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Abstract

It has been widely agreed that, in multi-label prediction tasks, capturing and utiliz-
ing dependencies among labels is quite critical. Therefore, a research tendency in
multi-label learning is that increasingly more sophisticated dependency structures
on labels (e.g. output kernels) are proposed. We show that, however, over-complex
dependency structures will harm more than help learning when the underling de-
pendency is relatively weak. To avoid overfitting on structures, a regularization on
label-dependency is desirable. In this paper, we put forward a novel joint-SVM for
multi-label learning. Compared to other discriminative learning schemes, joint-
SVM has two strengths: at first, the complexity of training joint-SVM is almost
the same as training a single regular SVM, which is quite efficient; secondly, in
joint-SVM, a linear output kernel on multi-label is implicitly learned and a regu-
larization on the output kernel is implicitly added, which enhances generalization
ability. In our experimental results on image annotation, joint-SVM compares
favorably state-of-the-arts methods.

1 Predict Multi-label as Structured Outputs

In the past two decades, support vector machines (SVMs) have displayed remarkable successes in
various application domains. The achievements of SVMs mainly stems from its two advantageous
components: maximum margins and input kernels. The maximum-margin principle is a reflection of
statistical learning theory [12] on linear binary classification. Kernels provide powerful mechanisms
enabling the linear classifier to separate highly non-linear data. The critical observation of kernel
methods is that a kernel function can be defined on a pair of data instances to implicitly map them
to a reproducing kernel Hilbert space (RKHS):

Kφ(x(i),x(j)) = 〈φ(x(i)), φ(x(j))〉 (1)

where x(i),x(j) ∈ Rd are two input training instances, φ is the feature map induced by kernel
function Kφ, and φ(x(i)) is the representation of x(i) in the RKHS Hφ. Given the training dataset
{x(i) ∈ Rd, y(i) ∈ {+1,−1}}mi=1, the primal form of training SVM is:

arg min
w∈RHφ

1
2 ||w||

2 + C
∑m
i=1 ξ

(i)

s.t. y(i)
(
w>φ(x(i))

)
≥ 1− ξ(i), ξ(i) ≥ 0, i ∈ {1, . . . ,m}

(2)

where w is a linear hyperplane in Hφ, ξ(i) are slack variables for the tolerance of noise, and C is a
trade-off parameter. (2) differs from usual SVM formulation slightly at the absence of a bias term.
Here we ignore the bias since it can be absorbed in w . The computational advantage of kernels
become obvious when the primal form of SVM (2) is reformulated to its dual form:

arg min
α1,α2,...,αm

∑m
i=1 αi −

1
2

∑m
i,j=1 αiαjy

(i)y(j)Kφ(x(i),x(j))

s.t. ∀i, 0 ≤ αi ≤ C
(3)
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The dual representation of w is
∑m
i=1 αiy

(i)φ(x(i)), and thus the prediction of a test instance x̂ is

ŷ = sgn
(
w>φ(x̂)

)
= sgn

(
m∑
i=1

αiy
(i)Kφ(x(i), x̂)

)
. (4)

We can denote y(i)
(
w>φ(x(i))

)
in the constraints of (2) as a score function F (x(i), y(i); w), then

for binary outputs y(i), F
(
x(i), y(i); w

)
− F

(
x(i),−y(i); w

)
= 2 × F

(
x(i)), y(i); w

)
. Also, a

distance function between binary outputs can be denoted as d(y(i),−y(i)) = |y(i) − (−y(i))| = 2.
Then by replacing C with C

2 , (2) can be rewritten as:

arg min
w∈RHφ

1
2 ||w||

2 + C
∑m
i=1 ξ

(i)

s.t. ∀i, F
(
x(i), y(i); w

)
− F

(
x(i),−y(i); w

)
︸ ︷︷ ︸

∆F (y(i),−y(i))

≥ d(y(i),−y(i))− ξ(i), ξ(i) ≥ 0 (5)

which is a binary-output case of structural SVM [11] (see later). By using hinge-loss representation
for ξ(i), (5) is:

arg min
w∈RHφ

1

2
||w||2 + C

m∑
i=1

max{0, d(y(i),−y(i))−∆F (y(i),−y(i))} (6)

Structural SVM [11] is an extension of SVM for structured-outputs, in which, however, the margin to
be maximized is defined as the score gap between the desired output and the runner-up. Assume that
structured outputs y ∈ Y , and the score function is linear in some combined feature representation of
inputs and outputs Ψ(x,y): F (x,y; W) = 〈W,Ψ(x,y)〉, then the objective function of structural
SVM is:

arg min
W∈RΨ

1

2
||W||2 + C

m∑
i=1

max
y′∈Y

{
d(y(i),y′)−∆F (y(i),y′)

}
(7)

where ∆F (y(i),y′) = F (x(i),y(i); W) − F (x(i),y′; W) and d(y(i),y′) is a distance function
defined on structured outputs. In multi-label scenario, given a set of T labels, then outputs are T -
dimensional binary vector y = [y1, · · · , yt, · · · , yT ]> ∈ BT . When we define the score function
F
(
x(i),y(i); W

)
= 〈W, φ(x(i)) ⊗ y(i)〉, and use Hamming distance on outputs, then because of

linear decomposability, (7) can be rewritten as:

arg min
W∈RHφ×RT

1
2 ||W||

2
F + C

∑m
i=1

∑T
t=1 maxy′t={−1,+1}

{
d(y

(i)
t , y′t)−∆F (y

(i)
t , y′t)

}
⇓

arg min
w1,··· ,wT∈RHφ

∑T
t=1

{
1
2 ||wt||2 + C

∑m
i=1 max

{
0, d(y

(i)
t ,−y(i)

t )−∆F (y
(i)
t ,−y(i)

t )
}}

(8)
where 〈·, ·〉F denotes Frobenius product and ||W||F is the Frobenius norm of matrix W.

2 Joint SVM

It can be seen (by linking (6) and (8)) that, with linearly decomposable score functions and output
distances, using structural SVM on multi-label learning is equivalent to learning T SVMs jointly.
This is closely related to multi-task learning frameworks [1], where different learning tasks are
connected by summing up their objectives and constraints respectively:

min 1
2

∑T
t=1 ||wt||2 + C

∑T
t=1

∑m
i=1 ξ

(i)
t

w.r.t. w1,w2, . . . ,wT ∈ RHφ×1

s.t.
∑T
t=1 y

(i)
t

(
w>t φ(x(i))

)
≥ T −

∑T
t=1 ξ

(i)
t

(9)

By denoting y(i) = [y
(1)
1 , . . . , y

(i)
T ], and W = [

w>1
T ; . . . ;

w>T
T ]>, we can rewrite (9) as:

arg min
W∈RT×Hφ

1
2 ||W||

2
F + C

∑m
i=1 ξ̄

(i)

s.t.
〈
y(i),Wφ(x(i))

〉
≥ 1− ξ̄(i), ξi ≥ 0, i ∈ {1, . . . ,m}

(10)
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which is referred to as joint SVM. When linear output kernels (Kψ(y(i),y(j)) = 〈ψ(y(i)), ψ(y(j))〉)
[4, 7, 13] are applied on outputs, (10) will be:

arg min
W∈RHψ×Hφ

1
2 ||W||

2
F + C

∑m
i=1 ξ̄

(i)

s.t.
〈
ψ(y(i)),Wφ(x(i))

〉
≥ 1− ξ̄(i), ξi ≥ 0, i ∈ {1, . . . ,m}

(11)

Since the linear decomposability of ∆F (y(i),y′) is still preserved, join SVM solves the same prob-
lem as structural SVM. However, one strength of joint SVM is that its training complexity is almost
the same as a single SVM, by contrast to the exponential complexity in structural SVM. Similarly
to regular SVM, joint SVM can be converted to its dual form

arg min
α1,··· ,αm

∑m
i=1 αi −

∑m
i,j=1 αiαjKψ(y(i),y(j))Kφ(x(i),x(j))

s.t ∀i, 0 ≤ αi ≤ C
(12)

with W =
∑m
i αiψ(y(i))φ(x(i))>. It can be seen that, with the kernel matrix on outputs pre-

computed, the computational complexity of joint SVM (12) is the same as the learning of one single
SVM (3), which is a great advantage in efficiency. Meanwhile, when more general output kernels
are used, then the linear decomposability of ∆F (y(i),y′) will be violated, then joint SVM becomes
a special case of max-margin regression [10], which seeks to learn linear operators W : Hφ → Hψ
from general φ(x)⊗ ψ(y).

Given a test input x̂, the prediction ψ(ŷ) inHψ is

ψ(ŷ) = Wφ(x̂) =

m∑
i=1

αiψ(y(i))Kφ(x(i), x̂). (13)

Meanwhile, there is no direct way (say, by inverting Eq.(13)) to map ψ(ŷ) back to ŷ. Therefore, we
can find the optimal solution ŷ∗, out of all possible y ∈ {+1,−1}T , such that its projection in Hψ
is closest to Wφ(x̂):

ŷ∗ = argmaxy∈{+1,−1}T 〈ψ(y),Wφ(x̂)〉
= argmaxy∈{+1,−1}T

∑m
i=1 αiKφ(x(i), x̂)︸ ︷︷ ︸

βi

Kψ(y(i),y) (14)

In general, there is no closed-form solution to Eq.(14), so here we use a similar neighbour-based
label transferring theme as [9, 6]:

ŷ∗ =

(
K∑
k=1

y(k)wk

)/
K∑
k=1

wk wj =

m∑
i=1

αiβiKψ(y(i),y(j)) (15)

where k = {j ∈ [1,m] : wj > 0} and maximum K = 10 neighbours are taken into account. Since
αi areKψ(y(i),y(j)) were already computed in the training phase, only the computation of {βi}mi=1
is needed during testing. Thus, the complexity in predicting is O(m).

3 Implicit Learning and Regularization of Output Kernels

Assume that the statistics of tags’ pairwise co-occurrence can be encoded in a T×T matrix P[3, 4, 7,
13], via which the output vectors can be linearly mapped as ψ(y) = Py, and thus the corresponding
linear output kernel is:

KLin
ψ (y(i),y(j)) = y(i)>Ωy(j) (16)

where Ω = P>P = PP>. By denoting U = P>W, we can rewrite joint SVM (11) as:

arg min
W∈RHψ×Hφ

1
2 ||W||

2
F + C

∑m
i=1 ξ̄

(i)

s.t.
〈
y(i),Uφ(x(i))

〉
≥ 1− ξ̄(i), ξi ≥ 0, i ∈ {1, . . . ,m}

(17)

Meanwhile, we need to control the scale of P, otherwise the constraints in (17) will be pointless.
Different regularizations on P have been proposed in previous work. In [4] one extra regularization
on Ω, 1

2 ||Ω||
2
F , was added into the objective function, while ||P ||F = 1 was used in [13]. By
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Method
MBRM [5]
JEC [9]
TagProp [6]
FastTag [3]
JSVM
JSVM+Pol(2)
JSVM+Pol(3)

Corel5K
P(%) R(%) F1(%)
24.0 25.0 24.0
27.0 32.0 29.0
33.0 42.0 37.0
32.0 43.0 37.0
48.5 38.0 42.6
46.6 37.0 41.3
41.5 31.3 35.7

Espgame
P(%) R(%) F1(%)
18.0 19.0 18.0
24.0 19.0 21.0
39.0 27.0 32.0
46.0 22.0 30.0
32.7 31.6 32.2
32.6 24.4 27.9
28.5 21.3 24.4

Iaprtc12
P(%) R(%) F1(%)
24.0 23.0 23.0
29.0 19.0 23.0
45.0 34.0 39.0
47.0 26.0 34.0
42.2 29.4 34.6
37.9 26.6 31.2
38.0 26.1 31.0

Table 1: Comparison between different versions of joint SVM and other related methods on three
benchmark databases. P, R and F1 denote precision, recall and F1 measure respectively.

contrast, a pseudo regularization on P is used in [3] via the re-construction loss from manually-
corrupted data and P. Similar to [4], we want to add a regularizer to control overfitting from output
dependency-structures. Meanwhile, by merging regularization on W and P, we obtain a more
compact regularizer, 1

2W>ΩW, resulting in:

arg min
U∈RHψ×Hφ

1
2 ||U||

2
F + C

∑m
i=1 ξ̄

(i)

s.t.
〈
y(i),Uφ(x(i))

〉
≥ 1− ξ̄(i), ξi ≥ 0, i ∈ {1, . . . ,m}

(18)

Remarkably, (18) is equivalent to (11) with W substituted by U, which suggests that a linear output
kernel is implicitly learned, and absorbed in W, when we training a plain joint SVM with no explicit
kernel on outputs. In addition, a regularization on the output kernel is also implicitly added.

4 Experiments

In our experiments, we evaluated the propose joint SVM on image annotation tasks. Here, we used
three benchmark datasets, Corel5k, Espgame and Iaprtc12. These three datasets have been widely
used in image annotation studies [8, 2, 5, 6, 9, 3] with performance evaluations reported therein.
Therefore, we can easily compare our method with others. We used the same visual features as in
[6, 3]. Three types of joint SVMs with different output kernels are tested: plain joint SVM (JSVM),
2-degree polynomial (JSVM+Pol(2)) and 3-degree polynomial (JSVM+Pol(3)).

The experimental results, together with the reported results from other related work, are presented
in Table 1. We can see that plain joint SVM (JSVM) outperforms all other results on Corel5k
and Espgame datasets. JSVM is also the second best result on Iaprtc12 dataset. JSVM+Pol(2) also
worked better than some old methods [5, 9]. Meanwhile, JSVM+Pol(3) is worse than JSVM+Pol(2).

Discussions Based on our experiments, it seems that plain joint SVM (JSVM) works more robustly
than the joint SVMs with explicit output kernels. In order to dig deeper to find an explanation, we
can study the correlation matrices of output tag-sets in three datasets. In Figure 1, for each dataset,
we plot the histograms (in log scale) of all correlation values in both training sets and testing sets.
We found that most entries in correlation matrices are 0, which means that the pairwise correlation
(or roughly speaking, dependencies) is rather sparse. Although JSVM, JSVM+Pol(2) both encode
pairwise dependencies, it should be reminded that the implicit linear output kernel in JSVM is
in regularization term, which implies that simpler output kernels (dependencies) are encouraged.
However, JSVM+Pol(2) does not have this preference. Therefore, JSVM can implicitly learned most
simple output kernels when no more complex ones are needed. Analogously, the same principle can
explain why even JSVM+Pol(3) led to worse results.

5 Conclusions

A novel joint SVM was presented for multi-label learning. One benefit of using joint SVM is that
the learning and regularization of a linear output kernel are implicitly conducted. Moreover, both
training joint SVM and predicting with joint SVM are efficient. As a possible work direction, we
might investigate more interesting output kernel regularization schemes to fit different applications.
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Figure 1: The histograms (in log scale) of all correlation values in both training sets and testing sets:
(a) Corel5k, (b) Espgame (c) Iartc12.
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