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Abstract

This paper studies how joint training of multiple support vector machines (SVMs) can improve the ef-
fectiveness and efficiency of automatic image annotation. We cast image annotation as an output-related
multi-task learning framework, with the prediction of each tag’s presence as one individual task. Evidently,
these tasks are related via dependencies between tags. The proposed joint learning framework, which we
call joint SVM, is superior to other related models in its impressive and flexible mechanisms in exploit-
ing the dependencies between tags: first, a linear output kernel can be implicitly learned when we train a
joint SVM; or, a pre-designed kernel can be explicitly applied by users when prior knowledge is available.
Also, a practical merit of joint SVM is that it shares the same computational complexity as one single con-
ventional SVM, although multiple tasks are solved simultaneously. Although derived from the perspective
of multi-task learning, the proposed joint SVM is highly related to structured-output learning techniques,
e.g. max-margin regression [1], structural SVM [2]. According to our empirical results on several image-
annotation benchmark databases, our joint training strategy of SVMs can yield substantial improvements,
in terms of both accuracy and efficiency, over training them independently. In particular, it compares fa-
vorably with many other state-of-the-art algorithms. We also develop a “perceptron-like” online learning
scheme for joint SVM to enable it to scale up better to huge data in real-world practice.
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1. Introduction

NOTICE: This is the authors version of a work that was accepted for publication in Neurocomputing. Changes resulting from

the publishing process, such as editing, corrections, structural formatting, and other quality control mechanisms may not be

reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive

version was subsequently published as Neurocomputing 169, pp. 205–214, 2015, DOI 10.1016/j.neucom.2014.11.096.

Automatic image annotation is an important yet challenging machine learning task. The importance is
based on the fact that the number of images grows increasingly fast on the internet, and most of them have
no link to semantic tags (or keywords, labels). Therefore, automatic annotation is of great significance to
generate meaningful meta-data for organizing image collections, and in particular, retrieving images from5

textual queries. The challenges are usually considered from two classical perspectives [3]: first, semantic-
gap, i.e. the gap from low-level image features to textual tags is large and there exist no reliable way to
extract dependencies between them; secondly, absence of correspondence, i.e. for each tag associated with
one image, there is no corresponding region annotated, which hinders learning worse. Meanwhile, when
considering contemporary image annotation, one more difficulty to bear is big data. The image data on10

internet is usually presented in large volumes (million or billion level), so the desired learning method should
be capable of working on large-scale data with high learning and prediction efficiency. One straight-forward
yet naive strategy is to consider each tag’s presence as a binary classification problem. Then, multiple
binary classifiers, e.g. support vector machines (SVMs), can be trained independently for different tags.
This method, however, will suffer from high computational complexity in both training and prediction15
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phases when the number of tags is relatively large. In addition, independently learning multiple SVMs is
not expected to work well because it ignores the dependencies between the presences of tags [4], which is a
phenomenal characteristic of image annotation tasks (e.g., sky and cloud often co-occur).

In this paper, we propose to interpret image annotation as the learning of multiple related tasks. However,
different from most existing multi-task learning frameworks [5] in which tasks are related through their20

inputs, our joint learning method focuses on the relation between outputs. Our strategy is motivated by two
intuitions. First, by connecting multiple SVM classifiers together, the dependencies between their outputs
(the presences of tags), presumably, can be more easily encoded. Secondly, if the outputs of multiple SVMs
can be merged into a single vector entity, the optimization problem can be established and solved over vectors,
greatly reducing the computational complexity. These two objectives, surprisingly, can be easily achieved25

by summing up the objectives and constraints in different SVMs, plus an appropriately designed kernel on
outputs. We refer to the proposed training strategy as joint SVM. The key strength of joint SVM is that
it can flexibly offer two mechanisms to exploit the dependencies between tags: first, when there is no prior
knowledge on the dependencies, a linear output kernel can be implicitly learned when we train a joint SVM; or
a pre-designed, prior-oriented, kernel can be applied on outputs when prior knowledge is available (see section30

4). In addition, as we will see in section 3, the training of joint SVM shares almost the same computation
complexity as a single regular SVM, which is a practical merit when the number of tags is relative large.
Interestingly, although derived from the perspective of multi-task learning, the proposed joint SVM highly
relates to structured-output learning techniques, such as max-margin regression [1], structural SVM [2] or
max-margin Markov network (M3N) [6]. More connections between them will be exploited in section 5.35

In addition, to enable joint SVM to scales up to huge data (million or billion level) in real-world practice,
we develop a “perceptron-like” online learning algorithm for joint SVM in section 6. In our experiment
(section 7), we tested joint SVM on several benchmark image-annotation databases, with comparison against
independent SVMs and other results reported in state-of-the-art algorithms. The experimental results show
that our joint SVM can gain impressive improvement over training SVMs independently. In particular, it40

compares favorably with many other state-of-the-art algorithms.

2. Related Work

Prior to our work, there exist many literatures on image annotation in computer vision and machine
learning communities [7, 8, 9, 10, 3, 11, 12, 13, 14, 4, 15, 16]. Roughly speaking, all algorithms can be cat-
egorized into generative methods or discriminative methods according to how the relevance between image45

features and textual tags are modeled. On one hand, generative methods, mostly inspired by linguistic trans-
lation studies, model the generating or formating procedure of visual features and tags, then tags prediction
from a novel image is inferred by leveraging co-occurrence statistics between visual features and tags in
training data. Continuous Relevance Model (CRM) [7], Correlation Latent Dirichlet Allocation (CorLDA)
[8] and Multiple Bernoulli Relevance Model (MBRM) [9] belong to the generative category. However, one50

drawback of these method is that usually some statistical assumptions (e.g. conditional independence) are
imposed on models, which restricts their modeling capabilities. Furthermore, another practical obstacle of
most generative methods is the intractability of inference in tag prediction phase, therefore, usually some
approximation techniques are applied. On the other hand, discriminative methods directly model the tag-
predicting function, out of which TagProp [10], JEC [3] are metric-learning based approaches, rank-SVM55

[17], LM-K [18] are rank-learning based approaches, M3L [4] and Multi-Label Relationship Learning (MLRL)
[16] are maximum-margin based approaches. One notable issue, and also difficulty, in discriminative meth-
ods is the dependencies between output tags, of which many state-of-the-art studies [4, 11, 18] have being
aware. In several recent studies [10, 3, 11], discriminative methods were reported to displayed empirically
superior performance than generative ones on image annotation task. More comparison and analysis on60

different representative methods can be found in up-to-date reviews [3, 4, 11].
The proposed joint SVM in this paper is a maximum-margin based, discriminative learning frame-

work. Although joint SVM displays strong connections with structured-output learning, the staring point
of our work is to improve the annotation performance by exploiting the relationship between individual tag-
predictors. A conceptually-related work was concurrently, but independently from us, presented in MLRL65
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[16], of which the authors explicitly model the relationship as a covariance matrix in matrix-variate normal
distribution over individual model parameters. In contrast, in joint SVM, the dependency between different
tags are encoded in output kernels. In this sense, our work is also similar to LM-K [18] and M3L [4]. In-
terestingly, when the output kernel is linear, it is equivalent to the explicit relationship learning in MLRL.
Meanwhile, more sophisticated output kernel can flexibly be constructed and utilized in joint SVM, to afford70

nonlinear, higher-order dependencies, although they are not always of help in practice.

3. Joint Learning of Multiple SVMs

3.1. Support Vector Machines and Input Kernels

In the past two decades, support vector machines (SVMs) have displayed remarkable successes in various
application domains. The achievements of SVMs mainly stems from its two advantageous components:
maximum margins and input kernels. The maximum-margin principle is a reflection of statistical learning
theory [19] on linear binary classification. Kernels provide powerful mechanisms enabling the linear classifier
to separate highly non-linear data. The critical observation of kernel methods is that a kernel function can
be defined on a pair of data instances to implicitly map them to a reproducing kernel Hilbert space (RKHS):

Kφ(x(i),x(j)) = 〈φ(x(i)), φ(x(j))〉 (1)

where x(i),x(j) ∈ Rd are ith and jth input training instances, φ is the feature map induced by kernel function
Kφ, and φ(x(i)) is the representation of x(i) in the RKHS Hφ. Most popularly, a Gaussian (or radial basis
function) kernel

KGau
φ (x(i),x(j)) = exp

(
−‖x(i) − x(j)‖2/2σ2

)
(2)

is employed because its corresponding RKHS is an unnormalized Gaussian density function:

φGau(x(i)) ∝ N (τ ; x(i), σ) (3)

which is of infinite dimension, and thus greatly improves the representational capability of input data.
Another popular kernel function is Polynomial kernel:

KPol
φ (x(i),x(j)) =

(
〈x(i),x(j)〉+ c

)d
(4)

In particular, when the degree d = 1 and constant term c = 0, Polynomial is a simple inner product.
Meanwhile, in 2-degree (d = 2) Polynomial kernel, corresponding feature map is:

φPol(x) = [x2d, · · · , x21,
√

2xdxd−1, · · · ,
√

2x2x1,
√

2cxd, · · · ,
√

2cx1, c]
> (5)

Given the training dataset {x(i) ∈ Rd, y(i) ∈ {+1,−1}}mi=1 of one binary classification problem, the primal
form of training SVM is written

arg minw∈RHφ×1
1
2 ||w||

2 + C
∑m
i=1 ξ

(i)

s.t. y(i)
(
w>φ(x(i))

)
≥ 1− ξ(i), ξ(i) ≥ 0, i ∈ {1, . . . ,m} (6)

where w ∈ RHφ×1 is the normal vector of a linear hyperplane in Hφ (here and later we use H as dim(H)
for simplicity when we denote dimensionality) , ξ(i) are slack variables for the tolerance of noise, and C
is trade-off parameter de between training error and max-margin regularization. Eq.(6) differs from usual
SVM formulation slightly at the absence of a bias term. Here we ignore the bias since it can be absorbed
in w 2. Actually, eliminating the bias is more critical in predicting multiple dependent labels, check [4] for

2When a Polynomial kernel is used, a bias term is already in its corresponding feature map. When a Gaussian kernel is
used, an input vector can be augmented with one extra constant.
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detailed explanations. The computational advantage of kernels become obvious when the primal form of
SVM (Eq.(6)) is reformulated to its dual form by introducing Lagrange multipliers αi for each constraints:

arg minα1,α2,...,αm

∑m
i=1 αi −

1
2

∑m
i,j=1 αiαjy

(i)y(j)Kφ(x(i),x(j))

s.t. ∀i, 0 ≤ αi ≤ C
(7)

The dual representation of w is
∑m
i=1 αiy

(i)φ(x(i)), and thus the prediction of a test instance x̂ is

ŷ = sgn
(
w>φ(x̂)

)
= sgn

(
m∑
i=1

αiy
(i)Kφ(x(i), x̂)

)
. (8)

It can be seen that the kernel function Kφ enables the learning of a high-dimensional (even infinite) w
without explicit computation in Hφ. Eq.(8) shows that the kernel function yields a similarity measurement75

between two input instances, and the prediction is working as a weighted-sum of all outputs in the training
data.

3.2. Joint SVM

The automatic image annotation task seeks to predict the presence of tags given an input image. Assume
d-dimensional visual features are extracted from input images and there are T tags in a pre-defined dictionary,
then the annotation learning task is to seek a function f : x ∈ Rd → {−1,+1}T . If we consider prediction
of each tag’s occurrence as a binary classification problem, we can list as many SVMs as the number of
tags. Similar to other multi-task learning frameworks [5], we connect the learning tasks of different SVMs
by simply summing up their objectives and constraints respectively in the primal form

min 1
2

∑T
t=1 ||wt||2 + C

∑T
t=1

∑m
i=1 ξ

(i)
t

w.r.t. w1,w2, . . . ,wT ∈ RHφ×1

s.t.
∑T
t=1 y

(i)
t

(
w>t φ(x(i))

)
≥ T −

∑T
t=1 ξ

(i)
t

(9)

where t indexes different tags or learning tasks, and T is the total number of tags. By denoting y(i) =

[y
(1)
1 , . . . , y

(i)
T ] and W = [

w>1
T ; . . . ;

w>T
T ]>, we can rewrite (Eq.(9)) as a joint SVM:

arg minW∈RT×Hφ
1
2 ||W||

2
F + C

∑m
i=1 ξ̄

(i)

s.t.
〈
y(i),Wφ(x(i))

〉
≥ 1− ξ̄(i), ξi ≥ 0, i ∈ {1, . . . ,m} (10)

where ||W||F is the Frobenius norm of matrix W, and ξ̄(i) = 1
T

∑T
t=1 ξ

(i)
t . Eq.(10) is referred to as joint

SVM. One rationale of Eq.(10) is that within the joint form of objectives and constraints, learning easy tasks

can help the learning of challenging tasks. For example, if training data (x(i,), y
(i)
p ) can be easily classified

correctly in the pth task (i.e., y(i)(w>p x(i))/T > 1
T ), it can offer some ‘freedom’ to other challenging tasks

before violating constraint
〈
y(i),Wφ(x(i))

〉
H ≥ 1. Meanwhile, a more critical strength of Eq.(10) is that

a linear output kernel is implicitly learned and absorbed in the model parameters W. More rigorous
explanation will be presented later in section 4.1. In addition, another key functionality joint SVM can
afford is that we can also, based on our prior knowledge, explicitly define kernel functions on outputs
y to improve their representational power (e.g. dependencies). Assume the kernel function defined on
outputs are Kψ(y(i),y(j)) (the output kernel will be explained later) and the corresponding feature map is
ψ : {−1,+1}T → Hψ, then Eq.(10) is modified to

arg minW∈RHψ×Hφ
1
2 ||W||

2
F + C

∑m
i=1 ξ̄

(i)

s.t.
〈
ψ(y(i)),Wφ(x(i))

〉
≥ 1− ξ̄(i), ξi ≥ 0, i ∈ {1, . . . ,m} (11)

Similarly to a single conventional SVM, joint SVM Eq.(11) can be converted to its dual form

arg minα1,··· ,αm
∑m
i=1 αi −

∑m
i,j=1 αiαjKψ(y(i),y(j))Kφ(x(i),x(j))

s.t ∀i, 0 ≤ αi ≤ C
(12)
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with W =
∑m
i αiψ(y(i))φ(x(i))>. It can be seen, with the kernel matrix on outputs pre-computed, that the

computational complexity of joint learning (Eq.(12)) is the same as the learning of one single SVM (Eq.(7)),80

which is a great advantage in efficiency.
Given a test input x̂, the prediction φ(ŷ) in Hψ is

ψ(ŷ) = Wφ(x̂) =

m∑
i=1

αiψ(y(i))Kφ(x(i), x̂). (13)

Meanwhile, one computational issue is that there is no direct way (say, by inverting Eq.(13)) to map ψ(ŷ)
back to ŷ. Therefore, we can find the optimal solution ŷ∗, out of all possible y ∈ {+1,−1}T , such that its
projection in Hψ is closest to Wφ(x̂):

ŷ∗ = argmaxy∈{+1,−1}T 〈ψ(y),Wφ(x̂)〉
= argmaxy∈{+1,−1}T

∑m
i=1 αiKφ(x(i), x̂)︸ ︷︷ ︸

βi

Kψ(y(i),y) (14)

In general, there is no closed-form solution to Eq.(14), so usually approximate dynamic programming (ADP)
is applied in searching for the optimum ŷ∗. Here, we employ a simpler yet effective strategy. Since the
number of tags associated with one image is rather small, most of the y in {+1,−1}T space are bad
solutions. Therefore, when the training data size is large, the most likely solutions of Eq.(14), presumably,
are covered by the outputs in training data {y}mi=1. Consequently, we can find the optimum ŷ∗ via a similar
neighbour-based label transferring theme as [3, 10]:

ŷ∗ =

(
K∑
k=1

y(k)wk

)
/

K∑
k=1

wk (15)

wj =

m∑
i=1

αiβiKψ(y(i),y(j)) (16)

where k = {j ∈ [1,m] : wj > 0} and maximum K = 10 neighbours are taken into account. Since αi
are Kψ(y(i),y(j)) were already computed in the training phase, only the computation of {βi}mi=1 is needed
during testing. Thus, the complexity in predicting is O(m).

4. Implicit and Explicit Linear Output Kernels on Tag-Sets85

To transform the pairwise and triplet-wise dependencies between tags into the inner product of two
outputs containing those tags, 2-degree and 3-degree Polynomial kernels are tried in [18] and it was reported
that 2-degree is better than 3-degree. In [4, 16, 20], linear feature maps were exploited also for pairwise
dependencies. In particular, linear output kernels and models were simultaneously learned in [16, 20], while
the output kernel in [4] is pre-computed as a correlation matrix over output vectors. In this paper, based on90

the experience from previous literatures, we also only focus pairwise dependencies and study linear kernels
(although higher-order kernels will also be tried in our experiments, and the performance among different
kernels can be checked in section 7). Here we adopted strategies both in [16, 20] and in [4]. At first, we
present that the linear output kernel can be implicitly, but more simply compared to [16, 20], learned when
we train a joint SVM. Secondly, we developed a novel pre-designed linear kernel function, which can be seen95

as a replacement of the kernel with correlation matrix used in [4].

4.1. Implicit linear output kernel learning

Assume that the statistics of tags’ pairwise co-occurrence can be encoded in a T ×Tmatrix P, via which
the output vectors can be linearly mapped as ψ(y) = Py, and thus output kernel is:

KLin
ψ (y(i),y(j)) = y(i)>Ωy(j) (17)
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where Ω = P>P = PP>. By denoting U = P>W, we can rewrite joint SVM (Eq.(11)) as:

arg minW∈RHψ×Hφ
1
2 ||W||

2
F + C

∑m
i=1 ξ̄

(i)

s.t.
〈
y(i),Uφ(x(i))

〉
≥ 1− ξ̄(i), ξi ≥ 0, i ∈ {1, . . . ,m} (18)

Meanwhile, we need to control the scale of P, otherwise the constraints in Eq.(18) will be pointless. In [20]
one extra regularization on Ω, 1

2 ||Ω||
2
F , was added into the objective function, while ||P ||F = 1 was used in

[16]. By contrast, a pseudo regularization on P is used in [11] via the re-construction loss from manually-
corrupted data and P. Here we apply a simpler strategy by using a compact regularizer, 1

2W>ΩW, resulting
in:

arg minU∈RHψ×Hφ
1
2 ||U||

2
F + C

∑m
i=1 ξ̄

(i)

s.t.
〈
y(i),Uφ(x(i))

〉
≥ 1− ξ̄(i), ξi ≥ 0, i ∈ {1, . . . ,m} (19)

Remarkably, Eq.(19) is equivalent to Eq.(11) with W substituted by U, which suggests that a linear output
kernel is implicitly learned, and absorbed in W, when we training a simple joint SVM with no explicit kernel
on outputs.100

4.2. Odds-ratio based kernel

In this paper, we also explicitly design an odds-ratio based kernel over tag-sets to capture pairwise
dependencies. The dependency between tags measures how much the appearance of one tag increases or
decreases the chance of another tag to occur in the same label set. At first, we can estimate the probability
of co-occurrence of two labels, wr and ws, form training data:

P (wr, ws) =

∑
i=1,...,m y

(i)
r = 1 and y

(i)
s = 1

m
. (20)

according to which, we can compute the odds ratio, a measure, of the dependency between those words by
the well known formula [21]:

Ors =
P (wr, ws)P (wr, ws)

P (wr, ws)P (wr, ws)
, (21)

where wr means the complement of wr (counting those sample items where wr does not occur). Then the
odds ratio is symmetrized by taking its logarithm, where the 0 value expresses the independence and the
positive (or negative) value corresponds to higher (or lower) co-occurrence of those words than the random
case. The higher of the magnitude of the log-odds-ratio shows stronger deviation from the independence.

Qrs ← log(Ors) (22)

The odds-ratio based kernel on a pair of outputs can then be computed:

KOdd
ψ (y(i),y(j)) = y(i)>Qy(j) (23)

where Q is the log-odds-ratio matrix with Qrs = Qrs.

5. Relation to Structured-Output Learning

Interestingly, although derived from a rather different starting point, our joint SVM (Eq.(11)) is the
same as Maximum Margin Regression (MMR) [1], wherein the motivation is to seek a linear operator in105

arbitrary tensor product space ψ(y(i))⊗φ(x(i)). In addition, Eq.(11) is also related to structural SVM [6, 2]
by sharing the same objective, yet with different constraints. An empirical comparison of these two methods
on hierarchical-label learning is in [22]. The solution of the MMR stands close to the Minimum Description
Length Principle, see for example in [23], by providing a highly compressed description to complex learning
problems. In particular, when a linear output kernel and Hamming loss function are used in structural SVM.110

Structural SVM can be converted to a rather similar formulation as joint SVM by decomposing Hamming
loss and y element-wisely. The detailed derivation was presented in [4].
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6. Online Learning of Joint SVM

In real-word applications, the number of images can be very huge and beyond the memory storage and
computing capacities of normal PCs. For instance, millions of images are uploaded to FacebookTM and
FlickerTM every day. Obviously, the computation of kernel matrix for even daily volume is impractical. The
formulation of joint SVM also suggests an implementation of a “perceptron-like” algorithm . For simplicity,
here we present the case where no output kernel is applied. We aim to demonstrate the transparency of
the formulation of joint SVM, which allows us to inherit most of the machine learning techniques developed
earlier. Consider the optimization problem in Eq.(10) when only the error term is minimized

min

m∑
i=1

h(λ− 〈y(i),Wφ(x(i))〉Hy ) (24)

subject to {W|W : Hx → Hy,W a linear operator},

where λ is a prescribed margin, and the function h(u) denotes the Hinge loss, that is

h(u) =

{
u if u > 0,
0 otherwise.

(25)

The error function that we are going to minimize has subgradient with respect to W and this can be
computed independently in an incremental way for each term occurring in the summation Eq.(24). The
reader can consult to [24] and [25] for details of incremental subgradient methods. The term-wise subgradient
is equal to

∂h(λ− 〈y(i),Wφ(x(i))〉Hy )|W =

{
−y(i)φ(x(i))T if λ− 〈y(i),Wφ(x(i))〉Hy > 0

0 otherwise.
(26)

We can define the learning speed with a step size, denoted by s, and we obtain the “perceptron-like”
algorithm given in Figure 1. In that algorithm Wnorm denotes the L2 normalized linear operator.115

Input of the learner: The sample S, step size s
Output of the learner: W ∈ RHy×Hx
Initialization: t = 0; Wt = 0; Wnorm

t = 0; ‖Wt‖ = 0
Repeat

for i = 1, 2, . . . ,m do
read input-output pair: (xi,yi)
βi = 〈yi,Wnorm

t φ(xi)〉Hy
if βi < λ then

Wt+1 = Wt + syiφ(xi)
T

t = t+ 1
‖Wt+1‖2 = ‖Wt‖2 + s2‖yi‖2‖φ(xi)‖2 + 2sβi
Wnorm

t+1 = Wt+1/‖Wt+1‖
end if

end for
until

(27)

Figure 1: Primal “perceptron-like” online learning algorithm for joint SVM.

The departure from the original perceptron algorithm, see for example in [26] and [27], is very moderate.
Here we need to learn a matrix realizing the projection of the input vectors into the output space. The
incremental subgradient based update employs the direct product of the corresponding output and input
vectors to update the projection matrix. Furthermore a normalization step is also included as a certain
regularization step, similar approach is proposed in [28].120
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A dual version of perceptron algorithm can be derived to learn vector outputs. Assume W is expressible
by the training instances, then we have the optimization problem

min

m∑
i=1

h(λ−
m∑
j=1

αj

κyij︷ ︸︸ ︷
〈y(i),y(j))〉

κφij︷ ︸︸ ︷
〈φ(x(i)),φ(x(j))〉) (28)

subject to αj ≥ 0, j = 1, . . . ,m,

The partial derivatives for αi, k = 1, . . . ,m equals to

∂h(λ−
m∑
j=1

αjκ
y
ijκ

φ
ij)|αi

=

{
−κyijκ

φ
ij if h(λ−

∑m
j=1 αjκ

y
ijκ

φ
ij) > 0

0 otherwise.
(29)

Finally the corresponding dual perceptron algorithm is formulated according to Figure 2. An analogue of

Input of the learner: The training set S, step size s,
Output of the learner: (αj), j = 1, . . . ,m,
Initialization: αj = 0; j = 1, . . . ,m,
Repeat

for i = 1, 2, . . . ,m do
read input: x(i) ∈ Rn;

if 〈
∑m
j=1 αjκ

y
ijκ

φ
ij) < λ then

for j = 1, 2, . . . ,m do

αj = αj + sκyijκ
φ
ij

endif
end if

end for
until

(30)

Figure 2: Dual “perceptron-like” online learning algorithm for joint SVM.

the standard Novikoff theorem provides an upper bound on the number of updates and a lower bound on
the achievable margin in the primal formulation. Here we follow the derivation that was presented in [29].
Let us define the margin for perceptron learner as

γ(W, S, φ) = min
(y(i),x(i))∈S

〈y(i),Wφ(x(i))〉F
‖W‖F

. (31)

Then we can claim the following statement not assuming the normalization step in the algorithm:

Theorem 1. Let S = {(y(i),x(i))} ⊂ (Y × X ), i = 1, . . . be a sample set independently and identically
drawn from an unknown distribution and let φ : X → Hφ be an embedding into a Hilbert space, furthermore
assume that ‖φ(x(i))‖ = 1 and ‖y(i)‖ = 1 for all i, and that the learning rate, the step size, s is a fixed
positive real number. Suppose there exists a linear operator W∗ such that ‖W∗‖F = 1 and

γ(W∗, S, φ) ≥ Γ, (32)

and the algorithm stops when the functional margin 1 is achieved.

1. Then the number of updates made by Algorithm (1) is bounded by

t ≤ 1

Γ2

(
1 +

2

s

)
. (33)
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2. Then for the solution Wt in Algorithm (1) we have

γ(Wt, S, φ) ≥ Γ

s+ 2
. (34)

Proof 1. 1. Following the proof of the original Novikoff theorem [30], we first upper bound the norm of
the matrix Wt obtained after t updates:

‖Wt‖2F = ‖Wt−1‖2F + 2s〈y(i)Wt−1φ(x(i))〉Hy + s2‖y(i)φ(x(i))T ‖2F
≤ ‖Wt−1‖2F + 2s+ s2‖y(i)‖2‖φ(x(i))‖2 (35)

≤ ‖Wt−1‖2F + 2s+ s2

≤ ts(s+ 2).

We now provide a reverse inequality for the inner product with W?:

〈Wt,W
?〉F = 〈Wt−1,W

?〉F + s
〈
y(i)φ(x(i))T ,W?

〉
F

= 〈Wt−1,W
?〉F + s

〈
y(i),W?φ(x(i))

〉
Hy

≥ 〈Wt−1,W
?〉F + sΓ

≥ tsΓ.

Then we can create the squeezing inequality:

ts(s+ 2)‖W?‖2F ≥ ‖Wt‖2F ‖W?‖2F ≥ 〈Wt,W
?〉2F ≥ (tsΓ)2. (36)

implying the result.

2. Taking the bound Eq.(33) for t and substituting into Eq.(35) we arrive at

‖Wt‖F ≤
s+ 2

Γ
. (37)

Then for the margin we have

γ(Wt, S, φ) ≥ min
(y(i),x(i))∈S

〈y(i),Wtφ(x(i))〉F
‖Wt‖F

(38)

≥ 1

‖Wt‖F
(39)

≥ Γ

s+ 2
, (40)

which proves the statement.

Sparsity bounds [31] can also be used to translate this bound on the number of updates into a corresponding125

bound on the generalization of the resulting classifier.
All results included in this paper are assumed the normalization conditions, ‖φ(x(i))‖ = 1 and ‖y(i)‖ = 1,

of Theorem 1. By forcing the normalization of ‖Wt‖ for all t in Algorithm 1 allows us to simplify and sharpen
the proof of Theorem 1. In this case Expression (35) collapses into a identity of both sides of the equation,
therefore instead of (36) we have

1 = ‖Wt‖2F ‖W?‖2F ≥ 〈Wt,W
?〉2F ≥ (tsΓ)2, (41)

from which we gain that

t ≤ 1

sΓ
, (42)
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Number of
Dataset labels training instances test instances average labels

Corel5k 260 4500 500 3.3965
Espgame 268 18689 2081 4.6859
Iaprtc12 291 17665 1962 5.7187

Table 1: Statistics of three benchmark datasets.

and in case of the margin we can write

γ(Wt, S, φ) ≥ 1, (43)

which statements are significantly stronger than those appearing in the general case. The price that we need
to pay for this result is the slower algorithm.

In comparing our algorithm with other online learning schemes of maximum margin based learning
methods, e.g. SVM, (see some realizations in [32] and [33]), we need to bear in mind that our methods130

learns to predict all components of the label vector within one optimization problem. Those methods which
can deal only with binary classification problems have to solve as many binary label subproblems as the
number of labels independently, therefore their overall computational complexity turns to be significantly
higher than our approach.

7. Experiment135

7.1. Databases

In our experiments, we used three benchmark datasets, Corel5k, Espgame and Iaprtc12. These three
datasets have been widely used in image annotation studies [7, 8, 9, 10, 3, 11] with performance evaluations
reported therein. Therefore, we can easily compare our method with others. Statistics of three benchmark
datasets are summarized in Table 1. Readers are referred to [3] for more details of three datasets.140

7.2. Feature Extraction

In our experiment, we worked with 15 visual features extracted in [10]. More concretely, they contain
one Gist descriptor, six global color histograms and eight histograms of local bag-of-words texture features
3. The description of 15 features are summarized in Table 2. Readers are referred to [10] for more detail on
extracting these features. These features were also used in [10] and [11]. A similar visual feature set without145

layout was extracted and used in [3], while 30 visual feature with spatial layouts were used in [9].

7.3. Evaluation metric

In our experiment, we evaluated annotation performance using precision (P), recall (R), F-1 measure
(F), which were commonly used in previous studies. For each tag, the precision is computed as ratio between
the number of images assigned the tag correctly and total number of images predicted to have the tag, while150

the recall is the number of images assigned the tag correctly, divided by the number of images which truly
have the tag. Then precision and recall are averaged across all tags. At last, F1 measure is calculated as
F = 2P×RP+R .

7.4. Model selection

In three original databases, training/test data are already divided in advance. Therefore, given a learned155

model, there exist no variance in prediction performance on fixed test data. Hyper-parameters in Gaussian
kernels, polynomial kernels and odds-ratio based kernels are found by cross validation restricted to the
training data, namely it is divided into validation test and validation training parts. Then the learner is
trained only on the validation training items. At the end those values of the parameters have been chosen
which maximize the F1 score on the validation test.160

3All features are available on http://lear.inrialpes.fr/people/guillaumin/data.php.
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Feature Dimension Source Descriptor Location Layout

DenseHue 100 texture hue dense no
DenseHueV3H1 300 texture hue dense yes
DenseSift 1000 texture sift dense no
DenseSiftV3H1 3000 texture sift dense yes
Gist 512 - holistic - -
HarrisHue 100 texture Hue Harris points no
HarrisHueV3H1 300 texture Hue Harris points yes
HarrisSift 1000 texture sift Harris points no
HarrisSiftV3H1 3000 texture sift Harris points yes
Hsv 4096 color HSV - no
HsvV3H1 5184 color HSV - yes
Lab 4096 color LAB - no
LabV3H1 5184 color LAB - yes
Rgb 4096 color RGB - no
RgbV3H1 5184 color RGB - yes

Table 2: Description of 15 visual features tried in our experiments.

Feature
DenseHue
DenseHueV3H1
DenseSift
DenseSiftV3H1
Gist
HarrisHue
HarrisHueV3H1
HarrisSift
HarrisSiftV3H1
Hsv
HsvV3H1
Lab
LabV3H1
Rgb
RgbV3H1

Corel5k
P(%) R(%) F1(%)
33.3 26.0 29.2
38.1 30.7 34.0
40.2 32.2 35.8
43.7 34.6 38.6
33.7 26.9 29.9
31.0 24.6 27.4
34.5 27.7 30.7
39.9 32.1 35.6
40.2 33.4 36.5
38.3 30.6 34.0
40.8 33.8 37.0
35.1 27.5 30.8
39.7 30.7 34.6
42.0 33.4 37.2
42.1 34.5 38.0

Espgame
P(%) R(%) F1(%)
28.5 16.4 20.8
32.9 18.8 23.9
33.3 24.6 28.3
35.2 26.3 30.1
28.3 20.6 23.9
27.4 16.3 20.4
31.5 18.4 23.2
33.2 25.5 28.9
34.6 26.2 29.8
30.0 18.7 23.1
33.8 21.6 26.4
27.2 16.4 20.5
30.0 18.9 23.1
26.2 16.4 20.2
29.6 19.2 23.3

iaprtc12
P(%) R(%) F1(%)
26.7 17.5 21.1
31.8 21.0 25.3
38.4 26.5 31.4
40.5 28.3 33.3
33.2 23.5 27.5
27.6 18.3 22.0
31.9 21.9 26.0
39.4 26.9 32.0
40.7 29.7 34.3
32.6 21.1 25.7
35.4 24.1 28.7
28.4 17.9 22.0
32.7 20.8 25.4
32.8 20.6 25.3
35.7 23.0 28.0

Table 3: Performance of joint SVM without explicit output kernel on different individual features.

7.5. Selecting optimal features

In [10, 11], all 15 features were used for predicting tags. However, we believe that there exist some
redundancies in all 15 features. Also, some features might be weakly relevant to the annotation task. A more
efficient way is to identify a few most relevant features and use them for prediction. To this end, we apply joint
SVM without explicit output kernel on different features, and list their discriminative abilities in Table 3, in165

which the best and second runner-up features are highlighted with bold font. We can see that DenseSfitV3H1
is consistently more reliable than other features in three datasets. In addition, HarrisSiftV3H1 is also
optimal or close to optimal in Espgame and Iaprtc12 respectively. However, HarrisSiftV3H1 is inferior to
RgbV3H1 in Corel5k. Therefore, in our later experiments, we used DenseSfitV3H1+RgbV3H1 on Corel5k,
while DenseSfitV3H1+HarrisSiftV3H1 on Espgame and Iaprtc12. We combined two features by simply170

concatenating one feature vector after the other one.

11



Training Testing Testing Performance
Time (sec) Time (sec) Precision (%) Recall (%) F1 (%)

Independent SVMs (Gau) 6285.11 117.20 15.3 22.1 18.1
Independent SVMs (Pol) 4612.23 147.9 15.1 29.7 20.0

Joint SVM (Gau) 80.68 6.92 40.8 37.1 38.9
Joint SVM (Pol) 76.48 9.11 48.5 38.0 42.6

Table 4: Comparison between one joint SVM and multiple SVMs on Corel5k dataset. Two input kernels (Gaussian and 2-degree
polynomial) are tried in both learners.

Method

MBRM [9]
JEC [3]
TagProp [10]
FastTag [11]

JSVM
JSVM+Odd
JSVM+Pol(2)
JSVM+Pol(3)

JSVM-Per

Corel5K
P(%) R(%) F1(%)

24.0 25.0 24.0
27.0 32.0 29.0
33.0 42.0 37.0
32.0 43.0 37.0

48.5 38.0 42.6
48.8 37.1 42.2
46.6 37.0 41.3
41.5 31.3 35.7

37.5 29.8 33.2

Espgame
P(%) R(%) F1(%)

18.0 19.0 18.0
24.0 19.0 21.0
39.0 27.0 32.0
46.0 22.0 30.0

32.7 31.6 32.2
27.4 27.1 27.2
32.6 24.4 27.9
28.5 21.3 24.4

25.0 19.0 21.6

Iaprtc12
P(%) R(%) F1(%)

24.0 23.0 23.0
29.0 19.0 23.0
45.0 34.0 39.0
47.0 26.0 34.0

42.2 29.4 34.6
32.9 28.6 30.6
37.9 26.6 31.2
38.0 26.1 31.0

29.2 20.8 24.3

Table 5: Comparison between different versions of joint SVM and other related methods on three benchmark databases.

7.6. Comparison with Independent SVMs

At first, we applied both a joint SVM, and many independent SVMs on Corel5k dataset with the feature
combination selected above. To ensure fairness, no user-designed kernel is used on output for the joint SVM
(plain joint SVM), while Gaussian kernel and 2-degree polynomial kernel are tried for inputs in both learners.175

In the learning phase, the optimization problems (Eq.(7)) and (Eq.(12)) were solved with the same coordinate
descent method [20]. In addition, the same cross-validation procedure is used for both many independent
SVMs and the joint SVM to find the best hyper-parameters C, d, c, σ. To measure the efficiency, training
and testing time were recorded as well. All experiments were run on the same simulation and hardware
conditions (Python 3, Intel Core i7). The comparison of accuracy and efficiency between independent SVMs180

and joint SVM is presented in Table 4. While the learning and testing time of independent SVMs scale
with the number of tags, the computation time of joint SVM approximately equals a SVM for single-tag
classification. At the same time, in terms of accuracy, joint SVM also worked much better than independent
SVMs. We can also see that 2-degree polynomial input kernel worked better than Gaussian input kernel for
both learners.185

7.7. Comparison with state-of-the-art

More intensive experiments of joint SVM were conducted with different pre-designed, explicit output
kernels: odds-ratio based kernel (JSVM+Odd), 2-degree polynomial (JSVM+Pol(2)), 3-degree polynomial
(JSVM+Pol(3)). Also, online learning algorithm of joint SVM (JSVM-Per) was also implemented. All
configurations were run on all three datasets, with optimal feature combination and 2-degree polynomial190

kernel on inputs. The experimental results, together with the reported results from other related work, are
presented in Table 5. We can see that plain joint SVM (JSVM) outperforms all other results on Corel5k and
Espgame datasets, yielding the best results so far. JSVM is also the second best result on Iaprtc12 dataset.
The results of JSVM+Odd and JSVM+Pol(2) are similar on all three datasets. It is worth noting that
JSVM+Odd and JSVM+Pol(2) also worked better than previous methods by a large margin. Meanwhile,195

JSVM+Pol(3) is worse than JSVM+Pol(2). JSVM-Per’s performance is inferior to other JSVM versions,
although it is still better than two classic methods [9, 3].

12



7.8. Discussions

Based on our experiments, it seems that plain joint SVM (JSVM) works more robustly than the joint
SVMs with explicit output kernels. In order to dig deeper to find an explanation, we can study the corre-200

lation matrices of output tag-sets in three datasets. In Figure 3, for each dataset, we plot the histograms
(in log scale) of all correlation values in both training sets and testing sets. We can see that most entries in
correlation matrices are 0, which means that the pairwise correlation (or roughly speaking, dependencies)
is rather sparse. Although JSVM, JSVM+Odd both encode linear pairwise dependencies, it should be re-
minded that the implicit output kernel in JSVM is in regularization term, which implies that simpler output205

kernels (dependencies) are encouraged. However, JSVM+Odd does not have this preference. Therefore,
JSVM can implicitly learned most simple output kernels when no more complex ones are needed. Analo-
gously, the same principle can explain why JSVM+Pol(2), or even JSVM+Pol(3) led to worse results. If we
look closer, we can observe that in Corel5k datasets, stronger correlations are displayed in its testing set,
and correspondingly, the performance gaps between JSVM, JSVM+Odd and JSVM+Pol(2) are also rather210

small.
As for JSVM-Per, one reason of its inferiority is that the regularization is computed instance-wisely,

which might conflict the global effect it is supposed to have. However, we gain tractability, for extremely
large datasets, with acceptable accuracy cost. As a future direction work, we will investigate some alternative
online regularization strategies.215

8. Conclusions

A novel joint SVM was presented for automatic image tagging. It is superior to conventional SVMs based
on our empirical results. In particular, it compares favorably with state-of-the-art methods. As possible
future work directions, we would like to apply and improve joint SVM in other multi-label learning domains.
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Figure 3: The histograms (in log scale) of all correlation values in both training sets and testing sets: (a) Corel5k, (b) Espgame
(c) Iartc12.
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