or principal component
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analysis (PCA)-like neurons. An extreme case is that the activation probabilities
of neurons are exclusive to each other. Despite selectivity is not so obvious in
(5), it can be imagined that it can be better minimized when |W. j.vjen,| are
small. Therefore, sparsity and selectivity are enhanced simultaneously by using
diversity-induced bias (5) (Figure 1(b)).

4 Bayesian Learning of Restricted Boltzmann Machines

In contrast to the incremental updates composed of CD approximation and
regularization-based gradients [3,9,5], we propose to train RBMs in a consistent
Bayesian framework. Based on the discussion in the previous section, we can
define the prior probability on parameters p(W) as:

Ny,

p(W) o exp(A- 30

J=1k#j

W W.

W ITwW | (6)

then the parameters can be estimated via maximum a posterior (MAP):

L
* _ — )

W* = argmax p(W|D) = arg max p(W) lljll Zh:p(v ,h|W) (7)

Since the derivative of (7) w.r.t. W can not be analytically computed, and (7) in

general is not concave, here a Markov chain Monte Carlo (MCMC)-based simu-

lated annealing is employed to find the optimal solution. In the basic Metropolis

algorithm, a sample W' is accepted with probability min(1, p(W’|D)/p(W|D))
where:

p(W'|D) _ p(W) p(DIW') _ p(W) TTi-y Zu p(v!", h|W)

p(W[D) — p(W) p(DIW)  p(W) [T, 3 p(vD, h|W)

Because of the special structure of RBM, the term ), p(v,h|W) can be written
in a polynomial form as:

(®)

p(VI]W) = vah|W Hexp1+v W. ;) 9)

Consequently, (8) can be further expanded as:

p(W'|D) _ p(W') 1 Z(W) -
Swin) = ow) (zw) eXp{lZIZ;V”) (W, -W. )} (0)

Since (10) is invariant to different scales of W, without loss of generality, we
constraint Yw;; € W,w; ; € [—1,+1]. One difficulty in computing (10) is the
Z(W)
Z(W')"
a tractable approximation of it via annealing importance sampling (AIS) [11].
Basically, importance sampling can be used for estimating the ratio:

Z(W) _ 2, p(vIW) p(v|W) p(v[W') L (PVIW)
Z(W') Z p(v|W") Z p(v|[W") Z p(v[W) _]Ep(vlw)(p(v|W’)) (11)

ratio of normalization terms Instead of computing it analytically, we use
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However, the estimation will be poor if W and W' are not close. By contrast, AIS
constructs many intermediary distributions between p(v|W') and p(v|W) as:
ps(v) o< p(v|W)Im%p(vIW)* with 0 < ap < a1 < -+ < g < -+- < ag = 1.
Then one AIS run is as follows:

1.Initialize v(()m) ~ po(v)

2.for s =1 — S, sample vg ™) give ngl with one Gibbs sampling w.r.t. ps(v);

(m) _ (™) pa(vi™)  ps(vi™)
B = ) ™) psa v

When M runs of AIS are implemented, the ratio can be estimated as:

M

ZVV\\; i Zw (12)

In addition, to avoid being trapped in local maxima, we construct the state
transition of a Markov chain as a mixture of a local Metropolis kernel (10)
and an independent Metropolis-Hasting kernel. To better explore the sampling
space, the uniform distribution & on W is set as the Metropolis-Hasting kernel.
Therefore, the whole sampling is a weighted combination of local exploitation
and global exploration, and here we use the mixture weight n = 0.5. At iteration
n, the invariant distribution which the Markov chain is subject to is p(W|D)/T»
where T, is a decreasing temperature schedule. When T, — 0, the Markov chain
can hardly move and the still state will be used as the maximum. Usually W
is high-dimensional (with large number of neurons and high-dimensional visual
input), so the parameter space can be rather complicated, e.g. sharp with many
isolated modes, and simulated annealing based on one single Markov chain is
unreliable. One simple way is to run multiple Markov chains in parallel, and pick
the states of one chain which lead to the best result. However, a better strategy is
parallel tempering [3]. R+1 Markov chains are constructed under different initial
temperatures {p,(W|D) oc p(W|D)P}E . 0 < Br < B < Bo =1, o is
referred to the base distribution, and others correspond to more flat distributions
smoothed with different temperatures. As the simulated annealing on differently
tempered Markov chains progress, the states of neighbouring chains W7, Wr+!
can be swapped with probability:

L Np
. pT(WT+1|’D)pT+1(W D) vOT 'r+1 r
min(1 min(1, exp —Br W W
O s (W D)p(WrD) ) = (22 (Br=rinv 3
(13)
5 Experiments
To evaluate the proposed learning strategy, a benchmark database [10] was used

for training. 100000 small patches (size 14 x 14) were extracted from random
positions of ten whitened images. A sigmoid function was applied on the pixel
intensities to fit their values in the range [0,1]; in addition, the patches with
variances smaller than 0.1 were filtered out to accelerate training. For compar-
ison, three additional RBMs were trained by using the CD algorithm, the CD
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(a) (b) (c) (d)

Fig. 2. The receptive fields of neurons learned from (a) CD algorithm, (b) sparse CD,
(c) selective CD and (d)our Bayesian strategy. See text for more description.

CD Sparse CD [9] Selective CD[8] Bayesian Learning

# Dead Neurons 0 68 88 0
Ave. Selectivity 0.4582 0.3552 0.4090 0.3221
Ave. Sparsity 0.3749 0.1883 0.1939 0.1671
Error rate on MNIST[%] 27.21 17.54 19.32 14.21

Fig. 3. Performance of different learning methods.

algorithm with sparse regularization (sparse CD) [9] and the CD algorithm with
selectivity regularization (selective CD) [8]. For each RBM, 200 hidden neurons
were learned and their receptive fields are presented in Figure 2. We can see that
many neurons’ receptive fields learned from the CD algorithm (Figure 2(a)) are
very vague and unlocalized, compared to which, the neurons’ receptive fields
learned from sparse CD and selective CD (Figure 2(b) and 2(c) ) look “clearer”
and “sharper”. However, both sparse CD and selective CD led to many use-
less, “dead” neurons. The neurons obtained from our Bayesian learning strategy
display rather diverse receptive fields and there seems no “dead” neuron (Fig-
ure 2(d)). We roughly obtained the number of “dead” neurons by counting the
number of neurons whose maximal activation probabilities to all training visual
stimuli is smaller than 0.1, and the results are in the first row of Figure 3.
Selectivity and sparsity are usually measured using activity ratio [1]. For a
neuron, its selectivity is computed across all L input visual stimuli: selectivity =

2
(Zle r/ L) / (Zle r/ L) where 7; is the activation rate of the neuron given
the [th stimulus. The sparsity of activations by one stimulus is computed across
2
all Nj, neurons: sparsity = (Zjvzhl rj/Nh) / ( N rz/Nh). We computed the

=177
selectivity and sparsity of 4 RBMs on the MNIST patch dataset?, which contains
digit images. Although natural images and digit images are two absolutely dif-
ferent visual domains, we believe that early features encoded in neurons should
be able to successfully adapt from one domain to the other. The results were

presented Figure 3. It can be seen that our Bayesian learning method yields bet-

2 Available on http://yann.lecun.com/exdb/mnist.



8

ICANN2014, 134, v1 (final): "Towards Sparsit...

8 Xiong, Szedmak, Rodriguez-Sanchez and Piater

ter selectivity and sparsity to other cases. Furthermore, to check the practical
effectiveness of learned neurons, we use them as basis filters on the digit images
for a multi-classification task. Given a digit image, the activations of hidden
neurons are computed as input of a softmax function, and its corresponding la-
bel is output. The testing results with four sets of neurons are presented in the
bottom part of Figure 3. We can see that the features from Bayesian learning
yield lower average test error than others, which suggests superior discriminative
and generalization capability.

6 Conclusion

A Bayesian learning framework for RBM was put forward based on many state-
of-the-art approximation techniques. To mimic V1 simple cells, a diversity-
induced prior was introduced on RBMs’ parameters, and maximum a posterior
learning yields better results than other learning strategies. In particular, the
features encoded in learned neurons display nice discriminative and generaliza-
tion property for domain adaption. As a possible future work direction, we are
studying more sophisticated priors to approach other simple neurons’ properties.
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