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With the development of modern digitization, increasingly more data emerge in almost
all areas. It is worth emphasizing that not only does the quantity of the data increase,
but also the number of data types, or the sources where data are collected, are boosted.
Undoubtedly, more information can be exploited with the presence of more comprehen-
sive data. Nevertheless, merging different data together also makes the analysis of them
more challenging. There exist various forms of dependencies or interactions among mul-
tiple data. Therefore, working with these data goes much beyond traditional machine
leaning tasks: e.g. classification or regression, where the output is a single scalar. In this
dissertation, multiple data sets together are considered as structures, in which different
dependencies can hence be modeled. In particular, structures are encoded within three
forms by using: graphs, kernels and manifolds respectively, which can match different
application domains. This dissertation goes through inference, learning and optimiza-
tion of structured data which are represented with different forms. Some existing work
is reviewed while several new methods are put forward. In particular, to make the dis-
sertation more practical, different methods were applied and evaluated on real-world
application domains, including image segmentation, image annotation, protein function
prediction, object-action relation modeling and 3D transformation estimation. Of course
the applicabilities of these methods go far beyond those presented in the dissertation.
Meanwhile, this dissertation attempts to, with practical case studies, provide some main
principles or methodologies when confronting structured data, and empirical experience
in above-mentioned domains should be easily transferred to other ones. Above all, the
main contributions of this dissertation are several novel models and learning algorithms
for structured outputs, including joint SVM and kernel generalized homogeneity anal-
ysis for multi-label learning, persistent sequential Monte Carlo for learning undirected
graphical models. The study in this dissertation is expected to widen and/or deepen

the understanding of relevant research.
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Chapter 1

Introduction

“Before the begining of great brilliance, there must be chaos.”

I Ching

This is an introductory chapter which provides an overview of the dissertation. As
the title suggests, this dissertation focuses on working with structured data, including
inference, learning and optimization. In section 1.1, some motivation and background of
studying structured domains are explained. In section 1.2, an outline of the dissertation
is presented. Basically, the dissertation is composed of three parts and each part is
briefly introduced. In section 1.3, as the author’s contributions to relevant scientific

fields, a list of his research papers during doctoral study is presented.

1.1 Work on Structured Domains

This section mainly explains the concept of ”structure” and some structured domains

which will be studied later.

Generally, structures exist almost everywhere in the universe. For instance, it is usually
said that a galaxy, an architecture or a society is a structure. Looking closer at these
three examples and abstracting their similarities, a rough definition of the ”structure”

can be derived:

Definition 1.1. A structure is is a set of elements, which exist with certain states based

on the interactions among them.
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The “interactions” can be also replaced with other terms in different scenarios, e.g. de-
pendencies, compatibilities, constraints. Two critical points in understanding the defi-
nition are: (7). there should be more than one element; (ii). each element’s state can
be affected by the states of other ones. Based on this specification, more ”structure”
examples can also be easily observed. A sentence is a structure by considering words as
its elements, an image is a structure as a set of dependent pixels, a human body is a
structure composed of arms, legs and other parts, just to name a few. Indeed, structured

domains are very common in many areas.

In old times, people are already aware of integrating data collected from different sources
to find interesting patterns among them. However, this procedure was usually slow and
unstable. With the development of modern computers and digitization, increasingly
more types of data are available in almost all areas. There usually exist different kinds
of dependencies among multiple data. Therefore, on the one hand, more information
can be expected to be extracted from more comprehensive data; on the other hand,
some extra challenges are also added when confronting multiple dependent data. For
instance, after pooling multiple data together, working with them obviously goes much
beyond classic machine learning techniques for classification or regression. Therefore, it
is of significance to study how to conduct different tasks or manipulations on multiple

dependent data.

In this dissertation, multiple data sets are considered as structures, in which different
dependencies can hence be modeled. Furthermore, structures are encoded within three
forms by using: graphs, kernels, and manifolds respectively. These three forms match
different application domains and are selected according to the nature of the task at
hand.

In this dissertation, several structured domains will be considered in following tasks:

e image segmentation
e image annotation
e protein function prediction
e object action relation modeling
e 3D transformation optimization
In image segmentation, the labels of all pixels (or blocks) within an image construct a

structure, in which neighbouring labels should be dependent. In image annotation, the

annotated tags for images also constitute a structured domain, where the presence of each
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tag can be affected by other ones. Similarly, in protein function prediction, the functions
associated with each protein are also dependent. Actually, image annotation and protein
functions belong to multi-label learning. In object action relation modeling, meanwhile,
the structure is considered in two ways: first, given an object, the actions which can be
applied on it and lead to positive effects is a structured domain; second, given an action,
the objects on which the action can be successfully executed is also a structured domain.
In this sense, object-action relation modeling is a two-view learning paradigm. Finally,
in 8D transformation optimization, 3D translation and rotation together is considered
as a structure. In particular, by representing 3D rotations with 3 x 3 matrices, there

exist hard constraints among the entries of one matrix, i.e. they are dependent.

1.2 Overview

The dissertation can be divided into three parts: inference, learning and optimization.
The first part contains Chapter 2, where (probabilistic) graphical models and corre-
sponding inference are presented. Chapter 3 and Chapter 4 belong to the second part,
where two principles for handling structures, kernels and graphs, and their correspond-
ing learning algorithms are studied respectively. The third part contains Chapter 5,

which studies the optimization on graphs and matriz manifolds.

1.2.1 Part I: Inference with Graphical Models

Graphical models are popular tools for probabilistically modeling the interactions among
multiple variables. Directed graphical models and undirected graphical models will be
introduced, of which the representatives are Bayesian network and Markov network
respectively. The connections between Bayesian network and Markov networks will
be studied. Markov networks will be more emphasized since it provides more flexible

modeling capacity.

Also, three inference algorithms will be presented: (loopy) belief network, variational

methods and Markov chain Monte Carlo.

1.2.2 Part II: Structured Output Learning

The second part will focus on learning. First, Chapter 3 will continue with Markov

networks. In particular, a discriminative case of Markov networks, conditional random
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fields (CRFs) will be introduced. However, instead of modeling and inference in Chap-
ter 2, Chapter 3 is dedicated to investigate learning issues with undirected graphical

models.

Chapter 4, by contrast, will treat structured data within kernel methods. Kernel is not
unfamiliar to machine learning community since it has been incorporated with many
classic techniques for handling nonlinear patterns. Most previous work only consider
kernels on inputs, while in Chapter 4 kernels on structured output will be particularly

studied.

1.2.3 Part III: Optimization on Structures

The third part is for optimization on structured data, which is also quite desirable
in many applications. Two types of structure forms will be considered: graphs and
matrix manifolds. In particular, optimization with graphical models is essentially a
generalization of inference (in Chapter 2) by considering modes rather than expectations.
Optimization on matrix manifolds will be explained basically with a practical task: 3D

transformation optimization.

1.3 Author’s Contribution

During the author’s Phd study, ten relevant research papers were finished, out of which
nine are published (or accepted for publication) in journals or conference proceedings.

They are listed as follows:

I . Hanchen Xiong, Sandor Szedmak, Justus Piater. Implicit Learning of Simpler Out-
put Kernels for Multi-Lable Prediction, NIPS workshop on Representation and Learning
Methods for Complex Outputs (NIPS-RLCO14).

II Hanchen Xiong, Sandor Szedmak, Justus Piater. Towards Mazimum Likelihood:
Learning Undirected Graphical Models using Persistent Sequential Monte Carlo, The
6th Asian Conference on Machine Learning (ACML14), pp 205-220, 2014, Journal of
Machine Learning Research: Workshop and Conference Proceedings 39, Best Paper
Award.

III Hanchen Xiong, Sandor Szedmak, Justus Piater. Scalable, Accurate Image
Annotation with Joint SVMs and Output Kernels, Neurocomputing Journal (Accepted).
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IV Hanchen Xiong, Sandor Szedmak, Antonio Rodriguez Sénchez, Justus Piater.
Towards Sparsity and Selectivity: Bayesian Learning of Restricted Boltzmann Machine

for Early Visual Features,In Proceedings of the 24th International Conference on Arti-
ficial Neural Networks (ICANN14), pp 419-426, 2014, Springer LNCS.

V. Hanchen Xiong, Sandor Szedmak, Justus Piater. Joint SVM for Accurate and
Fast Image Tagging,In Proceedings of the 22nd European Symposium on Artificial Neu-
ral Network (ESANN14), pp 295-330, 2014

VI Hanchen Xiong, Sandor Szedmak, Justus Piater. 3D Object Class Geometry
Modeling with Spatial Latent Dirichlet Markov Random Fields, In Proceedings of the
35th German Conference on Pattern Recognition (GCPR13), pp 51-60, 2013, Springer
LNCS.

VII Hanchen Xiong, Sandor Szedmak, Justus Piater Homogeneity Analysis for
Object-Action Relations Reasoning in Kitchen Scenarios, In Proceedings of 2nd Work-
shop on Machine Learning for Intelligent Systems (MLIS13), pp 37-44, 2013, ACM.

VIII Hanchen Xiong, Sandor Szedmak, Justus Piater A Study of Point Cloud
Registration with Probability Product Kernel Functions, In Proceedings of 2013 Interna-
tional Conference on 3D Vision (3DV13), pp 207-214, 2013, IEEE.

IX Hanchen Xiong, Sandor Szedmak, Justus Piater Efficient, General Point Cloud
Registration With Kernel Feature Maps, In Proceedings of 10th International Conference
on Computer and Robot Vision (CRV13), pp 83-90, 2013, IEEE.

Besides, one unpublished work (in preparation) is also be presented in the dissertation.

X. Hanchen Xiong, Sandor Szedmak, Justus Piater Multi-Label Learning with Ker-
nel Generalized Homogeneity Analysis, Unpublished, 2015.

To fit the main theme of the dissertation and minimize content redundancy, only a subset
of them (paper I, IT, III, VI, VII, IX, X) are inserted at appropriate chapters or sections
of the dissertation. In addition, to keep them self-contained and self-consistent, their
original content and formats are preserved, which should be distinguished from regular
paragraphs. The preprints of these publications can be also found at: http://iis.uibk.
ac.at/publications, complying with their corresponding copyrights. Throughout the
dissertation, used papers will be referred to by their corresponding roman numerals

specified above.


http://iis.uibk.ac.at/publications
http://iis.uibk.ac.at/publications

Chapter 2

Graphical Models: Structural

Modeling and Inference

“Study the past if you would define the future.”

Confucius

Graphical models have been studied in many disciplines, such as artificial intelligence
(Pearl, 1988), statistics (Lauritzen and Spiegelhalter, 1990) and communication (Frey,
1998). Using graphical models is considered as one important landmark in machine
learning research. KEssentially, graphical models enable graphs to assist and facilitate
probabilistic representation, analysis and computing. This chapter starts with two rep-
resentative graphical models, Bayesian networks and Markov networks in section 2.1.
Some fundamental basics, including factorizations, conditional independencies and the
conversions between Bayesian networks and Markov networks, are explained. In sec-
tion 2.2, three inference algorithms for graphical models are reviewed: (loopy) belief
propagation, variational methods and Markov chain Monte Carlo (MCMC). At last, an
application of the modeling and inference with graphical models is presented in section
2.3, where a hybrid model, Spatial Latent Dirichlet Markov Random Fields, is developed
for learning 3D part-based shapes.

The content in this chapter basically is a short summary of relevant materials collected
from Bishop (2006), Barber (2012), Koller and Friedman (2009) and Wainwright and
Jordan (2008).
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2.1 Probabilistic Graphical Models

Basically, graphical models are divided into two categories: directed and undirected ones.
The most popular directed graphical model is Bayesian networks, or Belief networks;
while the most widely used undirected graphical model is Markov networks, or sometimes
referred to as Markov random fields. This section will cover both Bayesian networks and

Markov networks by going through their basic properties.

2.1.1 Bayesian Networks

Given a set of variables {x1, x2, -, z; }, one key function of graphical models is to model the
interactions among them using graphs. A Bayesian network is a very intuitive graphical
model by defining a joint distribution of {x,x9, - ,z;} with simple cause-effect links.
More precisely, a Bayesian network is constructed by considering all cause-effect relations
and linking them with directed arrows. Then the joint distribution can be factorized as
the product of all conditional distributions associated with cause-effect relations. It is
better to start with a real-world example (Barber, 2012) for a quick understanding of

the concept:

Wet-grass Example: One morning Tracey found that the grass in her garden is wet
(T € {0,1}). Is it due to overnight rain (R € {0,1}) or did she forget to turn off the
sprinkler last night (S € {0,1})? Next she notices that the grass of her neighbor, Jack,
is also wet (J € {0,1}), and she also remembered it was cloudy on the previous daytime

(C €{0,1}).

In the above example, five binary variables are involved: T, R, J,S,C. After an easy

analysis, the corresponding Bayesian network can be drawn as follows:

FIGURE 2.1: The Bayesian network for the wet-grass example.
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The joint distribution of these five variables is:
P(J,T,R,C,S)= P(J|IR)P(T|R,S)P(R|C)P(C)P(S) (2.1)

It is worth mentioning that the conditional distributions are definitely not limited to
represent cause-effect relations. Actually, they are more often used to encode generation
processes. Therefore, Bayesian networks are usually used as generative models in many

scenarios.

A formal definition of a Bayesian network is given as:

Definition 2.1. A Bayesian network is a Directed Acyclic Graph (DAG), which corre-

sponds to a distribution of the form:
P(X) = [[ P(xilpa(x:)) (2.2)
i
where X = U{z;}, pa(z;) denotes the parent nodes of x;.

The factorization property of the joint distribution of a Bayesian network is based on
the conditional independencies between variables. In the wet-grass example, some con-

ditional indepencies can be figured out with common sense:

J 1L T|R,J 1L C|R,J 1L S|R
T 1 C|R
R S|C
Cl S

Meanwhile, a more systematic way to check conditinal independencies is D-separation

rule:

Theorem 2.2. D-Separation Rule: Given three non-intersecting subsets of nodes
A, B, S, in a DAG G, we consider all possible paths from any node in A to any node in
B. The path is said blocked if either:

1. the path goes through either head-to-tail or tail-to-tail at the node, and the node

is in set S, or

2. the path goes through head-to-head at the node, and neither the node nor any of

its descendants is in the set S.
If all paths are blocked, then S D-separates A from B, and then:

Al B|S



Chapter 2. Graphical Models: Structural Modeling and Inference 9

The D-Separation rule can be empirically proved as follows:

Proof. Three type of separating nodes: tail-to-tail, head-to-tail and head-to-head are

considered in three simple graphs respectively

@O-@-® @O-@®

P(A, B|S) P(4, B|S)
) P(A,B,S
_ P(AB.S) = %m) P(A, B|S)
= TP® _ P(B|S)P(S|A)P(A) _ P(AB,S)
_ P(AS)P(B|S)P(S) = B(5) = %a)mmpw)
= P(S _ P(S|A)P(A _ P(S|AB
= = P(B|S) P = L

= P(B|S)P(A|S)

2.1.2 Markov Networks

In a Bayesian network, the joint distribution is decomposed into (directed) conditional
distributions. However, in many practical tasks, it is more interesting to model symmet-
ric compatibility between two variables. A more general graph for modeling dependencies
among variables is Markov networks, or sometimes referred to as Markov random fields
(MRFs). To obtain a quick awareness of the modeling flexibility of Markov networks, it

is helpful to rewrite the factorization of (2.1) as:

P(J,T,R,C,S)

—  P(JIR)P(T|R, S)P(R|C)P(C)P(S)

— P(J|R) P(R|C)P(C) P(T|R, S)P(S) (2.3)
——
$1(J,R) $2(R,0) #3(T,R,S)

= ¢1(Ja R)¢2(R7 C)¢3(T> R, S)

where ¢1(J, R), ¢p2(R,C), ¢3(T, R, S) are no longer conditional probabilities. As a mat-
ter of fact, in Markov netowrks, ¢1(J, R), p2(R,C), p3(T, R, S) even do not have to be
distributions. They can be compatibilities represented by any parametric form. Mean-
while, since P(J, T, R, C,S) is still a distribution, i.e. ZJ7T7R,C7S P(J,T,R,C,S) =1, a

normalization needs to be introduced.

A formal definition of a Markov network is given as follows:
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Definition 2.3. A Markov Network is an undirected graph which corresponds to the

distribution of the form:
1
P(x1, 29, ...20) = 5 H be(Xe) (2.4)

where X, is a clique of the graph nodes, and ¢.(X.) is called potential function over

clique X., and Z is to ensure the distribution normalized.
Remarks:

e the potential function is non-negative, and can be a function of any form over the
clique X, and in most cases it reflects the dependences /compatibilities /constrains

among x; € X, ;

e the normalization term can be computed as Z = > . [[. ¢c(Xc) or Z =

thm’m’mn 1. ¢c(Xc) for continuous cases;

e the clique defined here means maximal fully connected subgraph, some examples of

cliques and potential functions are shown in the following:

( )
Y(X1, Xo) P(Xo, X4)
( )
( )

Y(X1, Xo, X3) (X1, Xo, X3, Xy)

Similarly to Bayesian networks, the factorization of (2.4) is also based on the conditional
independencies among variables. Meanwhile, in Markov networks, checking conditional
independencies is much simpler than D-separation rule. The rule for checking conditional

independencies in Markov networks is referred to as Markov separation rule:

Theorem 2.4. Markov Separation Rule : o subset A is said to be separated from
another subset B by subset S if all possible paths from any member of A to any member
B pass through S. If S separates A from B, then

A1 B|S
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The equivalence between the factorization of Markov networks and Markov separation

rule is proved in Hammersley-Clifford theorem (Hammersley and Clifford, 1971).

Based on the Markov separation rule, several interesting and useful properties can be

further derived.

Corollary 2.5. Local Conditional Independence: when conditioned on its neigh-

bors, x; is independent of all other variables of the graph:

P(z;| X \x;) = P(x;|ne(z;))

For instance,

” = x4 1L {29, z3, 6, T8, X9 }[{21, 25, 27}

Corollary 2.6. Pairwise Conditional Independence: given two non-adjacent vari-

ables x; and xj, they are independent conditioned on all other variables of the graph:

w; AL x| X\ {2, 75}

For instance,

” :>964J-L966\{901,962,903,33573?7,968,339}

2.1.3 Connecting Bayesian Networks and Markov Networks

As shown in (2.3), a Bayesian network can be also considered as a Markov network
which uses conditional distributions as its potential functions. However, the correspond-
ing graph also needs to be modified to fit the conditional independencies and Markov

separation rule. The modification procedure is:
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(© (© ()
(o O = (— (D
AN

FIGURE 2.2: (a) Converting the Bayesian network of the wet-grass example to a Markov
network; (b) the factor graph the wet-grass example.

1. find all parents which share a common child and connect them with undirected

links;

2. remove all arrows in the graph.

The first step is usually called “moralization” since it binds unconnected parents to-
gether. For example, converting the Bayesian network of the wet-grass example to a

Markov network is shown in Figure 2.2(a).

Conversion from Markov networks to Bayesian networks is also possible by using Chordal
graphs. However, the procedure is more complicated and seldom used. Another way for
connecting Bayesian networks and Markov networks is using factor graphs, which is also
an undirected graphical model. However, factor nodes (usually represented by solid
squares) are used in factor graphs to encode interactions. Therefor, the specifications
of cliques in Markov networks, or conditional distributions in Bayesian networks, are no

more necessary. A factor graph of the wet-grass example is shown in Figure 2.2(b).

2.2 Exact and Approximate Inference

It has been shown that how Bayesian networks or Markov network can be used for
modeling dependencies among multiple variables. Meanwhile, a more practically impor-
tant function of graphical models is that inference tasks can be facilitated by exploiting
graph properties. As studied in the previous section, Bayesian networks can be easily
converted to Markov networks. Therefore, in this section, the inference algorithms are

explained based on Markov network cases.
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2.2.1 Belief Propagation

A main inference task is computing marginal distributions, based on which conditional
distributions can be subsequently computed as well. Again, an example is first illustrated
to understand the procedure of computing marginal distributions, based on which the

belief propagation algorithm will be explained later.

In a tree-structured Markov network shown below, A, B,C, D are four variables and

each of them has n states. Then how to compute P(A) ?

P(A)
@ complexity:0(n?)
= Y P(A,B,C,D)

B,C,D

@ e < Y.popld(A B)e(B,C)é(B, D)

X ZBQS(AvB)ZQZ)(BaC)ZQZ)(BvD)
c D

@ mc—p(B)  mp.B(B)
< > pi{o(A B)mep(B)mp-p(B)}

o< mpa(A)

In the above procedure, it can be seen that the computation complexity of calculating
p(A) is in general O(n3). However, by exploiting the graph structure and corresponding
factorization, the complexity is reduced to O(n). Basically, a new “message function”
m(+) is introduced; each variable is eliminated by first summing itself up in the product
of potential functions and m functions which involves it, and then passing a marginalize
message to its neighbouring variable. This procedure is repeatedly carried out on all
variables until it reaches A. To demonstrate the “message-passing” theme more clearly,
messages and passing directions are added in the Markov networks and highlighted be-

low:

P(A)
X ZB (z)(AvB) ZC ¢(B7C) ZD ¢(BvD)
< > .pi{o(A, B)mc—p(B)mpp(B)}

x mp-a(A)

Remarks: m¢c_,p(B) is called belief function of B over C' by summing out C' from

the potential function ) - ¢(B,C), and it will propagate afterwards;
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Similarly, P(C') can be computed with the propagations of belief functions:

mA—>B(B) P(C)

2494, B)> po(B,C) > p ¢(B, D)
> p?(B,C) >4 8(A, B) > po(B,D)
> p{0(B,C)map(B)mp-p(B)}

mp_c(C)

R R R OR

P(B)
X ZA ¢(AvB) ZC ¢(B7C) ZD ¢(BvD)

x ma-p(B)mc—p(B)mp_p(B)

Based on three examples above, some observations of “message passing” are:

e one variable can send a message to one of its neighbor only if it has received

messages from all other variables

mpo(C) =Y {d(B,C)map(B)mpp(B)}
B

e marginal probabilities are computed as the product of incoming messages:

P(B) = 4ma p(B)mcp(B)mpp(B)
P(A) ZzmpB_A(A)
P(C) zmpc(C)
P(D) = +mp_p(D)

e messages are asymmetric and thus associated with directions;
e messages are reused in many inference tasks, therefore it is more efficient to com-

pute all messages first and then conduct inference.

Based on the observations above, the belief propagation algorithm for tree-structured

Markov networks can be written out in Algorithm 1.
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Algorithm 1 Belief Propagation for tree-structured Markov networks

1: select one variable as the root;
2: starting from all leaves, propagate beliefs toward the root as:

mi_,j(wj)zz P(xi, x5) H My (T4)

i keNe(i)\j

3: when the root receives all messages from its neighbors, then propagate backwards
the “inverse beliefs” as the step 2;
4: the marginal probability of each variable is computed as:

P(zi)oc [] mrsi(z)

keNe(t)

where Ne(7) denotes the neighboring variables of z; in the graph.

However, in grid-structured Markov networks, there is no root and leaves, where the
belief propagation algorithm can not be directly applied. Fortunately, an approximate
version of the belief propagation algorithm, loopy belief propagation, was proposed for
the inference of loopy Markov networks. Basically, in the loop belief propagation algo-
rithm, all messages are randomly initialized and iteratively updated based on the same
passing rules as in the belief propagation algorithm. A pseudo-code of the loopy belief
propagation algorithm is presented in Algorithm 2. Until now, there exist no theoretic
proof for the convergence the loopy belief propagation algorithm. However, it has been

applied in many tasks and empirically works well.

Algorithm 2 Loopy Belief Propagation for Loopy Markov networks

1: initialize all messages m;_,; in both directions of all connected variables randomly
or with a constant value (e.g. 1);

2: while all messages converge do

3:  update messages as:

mz(-fjl)(iﬂj)zz dwnz) ] my, ()

i keNe(i)\j

4: end while

2.2.2 Markov Chain Monte Carlo

Another way for approximate inference is using samples and Monte-Carlo estimations.
Markov chain Monte Carlo (MCMC) is a very general and powerful framework for sam-
pling. In particular, Gibbs sampling is popularly used in Markov networks. MCMC is

a family of sampling algorithms, which are designed to generate samples from a target
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distribution p(x),x € R?. Usually, directly sampling from p(x) is not possible since its
density can be arbitrarily complex. However, p(x) can be evaluated up to a normalizing

constant, e.g. a Markov network:

A Markov chain of x is specified by a transition probability, based on which the state of
x can be evolved. The transition probability defines how the state of x at the current
step changes to the next step: T (x'*!|x?). The distribution p(x) is said to be invariant

with respect to a Markov chain with the transition 7 (x!*!|x?) if
p(x") =Y T(x|x")p(x") (2.5)
xt

A sufficient (but not necessary) condition for checking whether p(x) is invariant with

respect to the Markov chain with T is detailed balance:

p(x)T(x"[x") = p(x") T (x'|x") (2.6)

2.2.2.1 Metropolis Algorithm

The Metropolis algorithm is the simplest MCMC sampling method. The transition
probability in the Metropolis algorithm is specified by a proposal distribution and an

acceptance probability:

e the proposal distribution is symmetric: ¢(x*|x!) = q(x!|x*);

p(x*) b

e the acceptance probability is: A(x*;x?) = min{1, )

A pseudo-code of the Metropolis algorithms is provided in Algorithm 3. It can be seen
in the Metropolis algorithm that x°,x!,--. ,x* are not independent because successive
samples are correlated. Therefore, in practice, real independent samples can be obtained

by only retraining samples at every M iterations.

The detailed balance of the Metropolis algorithm can be proved as follows:
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Proof.

p(xh) T (x*|xt) = p(xt) (q(x*]xt) min{1, 7;((?;)) })
= min{p(x')g(x*[x"), ¢(x*x")p(x*)}

Ja(x*[x') min{1, 22} (2.7)
p(x*) (g(xtx") min{1, L2 })
)

p(x*)
= p(x*)T(x'|x*)

Algorithm 3 Metropolis Algorithm
1: initialize x°.
2: fort=0to7T —1do

3:  generate a sample uniformly from [0, 1]: u ~ U 1]

4:  generate a sample from a symmetric proposal distribution: x* ~ g(x*|x!).
5. if uw < min{1, Z((’;tg} then

6: xH = x*,

7. else

8: xl = xt,

9: end if

10: end for

2.2.2.2 Metropolis-Hastings Algorithm

In the Metropolis algorithm, the proposal distribution is restricted to be symmetric,
which limits its applicabilities. A more general extension is the Metropolis-Hastings
algorithm, of which the proposal distribution and the acceptance probability are specified

as follows:

e the proposal distribution can be arbitrary (no symmetric restriction): g(x*|x");

p(x*)q(x"|x*) b

.1 L . t _ .
e the acceptance probability is: A(x*;x") = min{1, T CaEIRE

The pseudo-code of the Metropolis-Hastings algorithm is presented in Algorithm 4. The

detailed balance of the Metropolis algorithm can be proved as follows:

Proof.
. X xt|x*
pT(|x) = plxt) (glx'[xt) min{1, 2 )

t x* | xt

B ) %,} (2.8)

= p(x¥) Q(Xt\x*)min{l,ww
)

q(x*|x*)



Chapter 2. Graphical Models: Structural Modeling and Inference 18

Algorithm 4 Metropolis-Hastings (MH) Algorithm
1: initialize x°.
2: fort=0toT —1do
3:  generate a sample uniformly from [0, 1]: u ~ Ug ).

4:  generate a sample X*tN q(x*|xh).
: : p(x*)g(x"]x*)

5. if u < min{1, PTG ) then

6: xitl = x*.

7 else

8: xit = xt.

9: end if

10: end for

2.2.2.3 Gibbs Sampling Algorithm

Gibbs sampling is a special case of Me with the cyclic conditional distributions among

{x1, 9, - , x4} as the proposal distribution. Therefore,

e the proposal distribution: g(x*|x!) = p(mﬂazﬁ 7d]/k);

e the acceptance probability is:

n— _ : p(x*)q(x"]x*)
A7) = min { 1, 2R
) p(x*)p(z} |t )
= min { 1, eI/
p(x )p(wk‘m[Lm ,d]/k)
_ min J 1 p(le,m,d]/k)p(xizlle,»-»,d]/k)p(xﬂle,»-»,d]/k)
’p(m[l’_' d]/k)p(mklm[lﬂ...’d/k])P(wﬂx[l’...’(i]/k)
. * t
since 1) | p =T L gk )
e B8l el min{1,1}
= 1

Obviously, the proposal at each iteration is accepted in Gibbs sampling. The pseudo-
code of Gibbs sampling is given in Algorithm 5.

Algorithm 5 Gibbs Sampling Algorithm
. initialize x°.
cfort=0toT —1do

randomly select

1
2
3
4:  sample z}, from p(mya:fl’._, )
5
6

t+1 %
l’k —ZL'k,.

: end for
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2.2.3 Variational Methods

Variational methods are an alternative to sampling-based methods for approximate in-
ference. Basically, variational methods convert the inference problem into a constrained
optimization problem, where standard optimization tools can be applied. For instance,
to approximate a distribution p(x), a family of distributions ¢(x) is used and the optimal
one is eventually selected by using certain optimization machinery. In a Markov network

p(x), the energy is defined as:
E(x) = —logp(x) —log Z (2.9)

and the variational free energy with ¢(x) is defined as:

F(q) = Z )+Zlogq

= — Z ) log p(x) + Z )log q(x) —log Z (2.10)

KL(q(x),p(x))

It can be seen that the variational free energy can be minimized when ¢(x) = p(x).
Therefore, the joint distribution p(x) is considered as the optimal solution in the opti-

mization problem: arg ming F'(q).

The simplest variation method is the mean field approximation, where ¢(x) is a locally

factorized: ¢(x) =[], ¢i(z;). Then the variational free energy is:

FMF ZZIOggbc Xc H% Ty "’ZZ% T IOng :EZ) (2'11)

1€c

where c¢ indexes cliques. Then the approximate marginal distribution of each variable

gi(z;) is updated according to:
gi(zi) = aexp [ Y logoe(xe) [[ al)) (2.12)
CECZ' Xc/i jEc,j;ﬁi

where C; denotes the set of all cliques which z; occupies and « is a normalization term
for 3, qi(z;) = 1.
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2.3 3D Part-Based Shape Modeling with Spatial Latent
Dirichlet Markov Random Fields

This section presents an application of graphical models on 3D part-based shape mod-
eling. In particular, to fit the target of the task and make full use of various heuristics,
both Bayesian networks and Markov networks are utilized. On the one hand, it is desired
to have shape generative models, which can capture the composition processes of parts
in different shapes. On the other hand, local and global spatial coherences need to be
taken into account when conducting segmentation. Therefore, a hybrid model, spatial
latent Dirichlet Markov random fileds, is developed by integrating latent Dirichlet allo-
cation (LDA), mizture of Gaussians (MoGs) and a Markov random field. In addition,
Gibbs sampling is applied for inference in the hybrid model. More technical details and
results are presented in the paper VI by the author.

VI Hanchen Xiong, Sandor Szedmak, Justus Piater. 3D Object Class Geometry
Modeling with Spatial Latent Dirichlet Markov Random Fields, In Proceedings of the
35th German Conference on Pattern Recognition (GCPR13), pp 51-60, 2013, Springer.
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3D Object Class Geometry Modeling with
Spatial Latent Dirichlet Markov Random Fields*

Hanchen Xiong Sandor Szedmak  Justus Piater

Institute of Computer Science, University of Innsbruck
{hanchen.xiong, sandor.szedmak, justus.piater} Quibk.ac.at

Abstract. This paper presents a novel part-based geometry model for
3D object classes based on latent Dirichlet allocation (LDA). With all
object instances of the same category aligned to a canonical pose, the
bounding box is discretized to form a 3D space dictionary for LDA.
To enhance the spatial coherence of each part during model learning,
we extend LDA by strategically constructing a Markov random field
(MRF) on the part labels, and adding an extra spatial parameter for each
part. We refer to the improved model as spatial latent Dirichlet Markov
random fields (SLDMRF'). The experimental results demonstrate that
SLDMRF exhibits superior semantic interpretation and discriminative
ability in model classification to LDA and other related models.

1 Introduction

During the past decades, computer vision has made remarkable progress in vi-
sual object understanding, e.g. classification, pose estimation and segmentation,
etc. However, most previous study of object modeling is based on 2D images,
in which appearance is the main and only information source for various tasks,
so most attention is focused on increasing the robustness of algorithms to light-
ing changes, intra-class appearance variation and viewpoint variation [1]. Mean-
while, 3D geometry properties of objects have been rarely exploited and used
to increase the expressiveness of object models. Recently, pioneering work [7,13]
has attempted to add 3D geometric information to object models, demonstrat-
ing that the accuracy and robustness of such algorithms can be enhanced with
extra 3D geometry clues. However, there still exists an obvious gap between
2D appearance modeling and 3D geometry modeling with respect to their in-
terpretation and representation abilities, and it has been advocated [7,13] that
robust 3D geometry modeling is highly desirable. Motived by this gap and desire,
this paper puts forward a novel 3D object class geometry model in the light of
state-of-the-art techniques developed in machine learning and computer graph-
ics. Part-based models have displayed merits in 2D appearance modeling [4] for
handling partial occlusion, our 3D geometry model is likewise part-based and
inherits these strengths. The training data of our algorithm are collections of 3D

* The research has received funding from the European Community’s Seventh Frame-
work Programme (FP7) under grant agreement no. 270273, Xperience.
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Fig. 1. Different object instances of the same class should share similar 3D structure of
composing parts, although their parts can slightly vary from one instance to another.

models of different instances which belong to the same category (Figure 1). The
basic underlying principle of our modeling is the concept that different object
instances of the same class should share similar 3D structure of composing parts,
although their parts can slightly vary from one instance to another. For example,
all bicycles are composed of a frame and two wheels, and the geometric relation
between these three parts are similar across different instances (Figure 1). In this
paper, 3D objects are represented by point cloud data (PCD), which is a gen-
eral and popular representation of 3D shapes and can easily be converted from
other data formats (e.g. meshes). First, for each class, different PCDs of object
instances are aligned using point cloud registration methods. Secondly, the main
learning step is inspired by latent Dirichlet allocation (LDA) [!] and computer
graphics [5]. LDA is a state-of-the-art machine learning tool for discovering la-
tent topics within document collections. Here we apply LDA by considering each
object point cloud as a document, and each part as a topic. With the bounding
box volume discretized into a 3D grid dictionary, the part can be mined out
as a multinomial distribution over the discrete 3D space, and each object is a
multinomial distribution over parts. However, standard LDA ignores the spa-
tial coherence, which is of great importance in our task but not generally taken
into account in natural language applications. Based on discoveries in computer
graphics [5] and other work on LDA [3,11], we develop a spatial latent Dirich-
let Markov random field (SLDMRF') model with extra undirected links between
topic labels and spatial parameters. The proposed SLDMRF can co-segment all
point clouds simultaneously under a prior of coherence of correspondence, spatial
continuity and spatial smoothness. According to our empirical results (section
3), compared to standard LDA and other related models, SLDMRF can achieve
much more consistent and semantically meaningful segmentations of 3D point
clouds, and the learned class geometry models display better discriminative abil-
ity in classification.

1.1 Related work

The starting point of 3D geometry modeling in visual object understanding is the
difficulty in dealing with appearance variation due to different viewpoints. There
have been several attempts to embed 3D geometric information into object mod-
els [2,3,7,13], and all of them have reported improvement in accuracy and robust-
ness, although different 3D geometry information are exploited and modelled in
their work. In [2] 3D object shapes are probabilistically modelled as continuous
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distributions in R3 with a kernel density estimator (KDE). However, that work
explicitly addresses neither category-level tasks nor semantic segmentation. Ob-
jects are considered as Gausssaian mixtures and expectation-maximization (EM)
is applied to estimate corresponding Gaussian parameters and weights. One ob-
servation of Gaussian-mixture-based segmentation is that discovered parts rarely
display good semantic interpretability since usually the part geometry is too com-
plex to be modelled as a Gaussian (section 3.1). Other work attempts to improve
the expressiveness of object geometry models in different ways. For example, De-
try et al. [3] represent objects as hierarchically-organized spatial distributions of
distinct feature types, but did not seek to produce semantically-meaningful seg-
mentations. Other models [7,13] extract 3D geometry information at the class
level. However, in [7] the segmentation is again based on Gaussian mixtures
and EM, and most [13] do not model object classes in a part-based manner
to avoid segmentation. Meanwhile, another thread of segmentation-based visual
modeling is the application of Latent Dirichlet allocation (LDA) in computer
vision [10,11,8]. LDA was originally developed to discover hidden topics in text
corpora by clustering words into different topics [I]. Standard LDA, however,
ignores spatial coherence, which is problematic in vision applications. Therefore,
spatial LDA (SLDA) [11] and Latent Dirichlet Markov random fields (LDMRF)
[8] were put forward to produce better, spatially-coherent segmentations. In
addition, with higher emphasis of the smoothness of parts and consistent cor-
respondences, 3D segmentation in computer graphics [5] constructs graphs with
neighboring intra-links and correspondence inter-links among objects, and min-
cut is used on graphs for segmentation.

The main contribution of this paper is an extension of LDA for 3D object
class geometry modeling, which we refer to as Spatial Latent Dirichlet Markov
Random Fields(SLDMRF). The proposed model is built with inspiration from
recent advances in different fields [1,11,8,5], and it yields superior interpretability
and representational capability in modeling 3D object class geometry.

2 3D Object Class Geometry Modeling

With the point cloud representations of 3D object shapes, the alignment of
different instances of the same class is achieved with point cloud registration
algorithms. While any suitable registration procedure can be used, we adopted a
novel method [12] since it is very efficient and robust to non-rigid transformation,
which suits the case of intra-category shape variation. An example of aligning
dogs is displayed in Figure 2.

2.1 Latent Dirichlet Allocation

LDA [1] is a generative model that utilizes the information of co-occurring words
to find out hidden topics shared by documents. In LDA, each document is con-
sidered as a finite mixture of topics; each topic is a finite mixture of words. The
graphical model of LDA is shown in Figure 3(a). The generative process of LDA



Chapter 2. Graphical Models: Structural Modeling and Inference 24

4 Hanchen Xiong Sandor Szedmak  Justus Piater

Fig. 2. Alignment of different dog instances by point cloud registration [12]. Left:
original 3D shapes of different dog instances; middle: point clouds generated from the
shapes on the left; right: three views (top, profile, front) of the point clouds (middle)
after alignment.

OxEOWH
O reTE—8)

ne(1,N,]
me[1,M]

(a)

Fig. 3. (a) Graphical model of LDA; (b) Application of LDA to model 3D object cate-
gories; (¢) Construction of 3D dictionary by discretizing the 3D space of the bounding
box.

is as follows: (1) for each topic k& € [1, K], a multinomial parameter 6}, over
words is sampled from Dirichlet prior 3; (2) for each document m € [1, M],
a multinomial parameter 7r,, over K topics is sampled from Dirichlet prior

a; (3) for each word wi, n € [1,N,,] in document m, a topic label 2 is

first sampled from multinomial distribution PLN Multinomial(7r,,), then the

word w,(ff ) is sampled from the multinomial distribution parametrized with OZ(n) ,

wﬁ,? ) Multinomial(@z(n) ). Hyperparameters o and 3 define the Dirichlet priors

governing the parameters of multinomial distributions. Usually o and 3 are set
in a symmetric manner and using low values [6]. In [10], LDA is applied on a
collection of images. Each image is considered as a document, objects correspond
to topics, and visual words are generated using vector quantization on extracted
features. In our case, however, LDA is utilized for 3D object class geometry
modeling with objects of the same category as documents, and parts shared by

different instances correspond to topics (Figure 3(b)).
3D Dictionary. In our task, LDA is expected to work effectively under the

assumption that different objects of the same category should share very similar
structure. Therefore, when LDA is applied on each collection of categorical object
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point clouds, the co-occurring patterns are the 3D space occupied by 3D points.
In each collection, all instances can be aligned to a canonical pose, based on which
the 3D space of the bounding box is discretized into a grid, where each block
represents a 3D word. Therefore, when transferring point clouds to corresponding
documents, word wy will replace 3D point z; if x; lies within block wyg. In this
way, the discovered part actually is a distribution over 3D space, and a category
is a mixture of these distributions. The concept of dictionary discretization is
illustrated in Figure 3(c).

For label inference and parameters learning in LDA, a collapsed Gibbs sam-
pling [6] can be formulated as

k
(n) N(fr)nn w(n) + ﬁw;‘?) (m)
QLDA(Zm = ) x ZW(N’(ICT;L + ﬁ ) ’ (men,k + Oék) (1)

where N*) is the number of words in the corpus with value w assigned to

—mn,w
topic k excluding the nth word in document m, and N(_Tr)m i is the number of
words in document m assigned to topic k£ excluding the nth word in document
m. From (1), it can be seen that LDA prefers to cluster together those words
that often co-occur in the same document. Therefore, simply applying LDA on
the 3D dictionary, unfortunately, is not expected to work because it misses a lot
of spatial and correspondence information, which is not meaningful in the text
processing case: (1) Spatial coherence is an important issue when LDA is applied
in vision applications [11,8]. For example, in all point clouds of dogs, 3D words
located in the hip and in the head will always co-occur. So by using (1), the hip
and head of dogs can be clustered into a part, which is a spatially (of course also
semantically) unreasonable segmentation. (2) Correspondence coherence is like-
wise important. LDA can find synonyms by finding their co-occurring patterns
in documents. However, the “synonyms” in the 3D dictionary are identified by
spatial correspondence. For example, in Figure 2, the legs of different dogs can
rarely match exactly due to different species or standing poses. However, since
all legs are close and correspond to each other, they should be clustered into the
same part.

2.2 Spatial latent Dirichlet Markov random field

To enhance the spatial coherence, in Spatial LDA (SLDA) [11] 2D images are de-
composed into small overlapping regions, which are used as documents to ensure
that the pixels belonging to one part should be close to each other. Latent Dirich-
let Markov random fields (LDMRF) [8], on the other hand, construct Markov
random fields on the part label variables to enhance the local spatial coherence.
However, both of them ignore the correspondences across the segmentations of
different instances. Inspired by these improved versions of LDA and consistent
co-segmentation in computer graphics [5], we put forward a novel spatial latent
Dirichlet Markov random field (SLDMRF) that inherits virtues from both SLDA
and LDMRF. However, rather than being a simple combination of SLDA and
LDMRF, the proposed SLDMRF goes beyond them in several ways.
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(a) Left: for each word (red block),
there are two types of connec-
tions in SLDMRF: neighboring spa-
tial connections (blue blocks) and

correspondence connections (green (b) Graphical model of SLDMRF: compared
block); right: the normal vector of to the standard LDA (Figure 3(a)), there are
each word in the document is es- extra directed links between topic labels and
timated by using the points lying spatial Gaussian parameters cy.

within the word.

Fig. 4. SLDMRF modeling

First, instead of going through all small overlapping sub-volumes as SLDA
does, we explicitly model the positions of all parts by parameters cj such that 3D
words that share the same label k are likely to be close to ci. Second, similarly
to LDMRF, SLDMRF constructs a Markov random field on the neighboring
label variables. However, different from LDMRF, we assign different potential
functions based on the prior that the segmentation boundaries should be located
at the point where abrupt curvature changes take place. The potential function
is defined as

9(zi, zj) = (2, zj) exp(|(0s, 05) ) (2)
where 0(z;, z;) equals 1 when z; and z; are neighbors, and 0 otherwise (Fig-
ure 4(a)), and o;, 0; are the normal vectors estimated by using the points lying
within word ¢ and j respectively (Figure 4(a)). Last but not least, SLDMRF en-
hance the correspondences of segmentation across different instances. Inspired
by the co-segmentation used in [5], we construct inter-connections between cor-
responding parts across different objects, and correspondences are matched by
finding the nearest neighbors in other objects after alignment. In this way the
segmentation can be more consistent within a category. The potential function
g(z,(fb) , zy(Lj )) for correspondence connections is set in the same way as spatial con-
nections (2); & (z%), 24 )) is 1if 25 and 2 are nearest neighbours of each other,
and 0 otherwise. Because the part weights are already taken into account by
LDA (parameter 7), the labels within the Markov random fields are modeled

as:
p(Z) o exp (S5 9200 2)) (3)

The graphical model of SLDMRF is presented in Figure 4(b). Hyperpa-
rameters p, and V( (similar to a, 3) specify the Gaussian prior of part po-
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sitions ¢, ~ N (+; g, Vo). Given the part position cg, the label is sampled as
z; ~ N (w;; ¢k, A), where w; denotes the 3D coordinates of word w;. Since we do
not expect the label distribution to be truly Gaussian, A is set relatively large.

The joint probability of 3D words in SLDMRF p({w(n)}M’_Nm 1|, B) is:

m=1,n=1»

M Nm

ol H(/,,m/e(m/u plmale) 3 (e (a0,

m=1n=1 (n)_
Zym =1

(4)

N(wise <n>,A)N(ngg);uo,Vo)> < ]I \/exp(g(zf#, ;w)))

sy

where z,y € ér(ff ) denotes the set of all Word labels (the yth word in the xth

document) connected with 2 e s (zm , 23 )) = 1, and Q is the normalization
term induced by Markov ra,ndorn fields.

2.3 Inference and learning

Similar to the inference and learning in LDA, based on (4), we can develop
a collapsed Gibbs sampler by integrating out 7'rm,0 ()5 C_(n) in SLMRF. The

sampler can be more easily interpreted as a combmed” sampler by using clues
from LDA, MRF and Guassian mixtures:

q (250 = k) oc qoa (25 = k) - que (250 = k) - qe (25 = k) (5)

where QLDA(Z7(77$ ) _ k) is the collapsed Gibbs sampler of LDA (1),
exp (Z(Zj,zﬁ,’?))g(zj’ a) = k))

g (23 = k) o (6)
Sexp (2 o9z, 200 = )
is the Gibbs sampler based on the Markov random field, and
. N @ ™, A®
qe(z7(’n) = k) X ( () L (h) (21) (7)
2 N@m sy, A
is a collapsed Gibbs sampler of Gaussian mixtures, with
-1 2 L (k)
s (5
Ag A

where [ is the number of words which are labeled with k, and @w®*) is the mean
of 3D coordinates of words which are assigned to part k until the current iter-
ation. Similar to [0], parameters {7, }}_,, {6;}5_| can be estimated after the
convergence of Gibbs sampling;:

20 _ N 4 oy o) _ N + By
SN ) (NG A+ Bu)
Since hyperparameter «, in our case, is categorlcal part weight, we estimate it by

simply compute the average of m,,: a = M Z _, T™m- In addition, parameters
{ci}E | are read out as {puF}E | (8).

(9)
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3 Experiments

To evaluate the proposed model, 5 object classes (cars, bikes, dogs, motorcycles,
airplanes) from the Princeton shape benchmark (PSB) [9] database are used.
Since 3D shapes in the PSB are represented as triangulated meshes, we convert
them to point clouds by uniformly sampling points within triangles.

3.1 3D Object class geometry modeling

For comparison, LDA [1], LDMRF [¢] and Gaussian Mixtures (GM) models are
tested on the same data (aligned point clouds of categorical instances). Since
LDMRF requires manual interference (semi-supervision), to avoid human bias
during comparison, here we construct the same Markov random fields for both
LDMRF and SLDMRF so that LDMRF can also work in an unsupervised man-
ner. All four models are implemented with Gibbs sampling for label inference
and learning. To ensure fairness, the same part number and iteration number
(200) is applied. A test example of motorcycle modeling is presented in Figure
5. LDA does not find consistent and meaningful parts because of the intra-class
variation (each object is labeled as a part since LDA only focuses on co-occurring
patterns). LDMRF, on the other hand, discovers some locally continuous and
consistent segments on different objects. However, the global spatial coherence of
parts is poor; parts are shattered. GM establishes more globally obvious segmen-
tation pattern by finding more consistent and meaningful parts. Nevertheless,
GM ignores local spatial coherence, so parts are not well segmented; they tend
to be of blob shape and to overlap each other. By contrast, SLDMRF produces
best convincing segmentations in terms of consistence, local and global spatial
coherence and semantic meaning. The SLDMRF modeling results of other four
object classes are illustrated in Figure 6.

3.2 Geometry model classification

To illustrate the parts learned by SLDMRF is more accurate, and thus more
discriminative, we conduct quantitative comparisons on classification task. Since
LDA and LDMREF are far from being qualified for practical part-based modeling,
here we are only concerned with the comparison between GM and SLDMRF. 3D
shapes of 5 object classes are divided into training (70%) and test sets (30%).
The model learning is conducted in the same way as in section 3.1. Although
Markov random fields and spatial parameters greatly assists in segmentation
and model learning of SLDMRF, they are not used in the final category mod-
els. A learned bicycle model is shown in Figure 6(e). It can be seen that the
part position information and neighboring correlation are already encoded in
the categorical part parameter 6. Therefore, for the sake of simplicity and com-
putation feasibility, we only use learned LDA as our 3D object category models
for classification. To test an object M™, it is first aligned to the canonical poses
of different class models. In SLDMREF case, the likelihood that M* belongs to a
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3D Object Class Geometry Modeling with SLDMRF's 9

LDA

LDMRF |22

GM

RS
SLDMRF |7 :

Fig. 5. Comparison of segmentation by using LDA, LDMRF, GM and SLDMRF,
SLDMRF qualitatively yields more reasonable segmentations than the others.

o
- 7
(a)

- | | &% Fodb 4
gl g{é@\@ l

(c) (d) ()

Fig. 6. SLDMRF modeling of dogs (a), cars (b), airplanes (c) and bikes (d); (e): the
learned part parameters 6, of bikes.

class x € {cars, bikes, dogs, motorcycles, airplanes} is computed as:

(M|

p(M*IM:) = T] {Z/p(wiwk)p(klﬂ)p(ﬂla)} (10)

=1
where |M*| is the number of points in object M*. By contrast, in the GM case:

[M*]

p(M*Mz) = [] {ZN(wi;ek)m} (11)

=1

Since no other prior knowledge is given, the classification can be done in a
maximum-likelihood fashion. A global model learned with one single multino-
mial distribution on 3D dictionary is also provided as baseline for comparison.
The classification performances of GM, SLDMRF and global model are evalu-
ated using confusion matrices. The comparison in in Figure 7 demonstrates that
SLDMRF is superior to GM with respect to discriminative ability in classifica-
tion.
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Classifiation with SLDMRF Classifiation with GM Classifiation with Global Model

aiplane bike  car dog motorcycle aiplane  bike  car dog motorcycle
airplane 004 006 003 002 airplane [JO¥) . . I I
bike| 0.05 007 010 0.22 bike 0.06 L X §

carf 0.06 0.04 JoNEM 0.10 0.05

Ground Truth
Ground Truth

Ground Truth

dogf 0.02 0.07 0.20 EXJM 0.10

001 017 006 005 Eoval

(a) (b) ()

Fig. 7. The classification confusion matrcices of 5 object classes with SLDMRF (a),
GM (b) and global model (c).

4

Conclusion and Discussion

We improved LDA model for geometry modeling with better semantic interpre-
tation and promising discriminative capabilities. Meanwhile, learning and appli-
cation of the model require good initial alignment, which is difficult for noisy
and partial occluded 3D point cloud in practice. So a promising future work is to
cooperate 3D geometry model with 2D image models to describe both structure
and appearance, which thus enhance model’s expressiveness and practical value.
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Chapter 3

Graph-Based Structured Output

Learning

”

“To learn without thinking is blindness; to think without learning is idleness.

Confucius

In Chapter 2, modeling and inference of graphical models (mostly undirected ones)
were explained. Meanwhile, until now, it is assumed that the parameters of potential
functions are provided by an expert for a specific task. However, this is usually not the
case in practice. Even though some empirical knowledge is available for specifying the
parameters, it tends to be unreliable. A wiser strategy is to learn the parameters from

some training data.

This chapter focuses on the learning of undirected graphical models, based on which
structured data can subsequently be inferred. First, in section 3.1, a special case of
Markov networks, conditional random fields (CRFs), is introduced for the discrimina-
tive learning of structured output. In addition, some training issues of CRFs and their
relation to maz-margin Markov networks (M3Ns) are studied as well. Second, in sec-
tion 3.2, a new algorithm, persistent sequential Monte Carlo (PSMC), is developed for

learning general undirected graphical models.

Another aspect in training graphical models is the learning of graph structures, which,

however, is not covered in this dissertation.

31
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3.1 Conditional Random Fields

In the general supervised learning paradigm, there exist an input and an output: {x,y}.
The target is to learn a function f : f(x) — y from a training dataset such that the
estimated error of {f(x),y} can be minimized. In classic machine learning, the output
is only a binary value or a single scalar, which corresponds to binary classification and
regression respectively. However, with the increasingly higher data complexity in many

areas, learning structured output is now more of interest.

Markov networks, or Markov random fields (MRF's) can be used as a generative learning
scheme for the learning task. For instance, a MRF can be used to reconstruct the gener-
ative process by defining a joint probability of {x,y} : p(x,y) = p(x)p(y|x). As for the
prediction task, the conditional probability p(y|x) = % can be derived, or more
straightforwardly, y* = argmaxy p(y|x) = arg maxy p(x,y). However, it was realised
that for learning f : x — y, the only desired component is p(y|x). It is wasteful to
expend effort in modeling p(x), which is not relevant anyway. Consequently, conditional
random fields (CRFs) were proposed (Lafferty et al., 2001) as a discriminative model
by learning only the conditional probability p(y|x). One significant strength of CRFs
in practice is that it can include arbitrarily complex features (e.g. higher order depen-
dencies) of x, which is intractable in MRFs. According to empirical study in Kumar

and Hebert (2003a), Lafferty et al. (2001), CRFs outperform MRFs in many practical

applications.

First, the definition of conditional random fields (CRFs) is given as (Lafferty et al.,
2001):

Definition 3.1. Let G = (V, E) be a graph (V are vertices and E are edges) such that
¥ = {Yv}vev, so that y is indexed by the vertices of G. Then (x,y) is a conditional
random field in case, when conditioned on x, the random variables {y,},ey obey the

Markov property with respect to the graph G.

Without losing generality, the conditional probability p(y|x) is defined in an exponential

form: -

exp(w_@(x,y))
Z(w)

plylx) = (3.1)

where x € X,y € Y, ¢(x,y) € RE is a collection of K predefined, task-specific
potential functions (or feature vectors) ¢(x,y) = [#1(x,y), ¢ (x,y)]T, w € RE

is the parameter vector, Z(w) is the partition function for normalization Z(w) =
Yyey exp(w! d(x,y)).

As a probabilistic model, one CRF is usually learned via mazimum likelihood estimation

(MLE) or mazimum a posteriori (MAP) (Kumar and Hebert, 2003a, Lafferty et al.,
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2001, Vishwanathan et al., 2006). Meanwhile, inspired by the margin notion which has
been exploited in successful binary classifiers, e.g. Support Vector Machine (SVM), an
alternative discriminative training scheme of CRF's is maximizing the margin between
the p(y|x) of the desired y* and the best runner-up y** in their log domains. The
CRFs trained with this margin are referred to as Max-Margin Markov Networks (M?Ns)
(Taskar et al., 2003). On the one hand, similarly to regular SVM, kernel tricks can be
used in the dual form of M3?N, in which way, the original inputs and/or outputs are
implicitly mapped into a higher dimensional reproducing kernel Hilbert space (RKHS)
(e.g. polynomial kernels used in Taskar et al. (2003)). On the other hand, different from
regular SVM, the quadratic programming (QP) problem associated with M3Ns (in both
primal and dual form) has an exponential number of constraints. Although it can be
simplified by exploiting interesting properties within forest-structured outputs (Taskar
et al., 2003), for highly connected graphs, the learning is intractable. Obviously, although
CRF and M?3Ns offer almost equivalent modeling capabilities for a given machine learning
task, two rather different loss functions are employed in them. However, it will be
revealed in next two subsections that MAP and max-margin learning schemes are, to a

large extent, related.

3.1.1 Maximum Likelihood Estimation

Given a training dataset D = {x(i),y(i)}i]‘il, a CRF can be learned via maximum likeli-
hood estimation (MLE):
| M
* _ il (1) |5 (2)
w arg max Z log p(y'"|x'")
! (3.2)

=1
M

= argmax % D {wTo(x, y) —log Y exp(w ep(x1,y))}
=1 yey

Meanwhile, usually, in order to enhance the generalization properties, a prior on p(w)
exp(—‘;’—;) is added in (3.2) to penalize the complexity of w, which results in the maxi-

mum a posteriori (MAP) solution:

w2 1 M . . .
W= argmax =T £ 3w g y) —log 3 explw p(x".y))}
i=1 SN
1 S y (3.3)
_ : 2 MAP
= i Ll O30

M 4
=1
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where EZM AP s the negative log-likelihood of the ith training instance:

/.,‘;MAP — log Z exp(ch,‘b(x(i),y)) . WT(ﬁ(X(i), y(l)) (3.4)
yey

and C = "72 is a trade-off parameter to balance the regularization term %||w]|? and
average loss ﬁ Zf\i L LMAP A good property of (3.3) is that it is convex with respect

to w.

Proposition 3.2. The objective function of MAP in learning CRFs is convez.

Proof. The second order derivative of log » ¢ exp(w ! ¢(x?),y)) with respect to w is:

d?log ), exp(w' ¢(x,y))
dw?

= COVp(y\x@);w)(ﬁ(X(i) \Y) (3.5)

where Cov,,,) f(p) denotes the covariance of f(p) under the probability p(p). Since
the covariance function is always positive semidefinite, log Zy exp(w' ¢(x),y)) is con-
vex. In addition, —w'¢(x¥),y@) is linear (thus also convex), and 3||w]|? is convex.

Therefore, (3.3) (the sum of convex components) is convex. O

Because of the convexity of the objective function, any local minimum is also a global
minimum, and gradient descent can be employed to find the unique solution w* with
the negative gradient computed as:
oM
Awy = 2 D (@ yD) = By d(x ¥) — Wy (3.6)

M 4
=1

where E, ) f(p) is the expectation of f(p) under the probability p(p). The difficulty
of computing (3.6) is the expectation term because its complexity grows exponentially.
For example, in multi-label learning introduced in section 3.1, |J| = 2%. Therefore,
when |Y)] is relatively large in practice, enumerating all possible y is impossible. In
addition, as studied in section 2.2, exact inference within loopy graphs is intractable;
therefore some approximations were used for learning: e.g. mean field (MF), loopy belief
propagation (LBP) or pseudo likelihood (PL) (Kumar and Hebert, 2003a, Lafferty et al.,
2001, Vishwanathan et al., 2006, Yedidia et al., 2005).

3.1.2 Max-Margin Markov Networks

The max-margin principle used in binary classifiers, e.g. Support Vector Machine

(SVM), has been proven theoretically and empirically (Vapnik, 1995) superior to others.
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The margin notion was generalized to learn structured outputs in Taskar et al. (2003)
and structural SVM (Tsochantaridis et al., 2004). More concretely, they proposed to
learn CRF's by maximizing the margin between the p(y|x) of the desired y* and the best
runner-up y** in log domain. The CRFs trained with maximum margin are referred to
as max-margin Markov networks (M3Ns) (Taskar et al., 2003). The objective function

of a M3N can be written out as:

. C M
ArgMillw ¢, %”WH2 + M Zi:l &i

) A A . 3.7
s.t. Vz,Vy € y/y(z) : 5@ > va—l—(qs(x(z)’y(z)) - ¢(X(z)aY)) > 1- m ( )

where &; are slack variables for the relaxation of maximum margin, and d(y(i),y) >0
is a measure of dissimilarity between y(? and y (e.g. hamming distance used in multi-

label learning). The term is to rescale slack variables by the dissimilarities

between corresponding y(® and others. Obviously, (3.7) is a quadratic programming
(QP) problem with exponential number of constraints. Similarly to SVM, (3.7) can
be converted to its dual form, of which some interesting properties can be exploited to
simplify the computation for forest-structured outputs (i.e. singly-connected graphs).
However, for highly-connected graphs, the exact learning of M3Ns is intractable. An
advantage of the dual form of M3N is that it enables the use of kernel methods, which
can implicitly project ¢(x,y) to a higher dimensional Hilbert feature space. Defining
¢(x,y) with kernel methods was more exploited in Structural SVM (Tsochantaridis
et al., 2004) (see subsection 4.1.1). Usually quadratic or cubic kernels are used and yield

promising results (Taskar et al., 2003). Correspondingly, explicit feature map of ¢(x,y)

can be constructed via degree-2 and degree-3 polynomials in the primal form of M>Ns.

The second constraint in (3.7) can be written in a more compact form: maxyey{d(y®,y)—
w ! (p(x® y®D) — p(x®D, y)d(y?,y} < &. In addition, w can be rescaled w <
wd(y(i),y). Then, instead of rescaling slack variables, one can rescale the margin to
be the same level as d(y(®,y). Therefore, (3.7) can be reformulated in a similar form as
(3.3):

1 c &
. — 2 ~ Margin
v =agming v+ 7 3 4 (3.8)
where
£ = ma{d(y,y) + wTo(x0, y)} - wl(x,y) (3.9)
y

Based on the introduction of CRFs and M3N above, a unified objective function for

structured output learning can be written out as:

1 C M
* : 2 .
w* = arg min *QHWH + — ; 1 L; (3.10)
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where L; denote loss functions, which correspond to EZMAP employed in MAP and
Efwargm used in M3N respectively. Although, at a fist glance, the two loss functions
look rather different, they are de facto closely related. This section will provide deep
insights into the behaviours of these two loss functions. At first, the feature vector
in CRFs can be augmented by adding an extra component d(y®¥,y): ¢(x®,y)T =
[p(x®,y)T,d(y®,y)], and w is extended with a constant 1: w' = [w',1]. Then the
modified CRF distribution is:

xp(W ! (x
plylx) =< p( Z(¢() ¥)) (3.11)

Since d(y¥,y®) = 0, the resulting LMAP g

LM = log} eyexp(w! o(xl,y)) —w'p(x,y)

— X
. . o (3.12)
= logY cyexp (W o(x,y) +dy?,y)) — wep(x®,y")

LMAP was also named as “softmax-margin” by Gimpel and Smith (2010). It can be

easily proved that £M AP is convex by following a similar proof in Proposition 3.2 (note
that d(y®,y) is independent of w). It can be seen in (3.9) and (3.12) that the two
loss functions share a similar form. The only difference between them is that the mazx

function is used in (3.9) while the log-sum-exp function is used (3.12) (the first term).

Margin and LMAP g claimed:

Here, the first connection between £,

Ei\/[argin < EZ[WAP < cyargin+log|y’ (313)

i.e. L'lMargm is a lower bound of £M4F and specifies a upper bound of LMAP by
E;Margm + log |Y|. For notational simplicity, m, is used to represent w'¢(x®,y,) +
d(y™,yn), Vyn € Y, and [V = N.

Proposition 3.3. Given a set {m, € R}N_, max{m,}_; <log Zﬁ;l e™ < max{m, })_,+
log N.

Proof. Since max{e™}N_| < SN ™ < Nmax{e™}N_| by taking the logarithm of

n=1»

the above inequalities, it is obvious that max{m,}"_; < log ZnN:1 e™ < max{m, }_;

+log N. O

The second connection between Eiwm"gm and LMAP is: given two solutions, wi and
Marai

W2 Of EZ argzn7

when  maxyey ply[x;wy) > maxyey ply[x; w,),

EZZ\/[AP(WI) _EZ]'Wargin(wl) < EﬁVIAP(Wz) . Ei\/]argin(WQ)

(3.14)
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i.e. the gap LMAP (w)—L£M "9 (w) monotonically decreases with respect to maxy ey p(y[x®; w).
Likewise, let 7, represent w{ ¢(x™,y,) +d(y®,y,) and 7, represent wJ ¢(x,y,) +
d(y",ys), Yyn € V.

Proposition 3.4. Given two sets of the same size N, {m, € R}\_; and {r, € R}}_;.

_exp(m) - exp(re) N
25:1 exp(mn) and bt = 25:1 exp(n) Then log Zn:l

exp m, — max{m, }N_, <log N | exp 7, — max{r,}_, when max{p7} > max{p]}.

In addition, pf =

Proof. o =1log "M | expm, — max{m,}N_; = —log(max{pZ}), B =log "N |

exp 7, — max{7,}_, = —log(max{p?}). So a — 3 = log Ezﬁgﬁ, and a — f < 0 &
max{pll} > max{p]}. O
The third connection between £/ and LMAP is:
when maﬁc{ﬁ(y\x(i))} =1, LMAP = pMargm (3.15)
ye

i.e. LMAP and Eiwargm are identical when the conditional distribution p(y|x®) is a

Dirac impulse concentrated on the outputs with the largest confidence score.

Proposition 3.5. Given a set {m, € R}N_| and pf = %. Then log fo:l
n=1 ¢XP\Tn

exp mp, — max{m, } = 0 when max{p}} = 1.

Proof. log Egil exp m, —max{m,} = — log(max{p]}), so log Zivzl exp Ty, —max{m,} =
0 when max{p]} = 1. O
Finally, the forth connection between Efwargm and Zf\/[ AP .

when'y, yg € ¥, p(yalx?) = plygx?), L} =L 1log V] (3.16)

ie. LMAP — 4\4 9 1 Jog |Y| when the conditional distribution p(y|x(®) holds the
largest entropy.

Proposition 3.6. Given a set {m, € R}N_, and pf = Nexl)%. Then log ZN:1
> n—1exp(mn) "

exp mp, = max{m, } + log N when m, = m4,Vn,q € [1, N].

Proof. log Zgzl exp m, — max{m,} = log Nexp(max{mn}) _ log N. O

exp(max{my})

Combining four connections between £MAP and E?/[’"gm, it can be concluded that the
AMAP Margin  sMAP Marginy - .

gap between L; and L; (L - L; ) is correlated with the entropy (or

smoothness) of the conditional distributions exhibited in CRFs. The minimum gap is 0

when CRFs are collections of Dirac impulses, while the maximum gap is log|Y| when



Chapter 3. Graph-Based Structured Output Learning 38

conditional distributions are uniform. Pletscher et al. (2010) and Hazan and Urtasun
(2010) discovered roughly similar connections by increasing the sharpness of CRFs’ out-
put distributions with a tunable inverse temperature parameter, and a norm-defining
parameter respectively. The four connections can be summarized by listing three ex-

treme circumstances as follows:

when p(y®|x®) — 1: wlex®, y@) > wlex,y) +dy?,y),vy' € ¥/y?, then
LM =0, and LMAT — 0
when Jy’ € V/y®D p(y'[xV) = 1: wlo(x),y®) <« wlex®,y") +d(y",y’), then

LMAP _y oo and LMAP — pMargin _y g

when Vyn,yq € Y.B(ynlx?) = plygx®): wleox,y®) = wlexy) +
d(y®,y"),Vy' € Y/y®, then £}7"9" = 0, and LMAT = log |Y];

These three cases do not look so interesting because they are unrealistic in practice.
However, this analysis will be of help for understanding the regularization in the next

section.

3.1.3 Regularization as Maximum Entropy

This subsection will study the effect of 12-norm regularization in MAP and max-margin
learning respectively, and provide an alternative interpretation of its role: maximum

entropy.

3.1.3.1 Maximum Entropy while Maximizing Margin

First, conditional distributions p(y|x(®) learned with Elegm are considered. As dis-

cussed in the previous section, when EZM‘"gm is minimized to 0, H(y|x®) can still exhibit
different shapes, which correspondingly will lead to different landscapes of qub(x(i), y)-
For example, in Figure 3.1 two different 5(y|x()) and corresponding w' ¢(x(®,y) are
presented (for simplicity || = 5 is used). In Figure 3.1(a), p(y®[x?) > p(y'|x®), vy’ €
YV /y®, however, entropy is small because p(y®|x(®)) exceeds different p(y’|x®) to dif-
ferent degrees. In Figure 3.1(b), p(y?[x®) = p(y'|x®),Vy’ € ¥/y® and thus entropy
is maximized. Assume that there are two solutions of a M3N with 0 loss, w; and wo,

which yield 5(y|x?) as in Figure (3.1(a)) and Figure (3.1(b)) respectively. Then a first
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natural question to ask is: which one should be pursued? Usually the max-entropy case

(Figure 3.1(b)) is preferred, and this preference can be explained from two perspectives:

1. The first motivation is the well-known principle of mazimum entropy (Berger et al.,
1996): once the loss function EM‘"gm is minimized, it is unsafer to impose any more
assumptions on p(y|x()) without any extra information, i.e. uniform p(y|x®) is

more desirable.

2. Secondly, as we can see in the lower part of Figure 3.1(b), when p(y|x(®) is uni-
form, the set {w' (¢(x®,yD) — p(x,y"),y’ € V/y?} is well aligned with the
set {d(y®,y)}. For all i € [1,M], when ¢(x9,y,) — ¢(x?,y,) is projected
onto w, it equals to d(yy,y,). Therefore, when |D| is relatively large, it can be
intuitively envisioned that the gap between two points in p(y|x) is consistent for
all x € X, which is better than a collection of distorted conditional distributions
({p(y|x®)}M ). This property is in line with the findings in Cortes et al. (2012),

where maximum alignment between inputs and outputs is pursued.

In M3Ns, 12-norm regularization is usually considered as a penalty on the complexity
of w. Meanwhile, when EMMgm 0, w'(p(x®,y®) — p(x(),y")) will be closer to
d(y¥,y") if ||w|| gets smaller. Therefore, the role of 12-norm regularization in M®N can

be re-interpreted as entropy maximization.

3.1.3.2 Maximum Entropy within MAP Learning

For simplicity, it is assumed that there exists only one training instance {(,t} in D.
Since Eé\/[ AP s convex, the gradient at the minimum point w* is 0:

acyAr

= (G 1) — Epyicwe) (@(C,y) +d(t,y)) =0 (3.17)

dw

wW*

From (3.17), it is not so obvious how 12-norm regularization can affect entropy of
p(y|¢; w*). However, by multiplying w*" (w*" = [w*T,1]) on the both sides of (3.17),
it becomes:

T ) ~ Eptyieow) (W @6, 3) +d(t,y)) =0 (3.18)

or equivalently:

W (¢, 1) = Epyicow (W*T¢(C y) +d(t,y))
& W P(( 1) —log Z(W) = Ejycown) (W @(C,y) +d(t,y) —logZ(w))  (3.19)
& logp(t|Q) = >y ey P(¥[¢) log p(y[¢) = —H (p(y[C))
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FIGURE 3.1: Two possible cases of p(y|x(*) and corresponding w' ¢(x(,y), when
LMargin ig minimized.

where H(p(y|¢)) denotes Shannon’s entropy of p(y|(). Note that we also have the

constraint for the conditional probabilities:

> pylo) =1 (3.20)

yey
According to (3.19) and (3.20), there can be two situations. First, when p(¢|() is big,
then the gap between p(t|¢) and all other p(y : y € V/t|¢) should be large and different
to decrease the entropy (Figure 3.2(a)). Secondly, when p(¢|() is small, then to ensure
large entropy, all other p(y : y € Y/t|() will be similar to each other and close to p(t|() to
increase the entropy (Figure 3.2(b)). When more training instances in D are considered,
the situations are analogous, although the mathematics will be more complicated. Since
log 5(y @ |x®) is anti-correlated with H(p(y|x®)). One simple extra regularization term

can be added to bias the MAP solution towards max-entropy:

M M
Qw) = > logply|xV) = = " £}MAP (3.21)
1=1 =1
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FIGURE 3.2: Two possible cases of p(y|¢) when £MAF is minimized.

which is actually the log-likelihood of D. Then the resulting objective function is:

1 C—Cy &
* . 2 — Y2 AFMAP
1=
which is nothing but reducing the trade-off weight on the mean loss, or equivalently,
increasing weight on the 12-norm regularization term, compared to the original one.
Therefore, it can also be claimed that the 12-norm regularization term within MAP

learning also performs as an entropy maximizer.

3.2 Training Undirected Graphical Models with Persistent
Sequential Monte Carlo

As analyzed in subsection 3.1.1, computing the exact likelihoods of CRFs for the max-
imum likelihood estimation (MLE) is in general intractable. Therefore, different ap-
proximations are used, e.g. mean field (MF), loopy belief propagation (LBP) or pseudo
likelihood (PL) (Kumar and Hebert, 2003a, Lafferty et al., 2001, Vishwanathan et al.,
2006, Yedidia et al., 2005). In this section, general undirected graphicalmodels (UGMs)
are considered, which include MRFs and CRFs. Without loss of generality, an UGM

can be modeled as:

exp (—E(x;6))

;0 2
Energy function: E(x;0) = -0 ¢(x) (3.24)
with random variables x = [z1,22,...,2p] € X, ¢(x) is a K-dimensional vector of

sufficient statistics, and parameter 8 € RX. Z(8) = 3 _exp(8' ¢(x)) is the partition
function for global normalization. Note that p(x; @) can be also a conditional probability

although it is not explicitly written out.
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Algorithm 6 SAP for learning UGMs

Input: given a training data x(™.

1: t « 0, initialize the proposal distribution p(x;8y).

2: Randomly initialize S sample particles {iés) 5
3: while ! stop criterion do
4:  for s=1:S do
5: evolve particle )‘(Es) to )‘(Ei)l with a transition operator which leaves p(x;6;)
invariant
end for

7. Calculate the gradient:

OLOID) L, o)
T—Cf)(x( ))— ;(‘b(xt ))

0|

8 update 0¢11 = 0; + Wt%

9:  t<t+ 1, decrease learning rate n;
10: end while
Output: estimated parameters 8* = 6,

During the past decade, besides the approximation methods mentioned above, several
sampling-based approximations were also developed for learning UGMs, e.g. persistent
contrastive divergence (PCD) (Tieleman, 2008), tempered transition (TT) (Salakhutdi-
nov, 2010) and parallel tempering (PT) (Desjardins et al., 2010). All these learning
methods for UGMs can be considered as special cases of Robbins-Monro’s stochastic ap-
proximation procedure (SAP; Robbins and Monro 1951, Younes 1988). A pseudo code
of SAP for learning UGMs is provided in Algorithm 6 with invariant transitions (e.g.
PCD is a SAP with Gibbs transitions). By linking SAP and sequential Monte Carlo
(SMC), PCD and other state-of-the-art learning algorithms can be cast into a SMC-
based interpretation framework. Moreover, within the SMC-based interpretation, two
key factors which affect the performance of learning algorithms are disclosed: learning
rate and high model complerity. Based on this rationale, the strengths and limitations

of different learning algorithms can be analyzed and understood in a new light.

Inspired by the understanding of learning UGMs from the SMC perspective, and the
successes of global tempering used in parallel tempering and tempered transition, a
new learning algorithm, persistent sequential Monte Carlo (PSMC) is put forward in
this section to approach the MLE in learning UGMs. The basic idea is to construct a
long, persistent distribution sequence by inserting many tempered intermediary distri-
butions between two successively updated distributions. According to empirical results
on learning several UGMs, the proposed PSMC outperforms other learning algorithms

in challenging circumstances.
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More technical details and results are presented in the paper II by the author. Further-
more, PSMC is also evaluated and compared against other relevant learning algorithms
on two practical tasks: image annotation and image segmentation in subsection 3.2.1,

where two conditional random fields are constructed and trained.

II Hanchen Xiong, Sandor Szedmak, Justus Piater. Towards Maximum Likelihood:
Learning Undirected Graphical Models using Persistent Sequential Monte Carlo, The
6th Asian Conference on Machine Learning (ACML14), pp 205-220, 2014, Journal of

Machine Learning Research: Workshop and Conference Proceedings.
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Towards Maximum Likelihood: Learning Undirected Graphical
Models using Persistent Sequential Monte Carlo

Hanchen Xiong HANCHEN.XIONG @UIBK.AC.AT
Sandor Szedmak SANDOR.SZEDMAK @ UIBK.AC.AT
Justus Piater JUSTUS.PIATER @ UIBK.AC.AT

Institute of Computer Science, University of Innsbruck
Technikerstr. 21a, A-6020 Innsbruck, Austria

Abstract

Along with the emergence of algorithms such as persistent contrastive divergence (PCD), tem-
pered transition and parallel tempering, the past decade has witnessed a revival of learning undi-
rected graphical models (UGMs) with sampling-based approximations. In this paper, based upon
the analogy between Robbins-Monro’s stochastic approximation procedure and sequential Monte
Carlo (SMC), we analyze the strengths and limitations of state-of-the-art learning algorithms from
an SMC point of view. Moreover, we apply the rationale further in sampling at each iteration,
and propose to learn UGMs using persistent sequential Monte Carlo (PSMC). The whole learn-
ing procedure is based on the samples from a long, persistent sequence of distributions which are
actively constructed. Compared to the above-mentioned algorithms, one critical strength of PSMC-
based learning is that it can explore the sampling space more effectively. In particular, it is robust
when learning rates are large or model distributions are high-dimensional and thus multi-modal,
which often causes other algorithms to deteriorate. We tested PSMC learning, also with other re-
lated methods, on carefully-designed experiments with both synthetic and real-world data, and our
empirical results demonstrate that PSMC compares favorably with the state of the art.

Keywords: Sequential Monte Carlo, maximum likelihood learning, undirected graphical models.

1. Introduction

Learning undirected graphical models (UGMs), or Markov random fields (MRF), has been an im-
portant yet challenging machine learning task. On the one hand, thanks to its flexible and powerful
capability in modeling complicated dependencies, UGMs are prevalently used in many domains
such as computer vision, natural language processing and social analysis. Undoubtedly, it is of
great significance to enable UGMs’ parameters to be automatically adjusted to fit empiric data, e.g.
maximum likelihood (ML) learning. A fortunate property of the likelihood function is that it is
concave with respect to its parameters (Koller and Friedman, 2009), and therefore gradient ascent
can be applied to find the unique maximum. On the other hand, learning UGMs via ML in general
remains intractable due to the presence of the partition function. Monte Carlo estimation is a prin-
cipal solution to the problem. For example, one can employ Markov chain Monte Carlo (MCMC)
to obtain samples from the model distribution, and approximate the partition function with the sam-
ples. However, the sampling procedure of MCMC is very inefficient because it usually requires a
large number of steps for the Markov chain to reach equilibrium. Even though in some cases where
efficiency can be ignored, another weakness of MCMC estimation is that it yields large estima-
tion variances. A more practically feasible alternative is MCMC maximum likelihood MCMCML,;

(© 2014 H. Xiong, S. Szedmak & J. Piater.
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Geyer 1991); see section 2.1. MCMCML approximates the gradient of the partition function with
importance sampling, in which a proposal distribution is initialized to generate a fixed set of MCMC
samples. Although MCMCML increases efficiency by avoiding MCMC sampling at every iteration,
it also suffers from high variances (with different initial proposal distributions). Hinton (2002) stud-
ied contrastive divergence (CD) to replace the objective function of ML learning. This turned out to
be an efficient approximation of the likelihood gradient by running only a few steps of Gibbs sam-
pling, which greatly reduces variance as well as the computational burden. However, it was pointed
out that CD is a biased estimation of ML (Carreira-Perpinan and Hinton, 2005), which prevents it
from being widely employed (Tieleman, 2008; Tieleman and Hinton, 2009; Desjardins et al., 2010).
Later, a persistent version of CD (PCD) was put forward as a closer approximation of the likelihood
gradient (Tieleman, 2008). Instead of running a few steps of Gibbs sampling from training data in
CD, PCD maintains an almost persistent Markov chain throughout iterations by preserving samples
from the previous iteration, and using them as the initializations of Gibbs samplers in the current
iteration. When the learning rate is sufficiently small, samples can be roughly considered as being
generated from the stationary state of the Markov chain. However, one critical drawback in PCD is
that Gibbs sampling will generate highly correlated samples between consecutive weight updates,
so mixing will be poor before the model distribution gets updated at each iteration. The limitations
of PCD sparked many recent studies of more sophisticated sampling strategies for effective explo-
ration within data space (section 3). For instance, Salakhutdinov (2010) studied tempered transition
(Neal, 1994) for learning UGMs. The strength of tempered transition is that it can make potentially
big transitions by going through a trajectory of intermediary Gibbs samplers which are smoothed
with different temperatures. At the same time, parallel tempering, which can be considered a paral-
lel version of tempered transition, was developed by Desjardins et al. (2010) for training restricted
Boltzmann machines (RBMs). Contrary to a single Markov chain in PCD and tempered transition,
parallel tempering maintains a pool of Markov chains governed by different temperatures. Multi-
ple tempered chains progress in parallel and are mixed at each iteration by randomly swapping the
states of neighbouring chains.

The contributions of this paper are twofold. The first is theoretic. By linking Robbins-Monro’s
stochastic approximation procedure (SAP; Robbins and Monro 1951) and sequential Monte Carlo
(SMC), we cast PCD and other state-of-the-art learning algorithms into a SMC-based interpreta-
tion framework. Moreover, within the SMC-based interpretation, two key factors which affect the
performance of learning algorithms are disclosed: learning rate and model complexity (section 4).
Based on this rationale, the strengths and limitations of different learning algorithms can be analyzed
and understood in a new light. The second contribution is practical. Inspired by the understanding
of learning UGMs from a SMC perspective, and the successes of global tempering used in parallel
tempering and tempered transition, we put forward a novel approximation-based algorithm, persis-
tent SMC (PSMC), to approach the ML solution in learning UGMs. The basic idea is to construct
a long, persistent distribution sequence by inserting many tempered intermediary distributions be-
tween two successively updated distributions (section 5). According to our empirical results on
learning two discrete UGMs (section 6), the proposed PSMC outperforms other learning algorithms
in challenging circumstances, i.e. large learning rates or large-scale models.
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2. Learning Undirected Graphical Models

In general, we can define undirected graphical models (UGMs) in an energy-based form:

exp (—E(x;0))

: 0 1
Energy function: E(x;0) = —0'¢(x) (2)
with random variables x = [x1, 23, ...,2p] € X'P where x4 can take N, discrete values, ¢(x) is

a K -dimensional vector of sufficient statistics, and parameter 8 € R, Z(8) = 3"__exp(8' ¢(x))
is the partition function for global normalization. Learning UGMs is usually done via maximum
likelihood (ML). A critical observation of UGMs’ likelihood functions is that they are concave with
respect to 6, therefore any local maximum is also global maximum (Koller and Friedman, 2009),
and gradient ascent can be employed to find the optimal 8*. Given training data D = {x(m)}%zl,
we can compute the derivative of average log-likelihood £(8|D) = +; 2%21 log p(x(™): 6) as

OEOID) _ B (p(x)) - Bolo(x), G
—_—
Yt (e

where Ep(€) is the expectation of £ under the empirical data distribution pp = ﬁ Zf‘le 5(xm),
while Eg (&) is the expectation of £ under the model probability with parameter . The first term
in (3), which is often referred to as positive phase 1™, can be easily computed as the average of
(x(™),x(™) € D. The second term in (3), also known as negative phase 1)~, however, is not
trivial because it is a sum of HdD:1 Ny terms, which is only computationally feasible for UGMs
of very small size. Markov chain Monte Carlo (MCMC) can be employed to approximate 1),
although it is usually expensive and leads to large estimation variances. The underlying procedure
of ML learning with gradient ascent, according to (3), can be envisioned as a behavior that iteratively
pulls down the energy of the data space occupied by D (positive phase), but raises the energy over
all data space X' (negative phase), until it reaches a balance (T = ¥ ™).

2.1. Markov Chain Monte Carlo Maximum Likelihood

A practically feasible approximation of (3) is Markov chain Monte Carlo maximum likelihood
(MCMCML; Geyer 1991). In MCMCML, a proposal distribution p(x; 8g) is set up in the same
form as (1) and (2), and we have

2() _ Yyxexp(8'o(x) (4)
Z(6o) > x exp(6; ¢(x))

_ Leew(076(x)  exp(8)6(x)) 5)

T T
exp(0y #(x)) > exp(0y o(x))
= Z exp ((0 — 00)T¢(x)> p(x;00) (6)
1" ™ o
~ g ; w )
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Algorithm 1 MCMCML Learning Algorithm

Input: training data D = {x(m)}%zl; learning rate n; gap L between two successive proposal
distribution resets
1: ¢ < 0, initialize the proposal distribution p(x; )
2: while ! stop criterion do
3:  if (¢ mod L) == 0 then

4: (Re)set the proposal distribution as p(x; 6;)
5: Sample {x(®)} from p(x; 6;)

6: endif

7. Calculate w(®) using (8)

8:  Calculate gradient 85%?) using (9)

9:  update 6;,1 = 0; + n%

10: t+t+1

11: end while

Output: estimated parameters 8* = 6,

where w(®) is

w® = exp ((0 - 90)T¢(i(5))) : ®)

and the X(®) are sampled from the proposal distribution p(x;8g). By substituting Z(0) =
Z(Ho)% Zle w®) into (1) and average log-likelihood, we can compute corresponding gradient
as (note Z(6y) will be eliminated since it corresponds to a constant in the logarithm)

L(0|D)

50— Ep(9(x)) — Eey(4(x)), ©)

where Eg,(§) is the expectation of & under a weighted empirical data distribution pg, =
Zsszl w®§(x>))/ Zsszl w'®) with data sampled from p(x;8p). From (9), it can be seen that
MCMCML does nothing more than an importance sampling estimation of ¢~ in (3). MCMCML
has the nice asymptotic convergence property (Salakhutdinov, 2010) that it will converge to the ex-
act ML solution when the number of samples .S goes to infinity. However, as an inherent weakness
of importance sampling, the performance of MCMCML in practice highly depends on the choice of
the proposal distribution, which results in large estimation variances. The phenomenon gets worse
when it scales up to high-dimensional models. One engineering trick to alleviate this pain is to re-
set the proposal distribution, after a certain number of iterations, to the recently updated estimation
p(x; @°5Y™) (Handcock et al., 2007). Pseudocode of the MCMCML learning algorithm is presented
in Algorithm 1.

3. State-of-the-art Learning Algorithms

Contrastive Divergence (CD) is an alternative objective function of likelihood (Hinton, 2002), and
turned out to be de facto a cheap and low-variance approximation of the maximum likelihood (ML)
solution. CD tries to minimize the discrepancy between two Kullback-Leibler (KL) divergences,
KL(p°|py) and K L(pg|pg), where p° = p(D; 6), pi = p(Ds,; 0) with D,, denoting the data sam-
pled after n steps of Gibbs sampling with parameter 8, and pp° = P(Doo; @) with D, denoting the
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data sampled from the equilibrium of a Markov chain. Usually n = 1 is used, and correspondingly
it is referred to as the CD-1 algorithm. The negative gradient of CD-1 is

o(CDy(D;0
OPDO) o) — B (01) (10
where Ep (€) is the expectation of £ under the distribution pé. The key advantage of CD-1 is that it
efficiently approximates 7/~ in the likelihood gradient (3) by running only one step Gibbs sampling.
While this local exploration of sampling space can avoid large variances, CD-1 was theoretically
(Carreira-Perpinan and Hinton, 2005) and empirically (Tieleman, 2008; Tieleman and Hinton, 2009;
Desjardins et al., 2010) proved to be a biased estimation of ML .

Persistent Contrastive Divergence (PCD) is an extension of CD by running a nearly persis-
tent Markov chain. For approximating ¢~ in likelihood gradient (3), the samples at each iteration
are retained as the initialization of Gibbs sampling in the next iteration. The mechanism of PCD
was usually interpreted as a case of Robbins-Monro’s stochastic approximation procedure (SAP;
Robbins and Monro 1951) with Gibbs sampling as transitions. In general SAP, if the learning rate
7 is sufficiently small compared to the mixing rate of the Markov chain, the chain can be roughly
considered as staying close to the equilibrium distribution (i.e. PCD—ML when n — 0). Never-
theless, Gibbs sampling as used in PCD heavily hinders the exploration of data space by generating
highly correlated samples along successive model updates. This hindrance becomes more severe
when the model distribution is highly multi-modal. Although multiple chains (mini-batch learning)
used in PCD can mitigate the problem, we cannot generally expect the number of chains to exceed
the number of modes. Therefore, at the late stage of learning, PCD usually gets stuck in a local
optimum, and in practice, small and linearly-decayed learning rates can improve the performance
(Tieleman, 2008).

Tempered Transition was originally developed by Neal (1994) to generate relatively big jumps
in Markov chains while keeping reasonably high acceptance rates. Instead of standard Gibbs sam-
pling used in PCD, tempered transition constructs a sequence of Gibbs samplers based on the model
distribution specified with different temperatures:

exp(—E(x; 0)5)
Z(h)

pr(x;0) = (11
where h indexes temperatures h € [0, H] and Sy are inverse temperatures 0 < Sy < fp_1 <
-+ Bo = 1. In particular, 5y corresponds to the original complex distribution. When A increases,
the distribution gets more flat, where Gibbs samplers can more adequately explore. In tempered
transition, a sample is generated with a Gibbs sampler starting from the original distribution. It then
goes through a trajectory of Gibbs sampling through sequentially tempered distributions (11). A
backward trajectory is then run until the sample reaches the original distribution. The acceptance
of the final sample is determined by the probability of the whole forward-and-backward trajectory.
If the trajectory is rejected, the sample does not move at all, which is even worse than local move-
ments of Gibbs sampling, so Sy is set relatively high (0.9 in Salakhutdinov 2010) to ensure high
acceptance rates.

Parallel Tempering, on the other hand, is a “parallel” version of Tempered Transition, in which
smoothed distributions (11) are run with one step of Gibbs sampling in parallel at each iteration.
Thus, samples native to more uniform chains will move with larger transitions, while samples native
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to the original distribution still move locally. All chains are mixed by swapping samples of randomly
selected neighbouring chains. The probability of the swap is

r=exp ((Bn — Bra1) (E(xn) — E(xn11))) (12)

Although multiple Markov chains are maintained, only samples at the original distribution are used.
In the worst case (there is no swap between 5y and [31), parallel tempering degrades to PCD-1. B
can be set arbitrarily low (0 was used by Desjardins et al. 2010).

4. Learning as Sequential Monte Carlo

Before we delve into the analysis of the underlying mechanism in different learning algorithms, it
is better to find a unified interpretation framework, within which the behaviors of all algorithms can
be more apparently viewed and compared in a consistent way. In most previous work, PCD, tem-
pered transition and parallel tempering were studied as special cases of Robbins-Monro’s stochastic
approximation procedure (SAP; Tieleman and Hinton 2009; Desjardins et al. 2010; Salakhutdinov
2010). These studies focus on the interactions between the mixing of Markov chains and distribu-
tion updates. However, we found that, since the model changes at each iteration, the Markov chain
is actually not subject to an invariant distribution, the concept of the mixing of Markov chains is
fairly subtle and difficult to capture based on SAP.

Alternatively, Asuncion et al. (2010) exposed that PCD can be interpreted as a sequential Monte
Carlo procedure by extending MCMCML to a particle filtered version. To have an quick overview
of sequential Monte Carlo More and how it is related to learning UGMs, we first go back to Markov
chain Monte Carlo maximum likelihood (MCMCML; section 2.1) and examine it in an extreme
case. When the proposal distribution in MCMCML is reset at every iteration as the previously
updated estimation, i.e. L = 1 in Algorithm 1 and the proposal distribution is left as p(x; 6;_1)
at the tth iteration, the weights will be computed as w®) = exp(6; — 0;_1) T $(x*)). Since the
parameters @ do not change very much along iterations, it is not necessary to generate particles'
from proposal distributions at each iteration. Instead, a set of particles are initially generated and
reweighted sequentially for approximating the negative phase. However, if the gap between two
successive 6 is relatively large, particles will degenerate. Usually, the effective sampling size (ESS)
can be computed to measure the degeneracy of particles, so if ESS is smaller than a pre-defined
threshold, resampling and MCMC transition are necessary to recover from it. The description above
notably leads to particle filtered MCMCML (Asuncion et al., 2010), which greatly outperforms
MCMCML with small amount of extra computation.

More interestingly, it was pointed out that PCD also fits the above sequential Monte Carlo
procedure (i.e. importance reweighting + resampling + MCMC transition) with uniform weighting
for all particles and Gibbs sampling as MCMC transition. Here we extend this analogy further
to general Robbins-Monro’s SAP, into which tempered transition and parallel tempering are also
categorized, and write out a uniform interpretation framework of all learning algorithms from SMC
perspective (see Algorithm 2). Note that all particle weights are uniformly assigned; resampling has
no effect and can be ignored. In addition, the MCMC transition step is forced to take place at every
iteration, believing that the particle set is always degenerated.

It is also worth noting that when we are applying algorithms in Algorithm 2, we are not inter-
ested in particles from any individual target distribution (which is usually the purpose of SMC).

1. From now on, we use “particles” to fit SMC terminology, it is equivalent to “samples” unless mentioned otherwise.
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Algorithm 2 Interpreting Learning as SMC

Input: training data D = {x(™}M_,: learning rate 1

1: Initialize p(x; 6g),t < 0

2: Sample particles {X(()s)}le ~ p(x;0))

3: while ! stop criterion do

4:  /l importance reweighting

Assign w(®) %,VS es

5 /l resampling is ignored because it has no effect

6: //MCMC transition

7. switch (algorithmic choice)

8 case CD:

9: generate a brand new particle set {)’cgi)l}f:l with one step Gibbs sampling from D
10:  case PCD:

11: evolve particle set {)’cgs)}le to {)’cgi)l 5, with one step Gibbs sampling
12:  case Tempered Transition:

13: evolve particle set {)‘(E‘S)}le to {)‘cgi)l}f:l with tempered transition
14:  case Parallel Tempering:

15: evolve particle set {}‘(ES)}SSﬂ to {igi)l S, with parallel tempering
16:  end switch

17:  //update distribution

Compute the gradient A@; according to (3)

18: 9t+1 = Ot + nAHt

19: t+—t+1
20: end while
Output: estimated parameters 8* = 6,

Instead, we want to obtain particles faithfully sampled from all sequence distributions. It can be
easily imagined that one badly sampled particle set at tth iteration will lead to a biased incremental
update A@;. Consequently, the learning will go to a wrong direction even though the later sampling
is perfectly good. In other words, we are considering all sequentially updated distributions p(x; 6;)
as our target distributions.

In practice, the performance of SMC highly depends on the construction of sequential distri-
butions. In our learning case, sequential distributions are learned by iterative updates, therefore,
learning and sampling are somehow entangled. As we mentioned earlier, particles will degenerate
when the gap between successive sequential distributions is large. Checking ESS followed by re-
sampling and MCMC transition can help to some extent. However, in many practical cases where
real-world distributions are extremely complex, more consideration on MCMC transition is due. In
our case of learning UGMs, the gap can be intuitively understood as the product of learning rate
n and model complexity O(0). Therefore, we believe that learning rate and model complexity” are
two key factors to challenge learning algorithms.

2. Here we consider the multimodality of a distribution as its complexity, i.e. smooth distributions are less complex than
multi-modal distributions.
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Within this SMC-based interpretation, we can see that four algorithms differ from each other at
MCMC transitions, which is an important component in SMC (Schifer and Chopin, 2013). In PCD,
a one-step Gibbs sampler is used as MCMC transition. As for tempered transition, a Metropolis-
Hasting (MH) move based on forward-and-backward sequence of Gibbs samplers of different tem-
peratures is employed. Likewise, parallel tempering also uses a MH move. This move is generated
by swapping particles native to the distributions of different temperatures. By contrast, in CD, a
brand new particle set is generated by running one-step Gibbs sampling from training data, which
is actually not a MCMC transition. When the learning rate is small and two successive distribu-
tions are smooth (e.g. at the early stage of learning or when the model is of low dimension), PCD,
tempered transition and parallel tempering can traverse sampling space sufficiently well. However,
when the learning rate is large or two sequential distributions exhibt multiple modes (e.g. at the
late stage of learning or when the model is high-dimensional), highly correlated particles from the
one-step Gibbs sampler’s local movement cannot go through the gap between two distributions.
Tempered transition and parallel tempering, instead, are more robust to the large gap since it moves
closer to the later distribution by making use of many globally-tempered intermediary distributions.
The worst case is CD, which always samples particles within the vicinity of training data D. So it
will eventually drop D down into an energy well surrounded by barriers set up by their proximities.

S. Persistent Sequential Monte Carlo

It was explained that learning UGMs can be interpreted as a SMC procedure. Here we propose to
apply this rationale further in learning UGMs with a deeper construction of sequential distributions.
The basic idea is very simple; given particles from p(x; 6;), many sub-sequential distributions are
inserted to construct a sub-SMC for obtaining particles from p(x;0;1). Inspired by global tem-
pering used in parallel tempering and tempered transition, we build sub-sequential distributions
{pn(x;60441) HL , between p(x; 0;) and p(x; 0;41) as follows:

Pr(x;0111) o< p(x;01) Prp(x; 0,41)7n (13)

where 0 < By < By_1 < ---Bp = 1. In this way, the length of the distribution sequence will be
extended in SMC. In addition, obviously, pr (x; 0;+1) = p(x;0;) while po(x; 0+1) = p(x;0141).
Therefore, the whole learning can be considered to be based on a long, persistent sequence of
distributions, and therefore the proposed algorithm is referred to as persistent SMC (PSMC). An
alternative understanding of PSMC can be based on using standard SMC for sampling p(x; 0;) at
each iteration. In standard SMC case, the sub-sequential distributions are:

Ph(x;0141) X p(x; 0;41)°" (14)

where 0 < By < By_1 < ---Byp = 1. The schematic figures of standard SMC and PSMC
are presented in Figure 1 where we can see a prominent difference between them, the continuity
from po(x;0;) to pr(x;6¢11). Intuitively, PSMC can be seen as a linked version of SMC by
connecting po(x; 6;) and py(x;60;+1). In addition, in our implementation of PSMC, to ensure
adequate exploration, only half of the particles from py(x;6;) are preserved to the next iteration;
the other half particles are randomly initialized with a uniform distribution &/ D (Figure 1(b)).
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Figure 1: The schematic figures of (a) standard sequential Monte Carlo and (b) persistent sequential
Monte Carlo for learning UGMs. Solid boxes denote sequential distributions and solid
arrows represent the move (resampling and MCMC transition) between successive distri-
butions. Dashed boxes are particle sets and dashed arrows mean feeding particles into a
SMC or sampling particles out of a distribution.

One issue arising in PSMC is the number of (3, i.e. H, which is also a problem in parallel
tempering and tempered transition®. Here, we employed the bidirectional searching method (Jasra
et al., 2011). When we construct sub-sequential distributions as (13), the importance weighting for
each particle is

O ph(iis); 01+1)
Ph—1(X);0141)
—AB,

exp (E(f{(s); Ot))Aﬁh exp (E(i(s)§ 0t+1)) 15)

where Ap), is the step length from 5,1 to By, i.e. ABy, = Bn, — Br—1. We can also compute the
ESS of a particle set as (Kong et al., 1994)

S (s))2
— (Zs;l w ) c |:1’ 1:| (16)
S Zs:l w(5)2

S

Based on (15) and (16), we can see that, when a particle set is given, ESS ¢ is actually a function of
App. Therefore, assuming that we set the threshold of ESS as ¢*, we can then find the biggest AS),
by using bidirectional search (see Algorithm 3) . Usually a small particle set is used in learning
(mini-patch scheme), so it will be quick to compute ESS. Therefore, with a small amount of extra
computation, the gap between two successive Ss and the length of the distribution sequence in
PSMC can be actively determined, which is a great advantage over the manual tunning in parallel
tempering and tempered transition. By integrating all pieces together, we can write out a pseudo
code of PSMC as in Algorithm 4.

g

3. Usually, there is no systematic way to determine the number of /3, in parallel tempering and tempered transition, and
it is selected empirically.
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Algorithm 3 Finding ASy,
Input: a particle set {x()}5_, 8,
1: [+ 0,u <+ Bp_1,a+ 0.05
2: while |[u — | > 0.005and [ < 3,_1 do
3:  compute ESS o by replacing ApSj, with —« according to (16)

4 if o < ox then

5: u—a,a+ (I+a)/2
6 else

7 I+ a,a+ (a+u)/2
8: endif

9: end while

Output: Return AS, = max(—a, —3,_1)

Algorithm 4 Learning with PSMC
Input: a particle set {x(™}M_, learning rate 7
1: Initialize p(x;0¢),t < 0
2: Sample particles {)’c((]s)}ss:l ~ p(x;0))
3: while ! stop criterion do
4 h<+ 0,0+ 1

5:  while 8, < 1do

6: assign importance weights {w(s)}f:1 to particles according to (15)
7: resample particles based on {w(*)}5_,

8: compute the step length AS;, according to Algorithm 3

9: Bry1 = Bn + 48
10: h<h+1

11:  end while

12:  Compute the gradient A@; according to (3)
13: 0t+1 =60, + nAOt

14: t+t+1

15: end while

Output: estimated parameters 8* = 0;

6. Experiments

In our experiments, PCD, parallel tempering (PT), tempered transition (TT), standard SMC and
PSCM were empirically compared on 2 different discrete UGMs, i.e. fully visible Boltzmann ma-
chines (VBMs) and restricted Boltzmann machines (RBMs). As we analyzed in section 4, large
learning rate and high model complexity are two main challenges for learning UGMs. Therefore,
two experiments were constructed to test the robustness of algorithms to different learning rates
and model complexities separately. On one hand, one VBM was constructed with small size and
tested with synthetic data. The purpose of the small-scale VBM is to reduce the effect of model
complexity. In addition, the exact log-likelihood can be computed in this model. On the other hand,
two RMBs were used in our second experiment, one is medium-scale and the other is large-scale.

10
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Figure 2: The performance of algorithms with the first learning rate scheme. (a): log-likelihood vs.
number of epochs; (b) and (c): the number of s in PSMC and SMC at each iteration
(blue) and their mean values (red).

They were applied on a real-world database MNIST*. In this experiment, the learning rate was set
to be small to avoid its effect. In both experiments, mini-patch of 200 data instances were used.
When PSMC and SMC were run, o* = 0.9 was used as the threshold of ESS. We recorded the
number of Ss at each iteration in PSMC, and computed the average value H. In order to ensure
the fairness of the comparison, we offset the computation of different algorithms. In PT, H s were
uniformly assigned between 0 and 1. In TT, similarly, H Ss were uniformly distributed in the range
[0.9, 1]5 . Two PCD algorithms were implemented, one is with one-step Gibbs sampling (PCD-1)
and the other is with H-step Gibbs sampling (PCD-H). In the second experiment, the computation
of log-likelihoods is intractable, so here we employed an annealing importance sampling (AIS)-
based estimation proposed by Salakhutdinov and Murray (2008). All methods were run on the
same hardware and experimental conditions unless otherwise mentioned.

6.1. Experiments with Different Learning Rates

A Boltzmann machine is a kind of stochastic recurrent neural network with fully connected vari-
ables. Each variable takes binary value x € {—1,+1}”. Using the energy representation (2),
parameters @ correspond to {W € RP*P b € RP*1} and ¢(x) = {xx',x}. Here we used
a fully visible Boltzmann machine (VBM), and computed the log-likelihood to quantify perfor-
mances. In this experiment, a small-size VBM with only 10 variables is used to avoid the effect of
model complexity. For simplicity, Wiji,j cliao Were randomly generated from an identical distribu-
tion A/ (0, 1), and 200 training data instances were sampled. Here we tested all learning algorithms
with 3 different learning rate schemes: (1) n; = ﬁ, Qn = m, By = m. The
learning rates in the three schemes were at different magnitude levels. The first one is smallest, the
second is intermediate and the last one is relative large. For the first scheme, 500 epochs were run,
and the log-likelihood vs. number of epochs plots of different learning algorithms are presented in

4. http://yann.lecun.com/exdb/mnist/index.html
5. In our experiment, we used a TT similar to that used by Salakhutdinov (2010) by alternating between one Gibbs
sampling and one tempered transition.

11
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Figure 3: The performance of algorithms with the second learning rate scheme. (a): log-likelihood
vs. number of epochs; (b) and (c): the number of Ss in PSMC and SMC at each iteration
(blue) and their mean values (red).
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Figure 4: The performance of algorithms with the third learning rate scheme. (a): log-likelihood
vs. number of epochs; (b) and (¢): the number of s in PSMC and SMC at each iteration
(blue) and their mean values (red).

Figure 2(a). The number of 8s in PSMC and SMC are also plotted in Figures 2(b) and 2(c) respec-
tively. We can see that the mean value H in PSMC is around 10, which is slightly higher than the
one in SMC. For the second and third learning rate schemes, we ran 100 and 40 epochs respectively.
All algorithms’ performances are shown in Figure 3(a) and 4(a). We found that the number of s in
PSMC and SMC are very similar to those of the first scheme (Figures 3(b), 3(c), 4(b) and 4(c)). For
all three schemes, 5 trials were run with different initial parameters, and the results are presented
with mean values (curves) and standard deviations (error bars). In addition, maximum likelihood
(ML) solutions were obtained by computing exact gradients (3). For better quantitative comparison,
the average log-likelihoods based on the parameters learned from six algorithms and three learn-

12
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Models (Avg.) Log-Likelihoods
(Size) Learning rate schemes PCD-1 PCD-H PT TT SMC PSMC
VBM ne = ﬁ“ -1.693 -1.691 —1.689 -1.692 -1.692 -1.691
(15) M = 5570 5xE -7.046 -2.612 -1.995 -2.227 -2.069 —1.891
ne = m -25.179 -3.714 -2.118 -4.329 -2.224 —1.976
MNIST
RBM training data -206.3846  -203.5884  206.2819  -206.9033  -203.3672 —199.9089
(784 x 10) testing data -207.7464  -204.6717  206.2819  -208.2452  -204.4852 —201.0794
RBM training data -176.3767  -173.0064  -165.2149  -170.9312 -678.6464 —161.6231
(784 x 500) testing data -177.0584  -173.4998 -166.1645 -171.6008 -678.7835 —162.1705

Table 1: Comparison of Avg.log-likelihoods with parameters learned from different learning algo-
rithms and conditions.
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Figure 5: The performance of algorithms on the medium-scale RBM. (a): log-likelihood vs. num-
ber of epochs for both training images (left) and testing images (right) in the MNIST
database; (b) and (c¢): the number of s in PSMC and SMC at each iteration (blue) and
their mean values (red).

ing rate schemes are listed in the upper part of Table 1. The results of the first experiment can be
summarized as follows:

1. When the learning rate was small, PT, TT, SMC, PSMC and PCD-10 worked similarly well,
outperforming PCD-1 by a large margin.

2. When the learning rate was intermediate, PT and PSMC still worked successfully, which were
closely followed by SMC. TT and PCD-10 deteriorated, while PCD-1 absolutely failed.

3. When the learning rate went to relatively large, the fluctuation patterns were obvious in all
algorithms. Meanwhile, the performance gaps between PSMC and other algorithms was
larger. In particular, TT and PCD-10 deteriorated very much. Since PCD-1 failed even worse
in this case, its results are not plotted in Figure 4(a).

13
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Figure 6: The performance of algorithms on the large-scale RBM. (a): log-likelihood vs. number of
epochs for both training images (left) and testing images (right) in the MNIST database;
(b) and (c¢): the number of 8s in PSMC and SMC at each iteration (blue) and their mean
values (red).

6.2. Experiments with Models of Different Complexities

In our second experiment, we used the popular restricted Boltzmann machine to model handwrit-
ten digit images (with the MNIST database). RBM is a bipartite Markov network consisting of a
visible layer and a hidden layer, it is a “restricted” version of Boltzmann machine with only inter-
connections between the hidden layer and the visible layer. Assuming that the input data are binary
and NV,-dimensional, each data point is fed into the NV, units of the visible layer v, and IV} units in
hidden layer h are also stochastically binary variables (latent features). Usually, {0, 1} is used to
represent binary values in RBMs to indicate the activations of units.The energy function E(v,h) is
defined as E(v,h) = —v' Wh—h"b —v'c, where W € RVo*Nn b € RVoX1 and ¢ € RVr X1,
Although there are hidden variables in the energy function, the gradient of likelihood function can
be written out in a form similar to (3) (Hinton, 2002). Images in the MNIST database are 28 x28
handwritten digits, i.e. N,=784. To avoid the effect of learning rate, in this experiment, a small
learning rate scheme 1, = ﬁ“ was used and 1000 epochs were run in all learning algorithms.
Two RBMs were constructed for testing the robustness of learning algorithms to model complexity,
one medium-scale with 10 hidden variables (i.e. W € R784x10) the other large-scale with 500
hidden variables (i.e. W € R784x500)6 " Similarly to the first experiment, we first ran PSMC and
SMC, and recorded the number of triggered (s at each iteration and their mean values (Figure 5(b),
5(c), 6(b) and 6(c)). For the medium-scale model, the number of Ss in PSMC and SMC are similar
(around 100). However, for the large-scale model, the mean value of |{So, 51, - }| is 9.6 in SMC
while 159 in PSMC. The reason for this dramatic change in SMC is that all 200 particles initialized
from the uniform distribution were depleted when the distribution gets extremely complex. For
other learning algorithms, H was set 100 and 200 in the medium- and large-scale cases, respec-
tively. Since there are 60000 training images and 10000 testing images in the MNIST database, we
plotted both training-data log-likelihoods and testing-data log-likelihoods as learning progressed
(see Figure 5(a) and 6(a)). More detailed quantitative comparison can be seen in the lower part of
Table 1. Similarly, we conclude the results of the second experiments as follows:

6. Since a small-scale model was already tested in the first experiment, we did not repeat it here.

14
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1. When the scale of RBM was medium, PSMC worked best by reaching the highest training-
data and testing-data log-likelihoods. SMC and PCD-100 arrived the second highest log-
likelihoods, although SMC converged much faster than PCD-100. PT, TT and PCD-1 led
to the lowest log-likelihoods although PT and TT raised log-likelihoods more quickly than
PCD-1.

2. When the scale of RBM was large, all algorithms displayed fluctuation patterns. Meanwhile,
PSMC still worked better than others by obtaining the highest log-likelihoods. PT ranked
second, and TT ranked third, which was slightly better than PCD-200. PCD-1 ranked last.
SMC failed in learning the large-scale RBM, so its results are not presented in Figure 6(a).

7. Conclusion

A SMC interpretation framework of learning UGMs was presented, within which two main chal-
lenges of the learning task were disclosed as well. Then, a persistent SMC (PSMC) learning al-
gorithm was developed by applying SMC more deeply in learning. According to our experimental
results, the proposed PSMC algorithm demonstrates promising stability and robustness in various
challenging circumstances with comparison to state-of-the-art methods. Meanwhile, there still ex-
ist much room for improvement of PSMC, e.g. using adaptive MCMC transition (Schifer and
Chopin, 2013; Jasra et al., 2011), which suggests many possible directions for future work. Be-
sides, although PSMC is expected to approach the maximum likelihood solution in learning UGMs,
sometimes maximizing the posterior function is more desirable (e.g. when the prior is available), so
it is also interesting to extend PSMC for maximum a posteriori learning.
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3.2.1 Training Conditional Random Fields for Image Annotation and

Image Segmentation

In this subsection, some evaluations and comparison of different learning algorithms on
two practical tasks, multi-label learning and image segmentation, are presented. Differ-
ent from previous experiments in the paper II where generative models were learned,
here discriminative models are used, i.e., two conditional random fields were employed.
Generally speaking, let x denote input and y € ) denote output, the target is to learn
an UGM:

]
plyhe) = PO _2:x) (3.25)

where the partition function Z is

Z="Y exp(6'(y,x)) (3.26)

yYEY

where ¢(y,x) is defined based on a task-oriented dependency structure. Note that the
partition function Z is computed by marginalizing out only y because the interest here
is a conditional distribution. Six algorithms were implemented: PCD-H, PCD-1, PT,
TT, SMC and PSMC. Similar setups were used for all algorithms as in the paper II.

Learning rate n; = was used and 100 iterations were run. For each input x,

1
10+4-0.1xt
the size of particle set {y<8>} is 200. Similar to other supervised learning schemes, a
regularization (/6|2 was added and a trade-off parameters was tuned via k—fold cross-

validation (k = 4).

It is worth mentioning that better results can be expected in both experiments by
running more iterations, using better learning rates or exploiting feature engineering.
However, the purpose here is to compare different learning algorithms under the some
conditions instead of defeating state-of-the-art results in multi-label learning and im-
age segmentation respectively. Therefore, less effort was put in tuning algorithms and

constructing sophisticated features.

3.2.1.1 Multi-Label Learning

In multi-label learning, inter-label dependency is rather critical. Assume that input
x € R? and there are L labels (i.e. y € {—1,+1}L), here all pairwise dependencies
among L labels were modeled, and therefore the constructed conditional random field
is:

B exp(y ' Wry +y' W,x)

plylx) = 7 (3.27)
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Precision(%) Recall(%) F1(%)

PCD-1 o7.7 59.3 58.5
PCD-5 70.3 72.6 71.4
TT 70.0 67.5 68.7
PT 72.2 77.1 74.6
SMC 717 75.1 73.4
PSMC 71.9 78.5 75.1

TABLE 3.1: A comparison of six learning algorithms on multi-label learning.

where Wg € REXL captures pairwise dependencies among L labels (except diagonal
entries) while W, € RZX? reflects the dependencies between input x and all individual
labels. In the test phase, with learned W i and W, for a test input x', the corresponding
y' was predicted with 100 rounds of Gibbs sampling based on (3.27).

The scene database (Boutell et al., 2004) was used in the experiment. In the database,
scene images are associated with a few semantic labels. There are 1121 training instances
and 1196 test instances. In total there are 6 labels (L = 6) and a 294 dimensional feature
were extracted from each image (x € R?%). Readers are referred to Boutell et al. (2004)

for more details about the database and feature extraction.

The performance of multi-label learning was evaluated using precision (P), recall (R),
and the F'I measure (F). The results of all six algorithms are presented in Table 3.1.
The average number temperatures in PSMC is around 5, so PCD-5 was implemented.
Also 5 temperatures were use in PT and TT. It can be seen that PSMC yields the best
F1 measure 75.1, followed by PT and SMC with 74.6 and 73.4 respectively. The results
of PCD-5 and TT are relatively poor, while PCD-1 is the worst.

3.2.1.2 Image Segmentation

Image segmentation is essentially a task to predict the semantic label of all image pixels
or blocks. Inter-label dependences within neighbourhood are usually exploited in image
segmentation. For instance, by dividing an image into equal size and non-overlapping
blocks, the label of a block does not only depend on the appearance of the block, but
also the labels of its neighbouring blocks. For simplicity, here only binary labels are
considered (e.g. foreground and background). In addition, blocks and inter-label de-
pendencies are assumed to be position-irrelevant. Therefore, a conditional random filed

can be constructed as:

eXP(Zu,veE YuWelo + D ey va;rxv)
Z

p(ylx) = (3.28)
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where y, € {—1,+1}, E denotes the set of all edges connecting neighbouring blocks,
W, € R encodes the dependency between neighbouring labels, V' denotes the set of all
block’s labels and w, € R%*! encodes the dependency between a block’s label and its
appearance which is represented by a d-dimensional feature x, € R?. Similar to the
multi-label experiment, desired labels are predicted via 100 rounds of Gibbs sampling

in the test phase.

The binary segmentation database from Kumar and Hebert (2003b) was used. Each
image is divided into non-overlapping blocks of size 16 x 16 and each block is annotated
with either “man-made structure” (MS) or “natural structure” (NS). Overall, there are
108 training images and 129 test images. The training set contains 3004 MS blocks and
36269 NS blocks, while the test set contains 6372 MS blocks and 43164 NS blocks. For
each block, its appearance is represented by a 3-dimensional feature which includes the
mean of gradient magnitude, the ’spikiness’ of the histogram of gradient orientations,
the angle between the most frequent orientation and the second most frequent orienta-
tion. The feature was designed to fit this specific application. More explanation of the

database and feature design can be found in Kumar and Hebert (2003b).

It is found that the average number of temperatures in PSMC is 20, therefore PCD-20
was run and 20 temperatures were used in TT and PT. The segmentation performance of
six algorithms are quantified with confusion matrices, which are presented in Figure 3.3.
It can be seen that PSMC outperforms all others (by checking the diagonal entries of the
confusion matrices). For qualitative comparison, an example image and corresponding
segmentations are shown in Figure 3.4. It can be seen that the segmentation by PSMC

is closer to the ground truth compared to others.
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F1GURE 3.3: Confusion matrices of binary segmentation by the six algorithms.
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Ground Truth

PCD-1 PCD-20

FIGURE 3.4: An example image and corresponding segmentations by the six algorithms.
Regions within white boxes are predicted as “man-made structure” while the remaining
are “natural structure”.



Chapter 4

Kernel-Based Structured Output

Learning

“Nothing is more practical than a good theory.”

Vladimir Vapnik

In previous two chapters, structured data are encoded and manipulated within graphs.
This chapter, by contrast, deals with structures with kernel methods. The kernel methods
have been incorporated with many classic data analysis techniques and enable them to
detect nonlinear patterns in data (Shawe-Taylor and Cristianini, 2004). Meanwhile, here
another function of kernels is more exploited: a kernel is designed as a similarity function
on a pair of instances by considering the inter-dependency among the elements in each
instance. This property is usually ignored when people use kernels. For instance, a

degree-2 polynomial kernel defined on x € R? is:
. . . . 2
K(x® x0) = ((x(’),x(j)> + c) (4.1)

where c¢ is a constant, x(9, x(9) are two instances. The feature map induced by the kernel
is:

QS(X) = [37317 o 7:1:%7 \/éxd'rdfh T, \/§$2.’131, \/%xdv T, \/%wh C]T (42)

It can be seen that the interactions between every pair of elements (24, z4—1) are encoded

in ¢(x), which is more informative than treating elements independently when no kernel

65
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is applied. The pairwise interactions within ¢(x) are analogous to the pairwise edges
in graphical models. However, kernel methods can go beyond graphical models by
providing higher-order interactions, e.g. degree-3 polynomial can capture dependencies

within triplets.

Kernels were usually used on inputs since the output is a single scalar value in classic
classification and regression tasks. When outputs are structured in modern data anal-
ysis, it is interesting to try adding kernels also on outputs. This chapter provides two
attempts on structured-outputs-kernels. More concretely, two novel methods are pro-
posed for multi-label learning: joint SVM and kernel generalized homogeneity analysis
(KGHA). These two methods are presented in section 4.1 and section 4.3 respectively.
In particular, the joint SVM is closely related to the structural SVM, which is reviewed
in subsection 4.1.1. KGHA, on the other hand, is an extension of homogeneity analysis,
which is a popular multivariate analysis technique. Section 4.2 presents an application

of homogeneity analysis on object-action learning.

4.1 Joint SVM

4.1.1 Structural SVM for Multi-Label Learning

This subsection introduces structural SVM (Tsochantaridis et al., 2004) based on stan-
dard SVM and studies its application in multi-label learning. Structural SVMs can also
be considered as max-margin Markov networks (M3Ns), which was studied in subsection
3.1.2. Standard SVM is a binary classifier, which has been well understand and widely
used in many applications. Its two advantageous components are maximum margins and
input kernels. The maximum-margin principle is a reflection of statistical learning the-
ory (Vapnik, 1995) on linear binary classification. Kernels provide powerful mechanisms
enabling the linear classifier to separate highly non-linear data. The critical observation
of kernel methods is that a kernel function can be defined on a pair of data instances to

implicitly map them to a reproducing kernel Hilbert space (RKHS):
Ky(x), x9) = (g(xD), (x)) (4.3)

where x(,x() € R? are two input training instances, ¢ is the feature map induced by
kernel function Ky, and ¢(x(?) is the representation of x(¥) in the RKHS H,. Given the
training dataset {x(") € Ry € {+1, ~1}}7,, the primal form of training SVM is:

arg min  gl[w|* + O3, €0
weR™o (44)
st y® (WTgb(x(i))) >1—€60 0 >04e{1,...,m}
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arg pu slwl?+C Y, @
sty (whox®)+1f) >1 '>,§<i>20,z’e{1,...,m}

courage the prediction and the
desired outputs have the same sign

the h¥yper-plane which can
maxmize t rgin from itse

to its closest instance 13 O positve instances

O negative instances

\

FI1GURE 4.1: Understanding the primal form of SVM.

where w is a linear hyperplane in Hg, £ () are slack variables for the tolerance of noise,
and C'is a trade-off parameter. The diagram in Figure 4.1 illustrates basic characteristics
of SVM. (4.4) differs from usual SVM formulation slightly at the absence of a bias term.

Here we ignore the bias since it can be absorbed in w. !

Here, to make the transition from SVM to structural SVM more smooth, an alternative
interpretaion of the primal form of SVM is presented. First, denote 3 (ngb(x(i)))
in the constraints of (4.4) as a score function F(x®,4®:w), then for binary outputs
y@, F (x(i), y; W) —-F (x(i), —y(i);w) =2xF (x(i)), y; W). Also, a distance function
between binary outputs can be denoted by d(y®), —y®) = |y — (—y)| = 2. Then by

replacing C' with %, (4.4) can be rewritten as:

arg min  g[wl[* + O, ¢

weR
) st. Vi, F (x(i), y(i);w) _F (x(i), —y(i);w) > d(y(i), _y(i)) — @ @ >
(4.5)
Structural SVM (Tsochantaridis et al., 2004) is a simple extension of (4.6) by considering
more general y. Assume that the structured output y € ) and |Y| is more than two.
Similarly, a score function can be introduced on a pair of input and output based on the

nature of the task: F(x,y;0) where 6 is a parameter set. Then the primal form of the

"When a Polynomial kernel is used, a bias term is already in its corresponding feature map. When
a Gaussian kernel is used, an input vector can be augmented with one extra constant.
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structural SVM can be

arg_min  |lwlf*+ T, €0

weR
st. Vi,Vy' e Y, F (x(i),y(i);w) —F (X(i),y’;w) > d(y®,y") — €0 0 >0
(4.6)
which is equivalent to that of a Max-margin Markov network (M3N). Structural SVM
can be applied on general structured y. In multi-label learning with L labels, y is a
L—dimensional binary vector. Similarly to M®Ns, solving (4.6) involves exponential

number of constraints, and therefore is in general intractable.

4.1.2 Joint SVM: Output Kernel Learning and Regularization

The joint SVM was developed with a special focus on the interdependencies within
outputs in multi-label learning. Essentially, the joint SVM is equivalent to SSVM with
a linear output kernel plus a regularization on the kernel. Therefore, a linear kernel
on outputs is automatically learned to capture the interdependencies within outputs.
Furthermore, if prior knowledge about the interdependencies is available, a user-specified
output kernel can be straightforwardly mounted in Joint SVM as well. In both cases,
the computation complexity of Joint SVM is almost the same as a single SVM, in
contrary to the exponential complexity in structural SVM. Joint SVM was shown to
yield substantial improvements, in terms of both accuracy and efficiency, over training
them independently. In particular, it outperforms many other state-of-the-art algorithms

according to empirical results on an image-annotation benchmark database.

More technique detials and results are presented in the paper I and paper III by the

author.

I . Hanchen Xiong, Sandor Szedmak, Justus Piater. Implicit Learning of Simpler Out-
put Kernels for Multi-Lable Prediction, NIPS workshop on Representation and Learning
Methods for Complex Outputs (NIPS-RLCO2014).

III Hanchen Xiong, Sandor Szedmak, Justus Piater. Scalable, Accurate Image
Annotation with Joint SVMs and Output Kernels, Neurocomputing Journal (Accepted).
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Multi-Label Prediction

Hanchen Xiong Sandor Szedmak Justus Piater
Institute of Computer Science, University of Innsbruck
Innsbruck, A-6020, Austria

{hanchen.xiong, sandor.szedmak, justus.piater} @uibk.ac.at

Abstract

It has been widely agreed that, in multi-label prediction tasks, capturing and utiliz-
ing dependencies among labels is quite critical. Therefore, a research tendency in
multi-label learning is that increasingly more sophisticated dependency structures
on labels (e.g. output kernels) are proposed. We show that, however, over-complex
dependency structures will harm more than help learning when the underling de-
pendency is relatively weak. To avoid overfitting on structures, a regularization on
label-dependency is desirable. In this paper, we put forward a novel joint-SVM for
multi-label learning. Compared to other discriminative learning schemes, joint-
SVM has two strengths: at first, the complexity of training joint-SVM is almost
the same as training a single regular SVM, which is quite efficient; secondly, in
joint-SVM, a linear output kernel on multi-label is implicitly learned and a regu-
larization on the output kernel is implicitly added, which enhances generalization
ability. In our experimental results on image annotation, joint-SVM compares
favorably state-of-the-arts methods.

1 Predict Multi-label as Structured Outputs

In the past two decades, support vector machines (SVMs) have displayed remarkable successes in
various application domains. The achievements of SVMs mainly stems from its two advantageous
components: maximum margins and input kernels. The maximum-margin principle is a reflection of
statistical learning theory [12] on linear binary classification. Kernels provide powerful mechanisms
enabling the linear classifier to separate highly non-linear data. The critical observation of kernel
methods is that a kernel function can be defined on a pair of data instances to implicitly map them
to a reproducing kernel Hilbert space (RKHS):

Ko(x®,x00) = (¢(x), (x1)) (1)
where x(¥, x() € R are two input training instances, ¢ is the feature map induced by kernel

function K, and ¢(x(?)) is the representation of x(*) in the RKHS 4. Given the training dataset
{x® e Ry € {4+1,-1}},, the primal form of training SVM is:

arg min  gljw|* +C Y, €0
weR™o

2
st y@ (whox®) >1-£60,¢0 >0i€e{1,...,m} @)

where w is a linear hyperplane in H4, (%) are slack variables for the tolerance of noise, and C' is a
trade-off parameter. (2) differs from usual SVM formulation slightly at the absence of a bias term.
Here we ignore the bias since it can be absorbed in w . The computational advantage of kernels
become obvious when the primal form of SVM (2) is reformulated to its dual form:
arg  min S — % ZZ”],:l iy Dy Ky (x(), x(0))

Q1,002 Qi

. 3
st. Vi,0<o; <C
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The dual representation of wis Y"1, ;49 ¢(x(¥)), and thus the prediction of a test instance % is

7 = sgn (qub(fc)) = sgn (Z aiy(i)K¢(x(i), f{)) . @
i=1
We can denote ) (w ' ¢(x(?)) in the constraints of (2) as a score function F'(x(), y(); w), then
for binary outputs ¥y, F (x¥,y@;w) — F (x, —y®;w) = 2 x F (x%),yD;w). Also, a
distance function between binary outputs can be denoted as d(y*, —y() = |y — (—y@)| = 2.
Then by replacing C' with %, (2) can be rewritten as:

arg min 3w+ O, €0

wEe

st. Vi, F (x(i),y(i);w> —F (x(i), —y(i);w> > d(y®, —y@D) — €@ 0 >0 (5)

Ap(y®,—y@)

which is a binary-output case of structural SVM [1 1] (see later). By using hinge-loss representation
for €@, (5) is:

1 m ) . ) .
arg min 5\|w|\2 +C Y max{0,d(y, —y") — Ap(y?, —yD)} (6)
weR™ ¢ =1

Structural SVM [ 1 1] is an extension of SVM for structured-outputs, in which, however, the margin to
be maximized is defined as the score gap between the desired output and the runner-up. Assume that
structured outputs y € )/, and the score function is linear in some combined feature representation of
inputs and outputs ¥ (x,y): F(x,y; W) = (W, ¥(x,y)), then the objective function of structural
SVM is:

m

1 i i
arg min S[[WIJ* + CZ;I;'% {d(y( 1y') = Ap(y! %y’)} @

where Ap(y®,y") = F(x@,y®, W) — F(x®,y": W) and d(y?,y’) is a distance function
defined on structured outputs. In multi-label scenario, given a set of 7' labels, then outputs are T-
dimensional binary vector y = [y1,--- , %, ,yr] € BT. When we define the score function
F(x9,y@0: W) = (W, ¢(x?) ® y¥), and use Hamming distance on outputs, then because of
linear decomposability, (7) can be rewritten as:

: m T i %
arg min LW+ O, YT maxy -1y {50 — Ar” )}
WeRH¢xIR

arg  min S0 {Eliwill? + 07 max {0.d”, —u") - Ar”, —ui) } |

wi, o, wrERMe
®)

where (-, -) p denotes Frobenius product and ||[W ||z is the Frobenius norm of matrix W.

2 Joint SVM

It can be seen (by linking (6) and (8)) that, with linearly decomposable score functions and output
distances, using structural SVM on multi-label learning is equivalent to learning 7" SVMs jointly.
This is closely related to multi-task learning frameworks [1], where different learning tasks are
connected by summing up their objectives and constraints respectively:

. T T i
min %thl [[will* +C >y Yot & )

W.It. Wi, Ws,...,wp € RMex! ©)
T (G i T LG
st. Sy (wlee™) >T -1 "
(D) 1 (4) w wiT . )
By denoting y'*) = [y;, ...,y ], and W = [Z; .. .; =], we can rewrite (9) as:
. 1 W 2 C m (i)
3TgWeIH€}IiH@ sIWIE+C0, € (10)

s.t. <y(z)’w¢(x(l))> > 1 _g(i)agi > Oal € {Lvm}
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which is referred to as joint SVM. When linear output kernels (K, (y (¥, y@)) = (¢ (y @), ¢ (y )
[4, 7, 13] are applied on outputs, (10) will be:
i 1 2 m - ¢(i)
arg  min Wl +C> 21§
o, HIWIE L OXEE "
st (Uy@D), Wo(z)) >1 €06 >0,ie{1,...,m}

Since the linear decomposability of Az (y(i) ,y') is still preserved, join SVM solves the same prob-
lem as structural SVM. However, one strength of joint SVM is that its training complexity is almost
the same as a single SVM, by contrast to the exponential complexity in structural SVM. Similarly
to regular SVM, joint SVM can be converted to its dual form

arg min 330 o — 330 i Ky (y @,y D) Ky (x@, x0))

(12)
s.t Vi,0 <a; <C

with W = 37" a;9(y)(x@)T. It can be seen that, with the kernel matrix on outputs pre-
computed, the computational complexity of joint SVM (12) is the same as the learning of one single
SVM (3), which is a great advantage in efficiency. Meanwhile, when more general output kernels
are used, then the linear decomposability of Az (y(*),y’) will be violated, then joint SVM becomes
a special case of max-margin regression [10], which seeks to learn linear operators W : H, — Hy,
from general ¢(x) ® ¥ (y).

Given a test input X, the prediction (¥ ) in H,, is
Y(F) = Wok) = aib(y D) Ky(x, %). (13)
i=1

Meanwhile, there is no direct way (say, by inverting Eq.(13)) to map 1 (§) back to y. Therefore, we
can find the optimal solution 3, out of all possible y € {+1, —1}* such that its projection in H,,
is closest to W¢(%):

y* o= agmaxger e (V(y), Wo (X)) _
= argmaxXycqiq )7 Z:’;l Q; K(b(x(l))f() ](1/,(}/’(1)7 y) (14)
—_—
Bi

In general, there is no closed-form solution to Eq.(14), so here we use a similar neighbour-based
label transferring theme as [9, 6]:

K K m
v = (Z Y”“)wk) / Swn wi= Y @Bk y®,y?) (15)
k=1 k=1 i=1
where k = {j € [1,m] : w; > 0} and maximum K = 10 neighbours are taken into account. Since

a; are K, (y”, y9)) were already computed in the training phase, only the computation of {; }7,
is needed during testing. Thus, the complexity in predicting is O(m).

3 Implicit Learning and Regularization of Qutput Kernels

Assume that the statistics of tags’ pairwise co-occurrence can be encoded in a 7' x T matrix P[3, 4, 7,
1, via which the output vectors can be linearly mapped as ¢)(y) = Py, and thus the corresponding
linear output kernel is: ‘ ‘ ‘ ‘ ‘
Kiln (y(l)’y(ﬂ)) =yOTQy (16)
where @ = PTP = PP . By denoting U = PT W, we can rewrite joint SVM (11) as:

i LWz +c3m, €@
argwgfgyfw 2||. 1% + 421_15 3 (17
st. (y@,Up(z)) >1-£9,¢ >0,ie{1,...,m}

Meanwhile, we need to control the scale of P, otherwise the constraints in (17) will be pointless.
Different regularizations on P have been proposed in previous work. In [4] one extra regularization
on £, 1||©||%, was added into the objective function, while ||P||p = 1 was used in [13]. By
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Corel5SK Espgame laprtc12
Method P(%) R%) F1(%) P%) R®%) Fl(%) P%) R®%) Fl(%)
MBRM [5] 240 250 24.0 18.0 19.0 18.0 240 230 23.0
JEC [9] 270 320 29.0 24.0 19.0 21.0 29.0 19.0 23.0
TagProp [6] 33.0 420 37.0 39.0 270 32.0 450 340 39.0
FastTag [3] 320 43.0 37.0 46.0 220 30.0 47.0  26.0 34.0
JISVM 48.5  38.0 42.6 327  31.6 32.2 422 294 34.6

JSVM-+Pol(2) 46.6  37.0 413 326 244 279 379 266 31.2
JSVM+Pol(3) 41.5 31.3 35.7 28.5 21.3 244 380 261 31.0

Table 1: Comparison between different versions of joint SVM and other related methods on three
benchmark databases. P, R and F1 denote precision, recall and F1 measure respectively.

contrast, a pseudo regularization on P is used in [3] via the re-construction loss from manually-
corrupted data and P. Similar to [4], we want to add a regularizer to control overfitting from output
dependency-structures. Meanwhile, by merging regularization on W and P, we obtain a more
compact regularizer, 3 W " W, resulting in:

: 1 2 m (@)
arg  min Ullz+C> .- ¢
g, HIUIE+CTILE0 "
s.L. <y(2)7 U¢(x(l))> > 1- 5(2)7 gz > Oal € {17 s 7Tn}
Remarkably, (18) is equivalent to (11) with W substituted by U, which suggests that a linear output
kernel is implicitly learned, and absorbed in W, when we training a plain joint SVM with no explicit
kernel on outputs. In addition, a regularization on the output kernel is also implicitly added.

4 Experiments

In our experiments, we evaluated the propose joint SVM on image annotation tasks. Here, we used
three benchmark datasets, Corel5k, Espgame and laprtc12. These three datasets have been widely
used in image annotation studies [8, 2, 5, 6, 9, 3] with performance evaluations reported therein.
Therefore, we can easily compare our method with others. We used the same visual features as in
[6, 3]. Three types of joint SVMs with different output kernels are tested: plain joint SVM (JSVM),
2-degree polynomial (JSVM+Pol(2)) and 3-degree polynomial (JSVM+Pol(3)).

The experimental results, together with the reported results from other related work, are presented
in Table 1. We can see that plain joint SVM (JSVM) outperforms all other results on CorelSk
and Espgame datasets. JSVM is also the second best result on Iaprtc12 dataset. JSVM+Pol(2) also
worked better than some old methods [5, 9]. Meanwhile, JSVM+Pol(3) is worse than JSVM+Pol(2).

Discussions Based on our experiments, it seems that plain joint SVM (JSVM) works more robustly
than the joint SVMs with explicit output kernels. In order to dig deeper to find an explanation, we
can study the correlation matrices of output tag-sets in three datasets. In Figure 1, for each dataset,
we plot the histograms (in log scale) of all correlation values in both training sets and testing sets.
We found that most entries in correlation matrices are 0, which means that the pairwise correlation
(or roughly speaking, dependencies) is rather sparse. Although JISVM, JSVM+Pol(2) both encode
pairwise dependencies, it should be reminded that the implicit linear output kernel in JSVM is
in regularization term, which implies that simpler output kernels (dependencies) are encouraged.
However, JSVM+Pol(2) does not have this preference. Therefore, JSVM can implicitly learned most
simple output kernels when no more complex ones are needed. Analogously, the same principle can
explain why even JSVM+Pol(3) led to worse results.

5 Conclusions

A novel joint SVM was presented for multi-label learning. One benefit of using joint SVM is that
the learning and regularization of a linear output kernel are implicitly conducted. Moreover, both
training joint SVM and predicting with joint SVM are efficient. As a possible work direction, we
might investigate more interesting output kernel regularization schemes to fit different applications.
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Histograms of label correlation(log scale), data set:corel5k

Training labels: Test labels:

T

(@)
Histograms of label correlation(log scale), data set:espgame

Training labels: Test labels:

T

(b)
Histograms of label correlation(log scale), data set:iaprtc12

10° Test labels:

Training labels:

©

Figure 1: The histograms (in log scale) of all correlation values in both training sets and testing sets:
(a) Corel5k, (b) Espgame (c) Iartc12.
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Abstract

This paper studies how joint training of multiple support vector machines (SVMs) can improve the ef-
fectiveness and efficiency of automatic image annotation. We cast image annotation as an output-related
multi-task learning framework, with the prediction of each tag’s presence as one individual task. Evidently,
these tasks are related via dependencies between tags. The proposed joint learning framework, which we
call joint SVM, is superior to other related models in its impressive and flexible mechanisms in exploit-
ing the dependencies between tags: first, a linear output kernel can be implicitly learned when we train a
joint SVM; or, a pre-designed kernel can be explicitly applied by users when prior knowledge is available.
Also, a practical merit of joint SVM is that it shares the same computational complexity as one single con-
ventional SVM, although multiple tasks are solved simultaneously. Although derived from the perspective
of multi-task learning, the proposed joint SVM is highly related to structured-output learning techniques,
e.g. max-margin regression [1], structural SVM [2]. According to our empirical results on several image-
annotation benchmark databases, our joint training strategy of SVMs can yield substantial improvements,
in terms of both accuracy and efficiency, over training them independently. In particular, it compares fa-
vorably with many other state-of-the-art algorithms. We also develop a “perceptron-like” online learning
scheme for joint SVM to enable it to scale up better to huge data in real-world practice.

Keywords: image annotation, multi-label learning, output kernels, maximum margin
2014 MSC: 00-01, 99-00

1. Introduction

Automatic image annotation is an important yet challenging machine learning task. The importance is
based on the fact that the number of images grows increasingly fast on the internet, and most of them have
no link to semantic tags (or keywords, labels). Therefore, automatic annotation is of great significance to
generate meaningful meta-data for organizing image collections, and in particular, retrieving images from
textual queries. The challenges are usually considered from two classical perspectives [3]: first, semantic-
gap, i.e. the gap from low-level image features to textual tags is large and there exist no reliable way to
extract dependencies between them; secondly, absence of correspondence, i.e. for each tag associated with
one image, there is no corresponding region annotated, which hinders learning worse. Meanwhile, when
considering contemporary image annotation, one more difficulty to bear is big data. The image data on
internet is usually presented in large volumes (million or billion level), so the desired learning method should
be capable of working on large-scale data with high learning and prediction efficiency. One straight-forward
yet naive strategy is to consider each tag’s presence as a binary classification problem. Then, multiple
binary classifiers, e.g. support vector machines (SVMs), can be trained independently for different tags.
This method, however, will suffer from high computational complexity in both training and prediction
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justus.piater@uibk.ac.at (Justus Piater)
LCorresponding author

Preprint submitted to Journal of BTEX Templates October 23, 2014



20

25

30

35

40

45

50

55

60

65

Chapter 4. Kernel-Based Structured Output Learning 76

phases when the number of tags is relatively large. In addition, independently learning multiple SVMs is
not expected to work well because it ignores the dependencies between the presences of tags [4], which is a
phenomenal characteristic of image annotation tasks (e.g., sky and cloud often co-occur).

In this paper, we propose to interpret image annotation as the learning of multiple related tasks. However,
different from most existing multi-task learning frameworks [5] in which tasks are related through their
inputs, our joint learning method focuses on the relation between outputs. Our strategy is motivated by two
intuitions. First, by connecting multiple SVM classifiers together, the dependencies between their outputs
(the presences of tags), presumably, can be more easily encoded. Secondly, if the outputs of multiple SVMs
can be merged into a single vector entity, the optimization problem can be established and solved over vectors,
greatly reducing the computational complexity. These two objectives, surprisingly, can be easily achieved
by summing up the objectives and constraints in different SVMs, plus an appropriately designed kernel on
outputs. We refer to the proposed training strategy as joint SVM. The key strength of joint SVM is that
it can flexibly offer two mechanisms to exploit the dependencies between tags: first, when there is no prior
knowledge on the dependencies, a linear output kernel can be implicitly learned when we train a joint SVM; or
a pre-designed, prior-oriented, kernel can be applied on outputs when prior knowledge is available (see section
4). In addition, as we will see in section 3, the training of joint SVM shares almost the same computation
complexity as a single regular SVM, which is a practical merit when the number of tags is relative large.
Interestingly, although derived from the perspective of multi-task learning, the proposed joint SVM highly
relates to structured-output learning techniques, such as max-margin regression [1], structural SVM [2] or
max-margin Markov network (M3N) [6]. More connections between them will be exploited in section 5.
In addition, to enable joint SVM to scales up to huge data (million or billion level) in real-world practice,
we develop a “perceptron-like” online learning algorithm for joint SVM in section 6. In our experiment
(section 7), we tested joint SVM on several benchmark image-annotation databases, with comparison against
independent SVMs and other results reported in state-of-the-art algorithms. The experimental results show
that our joint SVM can gain impressive improvement over training SVMs independently. In particular, it
compares favorably with many other state-of-the-art algorithms.

2. Related Work

Prior to our work, there exist many literatures on image annotation in computer vision and machine
learning communities [7, 8, 9, 10, 3, 11, 12, 13, 14, 4, 15, 16]. Roughly speaking, all algorithms can be cat-
egorized into generative methods or discriminative methods according to how the relevance between image
features and textual tags are modeled. On one hand, generative methods, mostly inspired by linguistic trans-
lation studies, model the generating or formating procedure of visual features and tags, then tags prediction
from a novel image is inferred by leveraging co-occurrence statistics between visual features and tags in
training data. Continuous Relevance Model (CRM) [7], Correlation Latent Dirichlet Allocation (CorLDA)
[8] and Multiple Bernoulli Relevance Model (MBRM) [9] belong to the generative category. However, one
drawback of these method is that usually some statistical assumptions (e.g. conditional independence) are
imposed on models, which restricts their modeling capabilities. Furthermore, another practical obstacle of
most generative methods is the intractability of inference in tag prediction phase, therefore, usually some
approximation techniques are applied. On the other hand, discriminative methods directly model the tag-
predicting function, out of which TagProp [10], JEC [3] are metric-learning based approaches, rank-SVM
[17], LM-K [18] are rank-learning based approaches, M3L [4] and Multi-Label Relationship Learning (MLRL)
[16] are maximum-margin based approaches. One notable issue, and also difficulty, in discriminative meth-
ods is the dependencies between output tags, of which many state-of-the-art studies [4, 11, 18] have being
aware. In several recent studies [10, 3, 11], discriminative methods were reported to displayed empirically
superior performance than generative ones on image annotation task. More comparison and analysis on
different representative methods can be found in up-to-date reviews [3, 4, 11].

The proposed joint SVM in this paper is a maximum-margin based, discriminative learning frame-
work. Although joint SVM displays strong connections with structured-output learning, the staring point
of our work is to improve the annotation performance by exploiting the relationship between individual tag-
predictors. A conceptually-related work was concurrently, but independently from us, presented in MLRL
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[16], of which the authors explicitly model the relationship as a covariance matrix in matrix-variate normal
distribution over individual model parameters. In contrast, in joint SVM, the dependency between different
tags are encoded in output kernels. In this sense, our work is also similar to LM-K [18] and M3L [4]. In-
terestingly, when the output kernel is linear, it is equivalent to the explicit relationship learning in MLRL.
Meanwhile, more sophisticated output kernel can flexibly be constructed and utilized in joint SVM, to afford
nonlinear, higher-order dependencies, although they are not always of help in practice.

3. Joint Learning of Multiple SVMs

8.1. Support Vector Machines and Input Kernels

In the past two decades, support vector machines (SVMs) have displayed remarkable successes in various
application domains. The achievements of SVMs mainly stems from its two advantageous components:
mazimum margins and input kernels. The maximum-margin principle is a reflection of statistical learning
theory [19] on linear binary classification. Kernels provide powerful mechanisms enabling the linear classifier
to separate highly non-linear data. The critical observation of kernel methods is that a kernel function can
be defined on a pair of data instances to implicitly map them to a reproducing kernel Hilbert space (RKHS):

Ky(x",xY) = (¢(x1V), 6(x)) (1)

where x(V, x(9) € R? are ith and jth input training instances, ¢ is the feature map induced by kernel function
K4, and qb(x(i)) is the representation of x(¥) in the RKHS He. Most popularly, a Gaussian (or radial basis
function) kernel

K§(x, x0)) = exp (_qu) — x| /202) o)
is employed because its corresponding RKHS is an unnormalized Gaussian density function:
¢Gau(x(i)) o N(T;X(i)’o_) )

which is of infinite dimension, and thus greatly improves the representational capability of input data.
Another popular kernel function is Polynomial kernel:

) . ) . d
quol (X(z)7 x(])) _ ((x(’),x(])> + C) (4)

In particular, when the degree d = 1 and constant term ¢ = 0, Polynomial is a simple inner product.
Meanwhile, in 2-degree (d = 2) Polynomial kernel, corresponding feature map is:

¢P0l(x) = [‘r37 e 71.%7 \/ixdxdfla e 7\/§x2x17 \/%xdv e 7\/%mlvc]—r (5)

Given the training dataset {x(") € R y() € {41, ~1}}, of one binary classification problem, the primal
form of training SVM is written

argmin pw, x1 %HWHQ +CY0 3 o 6)
st y® (WTQS(X(Z))) >1-£0.e0 >04ie{1,...,m}

where w € R*#*1 is the normal vector of a linear hyperplane in H (here and later we use H as dim(H)
for simplicity when we denote dimensionality) , £ are slack variables for the tolerance of noise, and C'
is trade-off parameter de between training error and max-margin regularization. Eq.(6) differs from usual
SVM formulation slightly at the absence of a bias term. Here we ignore the bias since it can be absorbed
in w 2. Actually, eliminating the bias is more critical in predicting multiple dependent labels, check [4] for

2When a Polynomial kernel is used, a bias term is already in its corresponding feature map. When a Gaussian kernel is
used, an input vector can be augmented with one extra constant.
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detailed explanations. The computational advantage of kernels become obvious when the primal form of
SVM (Eq.(6)) is reformulated to its dual form by introducing Lagrange multipliers «; for each constraints:

ATE Millay g Yoy @ — 5 0oy @y Y K (D, x)) -
s.t. V’L,O <a; < C

The dual representation of w is Z;il aiy(i)qb(x(i)), and thus the prediction of a test instance X is

§=sgn (w' (X)) = sgn (Z iy Ky (x1, fi)) : (8)

i=1

It can be seen that the kernel function K, enables the learning of a high-dimensional (even infinite) w
without explicit computation in Hg. Eq.(8) shows that the kernel function yields a similarity measurement
between two input instances, and the prediction is working as a weighted-sum of all outputs in the training
data.

3.2. Joint SVM

The automatic image annotation task seeks to predict the presence of tags given an input image. Assume
d-dimensional visual features are extracted from input images and there are T tags in a pre-defined dictionary,
then the annotation learning task is to seek a function f : x € R? — {—1,+1}7. If we consider prediction
of each tag’s occurrence as a binary classification problem, we can list as many SVMs as the number of
tags. Similar to other multi-task learning frameworks [5], we connect the learning tasks of different SVMs
by simply summing up their objectives and constraints respectively in the primal form

. T T 3
min 37 (w2 +OX L, S e
w.r.t. Wl,WQ,...,WTERH"’Xl

st Sy (wle®) >T -3 €

where t indexes different tags or learning tasks, and T is the total number of tags. By denoting y(?) =

W) and W= (ML, VT - ey .
Y1y, Yy ] an = [Z;...s ], we can rewrite (Eq.(9)) as a joint SVM:

(9)

argming, prxn, 3| |W|E+C " &0 (10)
where ||[W]| is the Frobenius norm of matrix W, and €0 = L7 ¢ Eq.(10) is referred to as joint
SVM. One rationale of Eq.(10) is that within the joint form of objectives and constraints, learning easy tasks
can help the learning of challenging tasks. For example, if training data (x(i*), yz(,i)) can be easily classified
correctly in the pth task (i.e., y(i)(w;—x(i))/T > %), it can offer some ‘freedom’ to other challenging tasks
before violating constraint <y(i),W¢(x(i))>H > 1. Meanwhile, a more critical strength of Eq.(10) is that
a linear output kernel is implicitly learned and absorbed in the model parameters W. More rigorous
explanation will be presented later in section 4.1. In addition, another key functionality joint SVM can
afford is that we can also, based on our prior knowledge, explicitly define kernel functions on outputs
y to improve their representational power (e.g. dependencies). Assume the kernel function defined on
outputs are Ky (y®,y()) (the output kernel will be explained later) and the corresponding feature map is
Y {-1,+1}T — H,, then Eq.(10) is modified to

arg minyy cpry, <, %HWH% +CY, & _
st (™), We®)) >1-69.6 >0,i e {1,...,m}

Similarly to a single conventional SVM, joint SVM Eq.(11) can be converted to its dual form

(11)

AT MiNay, 0, Yooy X — dog g1 i Ky (v, y0)) Ky (x), x0)) (12)
st Vi,0<a; <C
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with W = 37" ;b (y#)p(x) . Tt can be seen, with the kernel matrix on outputs pre-computed, that the
computational complexity of joint learning (Eq.(12)) is the same as the learning of one single SVM (Eq.(7)),
which is a great advantage in efficiency.

Given a test input X, the prediction ¢(y) in H, is

m

) =Wox) =D aip(y?)Ky(xD, %). (13)

i=1

Meanwhile, one computational issue is that there is no direct way (say, by inverting Eq.(13)) to map ¢(y)

back to §. Therefore, we can find the optimal solution ¥*, out of all possible y € {+1,—1}T, such that its

projection in H,, is closest to We(%):

y*© = argmaxyciy qyr (¥(y), Wo(X)) .

= argmaXgeriq )7 PR K¢(x(’), X) Ky(y®,y) (14)
B

In general, there is no closed-form solution to Eq.(14), so usually approximate dynamic programming (ADP)
is applied in searching for the optimum y*. Here, we employ a simpler yet effective strategy. Since the
number of tags associated with one image is rather small, most of the y in {+1,—1}7 space are bad
solutions. Therefore, when the training data size is large, the most likely solutions of Eq.(14), presumably,
are covered by the outputs in training data {y}7,. Consequently, we can find the optimum y* via a similar
neighbour-based label transferring theme as [3, 10]:

K K
k=1 k=1

wj = Zaiﬁin)(y(i)ay(j)) (16)
i=1
where k = {j € [1,m] : w; > 0} and maximum K = 10 neighbours are taken into account. Since «;
are Kw(y(i), yU )) were already computed in the training phase, only the computation of {3}, is needed
during testing. Thus, the complexity in predicting is O(m).

4. Implicit and Explicit Linear Output Kernels on Tag-Sets

To transform the pairwise and triplet-wise dependencies between tags into the inner product of two
outputs containing those tags, 2-degree and 3-degree Polynomial kernels are tried in [18] and it was reported
that 2-degree is better than 3-degree. In [4, 16, 20], linear feature maps were exploited also for pairwise
dependencies. In particular, linear output kernels and models were simultaneously learned in [16, 20], while
the output kernel in [4] is pre-computed as a correlation matrix over output vectors. In this paper, based on
the experience from previous literatures, we also only focus pairwise dependencies and study linear kernels
(although higher-order kernels will also be tried in our experiments, and the performance among different
kernels can be checked in section 7). Here we adopted strategies both in [16, 20] and in [4]. At first, we
present that the linear output kernel can be implicitly, but more simply compared to [16, 20], learned when
we train a joint SVM. Secondly, we developed a novel pre-designed linear kernel function, which can be seen
as a replacement of the kernel with correlation matrix used in [4].

4.1. Implicit linear output kernel learning

Assume that the statistics of tags’ pairwise co-occurrence can be encoded in a T' X Tmatrix P, via which
the output vectors can be linearly mapped as ¥ (y) = Py, and thus output kernel is:

Kim(ym’ y@)) = yO Ty (17)
5
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where @ = P'P = PP'. By denoting U = P W, we can rewrite joint SVM (Eq.(11)) as:

arg minwe]RHwXH¢ %HWH% +C 2111 g(i)

st (y@,Up(a®)) >1 €0 ¢ >0,i e {1,...,m} (18)

Meanwhile, we need to control the scale of P, otherwise the constraints in Eq.(18) will be pointless. In [20]
one extra regularization on €, 3||€||%, was added into the objective function, while ||P||z = 1 was used in
[16]. By contrast, a pseudo regularization on P is used in [11] via the re-construction loss from manually-
corrupted data and P. Here we apply a simpler strategy by using a compact regularizer, %VVTQVV7 resulting
in: .
arg ming pr, x#, %||U||% + C’lz:il £ »

st (yD,Ugp(z)) >1 €0 ¢ >0,ie{1,...,m}

Remarkably, Eq.(19) is equivalent to Eq.(11) with W substituted by U, which suggests that a linear output

kernel is implicitly learned, and absorbed in W, when we training a simple joint SVM with no explicit kernel
on outputs.

(19)

4.2. Odds-ratio based kernel

In this paper, we also explicitly design an odds-ratio based kernel over tag-sets to capture pairwise
dependencies. The dependency between tags measures how much the appearance of one tag increases or
decreases the chance of another tag to occur in the same label set. At first, we can estimate the probability
of co-occurrence of two labels, w, and ws, form training data:

Zi:l,...,m yg’z) =1 and y(gl) -1
m .

P(w,,ws) =

(20)

according to which, we can compute the odds ratio, a measure, of the dependency between those words by
the well known formula [21]:

P(w,,ws)P(w,,ws)
P(w,,w;)P(w,,ws)’
where W, means the complement of w, (counting those sample items where w, does not occur). Then the
odds ratio is symmetrized by taking its logarithm, where the 0 value expresses the independence and the
positive (or negative) value corresponds to higher (or lower) co-occurrence of those words than the random
case. The higher of the magnitude of the log-odds-ratio shows stronger deviation from the independence.

Qrs < log(Om) (22)

Oyps = (21)

The odds-ratio based kernel on a pair of outputs can then be computed:
KMy, y0)) =y TQy (23)

where Q is the log-odds-ratio matrix with Qs = Q5.

5. Relation to Structured-Output Learning

Interestingly, although derived from a rather different starting point, our joint SVM (Eq.(11)) is the
same as Maximum Margin Regression (MMR) [1], wherein the motivation is to seek a linear operator in
arbitrary tensor product space ¥(y") ® ¢(x(*). In addition, Eq.(11) is also related to structural SVM [6, 2]
by sharing the same objective, yet with different constraints. An empirical comparison of these two methods
on hierarchical-label learning is in [22]. The solution of the MMR stands close to the Minimum Description
Length Principle, see for example in [23], by providing a highly compressed description to complex learning
problems. In particular, when a linear output kernel and Hamming loss function are used in structural SVM.
Structural SVM can be converted to a rather similar formulation as joint SVM by decomposing Hamming
loss and y element-wisely. The detailed derivation was presented in [4].

6
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6. Onmnline Learning of Joint SVM

In real-word applications, the number of images can be very huge and beyond the memory storage and
computing capacities of normal PCs. For instance, millions of images are uploaded to Facebook™ and
Flicker™™ every day. Obviously, the computation of kernel matrix for even daily volume is impractical. The
formulation of joint SVM also suggests an implementation of a “perceptron-like” algorithm . For simplicity,
here we present the case where no output kernel is applied. We aim to demonstrate the transparency of
the formulation of joint SVM, which allows us to inherit most of the machine learning techniques developed
earlier. Consider the optimization problem in Eq.(10) when only the error term is minimized

min Y h(A = (YD, We(x?))x,) (24)
i=1
subject to {W|W :H, — H,, W a linear operator},

where A is a prescribed margin, and the function h(u) denotes the Hinge loss, that is

uw ifu>0,
h(u) _{ 0 otherwise. (25)

The error function that we are going to minimize has subgradient with respect to W and this can be
computed independently in an incremental way for each term occurring in the summation Eq.(24). The
reader can consult to [24] and [25] for details of incremental subgradient methods. The term-wise subgradient
is equal to

Oh(A = (v W@ ™)), ) lw

_ _y(i)(b(x(i))T i\ — <y(i)7W(]§(gj(i))>Hy >0 (26)
0 otherwise.

We can define the learning speed with a step size, denoted by s, and we obtain the “perceptron-like”

algorithm given in Figure 1. In that algorithm W™°™™ denotes the Ly normalized linear operator.

Input of the learner: The sample S, step size s
Output of the learner: W ¢ R*v*Ha
Initialization: t = 0; W; = 0; W} = 0; |[Wy|| =0
Repeat
fori=1,2,...,m do
read input-output pair: (x;,y;)
Bi = (yi, W @ (z4)) w1,
if 5; < A then (27)
Wi =W, + syiop(z;)
t=t+1
(Wil = [Well* + 82 |lyslI* [l (i) || + 258
W™ = Wit /W]
end if
end for
until

Figure 1: Primal “perceptron-like” online learning algorithm for joint SVM.

The departure from the original perceptron algorithm, see for example in [26] and [27], is very moderate.
Here we need to learn a matrix realizing the projection of the input vectors into the output space. The
incremental subgradient based update employs the direct product of the corresponding output and input
vectors to update the projection matrix. Furthermore a normalization step is also included as a certain
regularization step, similar approach is proposed in [28].

7
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A dual version of perceptron algorithm can be derived to learn vector outputs. Assume W is expressible
by the training instances, then we have the optimization problem

ﬁ?j K‘i
min Z (A ZaJ Dy (d(xD), p(x))) (28)
=1
subject to jZO,]—l,..., ,
The partial derivatives for a;, k= 1,...,m equals to
¢ ¢
—k% ke RO =Y kY kD) >0
)\ _ ij'vig j=1""3"ij Vg 2
Z o5 ” { 0 otherwise. (29)

Finally the corresponding dual perceptron algorithm is formulated according to Figure 2. An analogue of

Input of the learner: The training set S, step size s,
Output of the learner: (¢;), j=1,...,m,

Initialization: a; =0; 7=1,...,m,
Repeat
fori=1,2,...,m do
read input: x(i) € R™:
if (Y7, ajklikd) < A then (30)

for j=1,2,...,m do

;= a; + s,‘f”/@'f’]
endif
end if
end for
until

Figure 2: Dual “perceptron-like” online learning algorithm for joint SVM.

the standard Novikoff theorem provides an upper bound on the number of updates and a lower bound on
the achievable margin in the primal formulation. Here we follow the derivation that was presented in [29].
Let us define the margin for perceptron learner as

y®, Weo(x"))r

min
(y® x()es IWllp

YW, S,¢) = (31)

Then we can claim the following statement not assuming the normalization step in the algorithm:

Theorem 1. Let S = {(y®,xO)} € (Y x X), i = 1,... be a sample set independently and identically
drawn from an unknown distribution and let ¢ : X — Hy be an embedding into a Hilbert space, furthermore
assume that ||¢(x)|| = 1 and ||y || = 1 for all i, and that the learning rate, the step size, s is a fived
positive real number. Suppose there exists a linear operator W* such that |[W*||p =1 and

VW5, 5,6) =T, (32)

and the algorithm stops when the functional margin 1 is achieved.

1. Then the number of updates made by Algorithm (1) is bounded by

t< Fi (1 + 2) (33)
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2. Then for the solution W in Algorithm (1) we have

r

> .
7(Wt757¢) - S+2

(34)

Proof 1. 1. Following the proof of the original Novikoff theorem [30], we first upper bound the norm of
the matric Wy obtained after t updates:

IWelZ = [Werlld +25(yOWi19(2D)) 3, + 5* |y ()13
< W lf + 25 + Sy D2 ()12 (35)
< AW+ 25+ 52
< ts(s+2).

We now provide a reverse inequality for the inner product with W*:

<Wt7W*>F _ <Wt717W*>F +S<y(i)¢(x(i))T,W*>F

— <Wt—17 W*>F 45 <y(i)’ W*¢(m(z))>

(W1, W) o + 5T
tsI'.

Hy

(AVARLYS

Then we can create the squeezing inequality:
ts(s +2)[| W[5 > [[We| W[5 > (W, WT > (¢sT)*. (36)

implying the result.
2. Taking the bound Eq.(33) for t and substituting into Eq.(35) we arrive at

s+ 2
IWellp < —— (37)

Then for the margin we have

@, Wi (xD))

W,,S5,6) > 38
’Y( t ¢) (y® x(D)es ||Wt||F ( )
1
> (39)
IWellr
T
> 40
T s+ 2 (40)

which proves the statement.

s Sparsity bounds [31] can also be used to translate this bound on the number of updates into a corresponding
bound on the generalization of the resulting classifier.

All results included in this paper are assumed the normalization conditions, ||¢p(x®)| = 1 and ||y®| =1,
of Theorem 1. By forcing the normalization of ||W|| for all ¢ in Algorithm 1 allows us to simplify and sharpen
the proof of Theorem 1. In this case Expression (35) collapses into a identity of both sides of the equation,
therefore instead of (36) we have

L= W2 W*IE = (W, WT > (85T, (41)
from which we gain that
1
t< — 42
= s (42)
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Number of
Dataset labels training instances test instances average labels
Corel5k 260 4500 500 3.3965
Espgame 268 18689 2081 4.6859
Taprtcl2 291 17665 1962 5.7187

Table 1: Statistics of three benchmark datasets.

and in case of the margin we can write
V(Wt7s7 (rb) 2 13 (43)

which statements are significantly stronger than those appearing in the general case. The price that we need
to pay for this result is the slower algorithm.

In comparing our algorithm with other online learning schemes of maximum margin based learning
methods, e.g. SVM, (see some realizations in [32] and [33]), we need to bear in mind that our methods
learns to predict all components of the label vector within one optimization problem. Those methods which
can deal only with binary classification problems have to solve as many binary label subproblems as the
number of labels independently, therefore their overall computational complexity turns to be significantly
higher than our approach.

7. Experiment

7.1. Databases

In our experiments, we used three benchmark datasets, Corel5k, Espgame and Iaprtcl2. These three
datasets have been widely used in image annotation studies [7, 8, 9, 10, 3, 11] with performance evaluations
reported therein. Therefore, we can easily compare our method with others. Statistics of three benchmark
datasets are summarized in Table 1. Readers are referred to [3] for more details of three datasets.

7.2. Feature Extraction

In our experiment, we worked with 15 visual features extracted in [10]. More concretely, they contain
one Gist descriptor, six global color histograms and eight histograms of local bag-of-words texture features
3. The description of 15 features are summarized in Table 2. Readers are referred to [10] for more detail on
extracting these features. These features were also used in [10] and [11]. A similar visual feature set without
layout was extracted and used in [3], while 30 visual feature with spatial layouts were used in [9].

7.8. Evaluation metric

In our experiment, we evaluated annotation performance using precision (P), recall (R), F-1 measure
(F'), which were commonly used in previous studies. For each tag, the precision is computed as ratio between
the number of images assigned the tag correctly and total number of images predicted to have the tag, while
the recall is the number of images assigned the tag correctly, divided by the number of images which truly

have the tag. Then precision and recall are averaged across all tags. At last, F1 measure is calculated as

__ 9PXR
= 2P+R'

7.4. Model selection

In three original databases, training/test data are already divided in advance. Therefore, given a learned
model, there exist no variance in prediction performance on fixed test data. Hyper-parameters in Gaussian
kernels, polynomial kernels and odds-ratio based kernels are found by cross validation restricted to the
training data, namely it is divided into validation test and validation training parts. Then the learner is
trained only on the validation training items. At the end those values of the parameters have been chosen
which maximize the F'1 score on the validation test.

3All features are available on http://lear.inrialpes.fr/people/guillaumin/data.php.
10
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Feature Dimension  Source Descriptor Location Layout
DenseHue 100 texture hue dense no
DenseHueV3H1 300 texture hue dense yes
DenseSift 1000 texture sift dense no
DenseSiftV3H1 3000 texture sift dense yes
Gist 512 - holistic - -
HarrisHue 100 texture Hue Harris points no
HarrisHueV3H1 300 texture Hue Harris points yes
HarrisSift 1000 texture sift Harris points no
HarrisSift V3H1 3000 texture sift Harris points yes
Hsv 4096 color HSV - no
HsvV3H1 5184 color HSV - yes
Lab 4096 color LAB - no
LabV3H1 5184 color LAB - yes
Rgb 4096 color RGB - no
RgbV3H1 5184 color RGB - yes
Table 2: Description of 15 visual features tried in our experiments.
Corel5k Espgame iaprtcl2

Feature P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%)
DenseHue 33.3 26.0 29.2 285 164 20.8 26.7 175 21.1
DenseHueV3H1  38.1 30.7 34.0 329 188 239 31.8 21.0 25.3
DenseSift 40.2 32.2 358 333 246 283 384 265 314
DenseSiftV3H1  43.7 34.6 38.6 35.2 26.3 30.1 40.5 28.3 33.3
Gist 33.7 269 29.9 283 206 239 332 235 275
HarrisHue 31.0 246 274 274 163 204 27.6 183 22.0
HarrisHueV3H1  34.5 27.7 30.7 31.5 184 23.2 31.9 219 26.0
HarrisSift 399 321 356 332 255 289 394 269 320
HarrisSiftV3H1 ~ 40.2 33.4 36.5 34.6 26.2 29.8 40.7 29.7 34.3
Hsv 38.3 30.6 34.0 30.0 187 23.1 326 21.1 25.7
HsvV3H1 40.8 33.8 37.0 338 21.6 264 354 241 28.7
Lab 35.1 275 30.8 27.2 164 205 284 179 22.0
LabV3H1 39.7 30.7 34.6 30.0 189 23.1 327 208 254
Rgb 42.0 334 372 262 164 202 328 20.6 25.3
RgbV3H1 42.1 34.5 38.0 29.6 19.2 23.3 357 23.0 28.0

Table 3: Performance of joint SVM without explicit output kernel on different individual features.

7.5. Selecting optimal features

In [10, 11], all 15 features were used for predicting tags. However, we believe that there exist some
redundancies in all 15 features. Also, some features might be weakly relevant to the annotation task. A more
efficient way is to identify a few most relevant features and use them for prediction. To this end, we apply joint
SVM without explicit output kernel on different features, and list their discriminative abilities in Table 3, in
which the best and second runner-up features are highlighted with bold font. We can see that DenseSfitV3H1
is consistently more reliable than other features in three datasets. In addition, HarrisSiftV3H1 is also
optimal or close to optimal in Espgame and Iaprtcl2 respectively. However, HarrisSiftV3H1 is inferior to
RgbV3H1 in Corelbk. Therefore, in our later experiments, we used DenseSfitV3H1+4RgbV3H1 on Corel5k,
while DenseSfitV3H1+4HarrisSiftV3H1 on Espgame and laprtcl2. We combined two features by simply

concatenating one feature vector after the other one.

1
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Training Testing Testing Performance
Time (sec) Time (sec) Precision (%) Recall (%) F1 (%)
Independent SVMs (Gau) 6285.11 117.20 15.3 22.1 18.1
Independent SVMs (Pol) 4612.23 147.9 15.1 29.7 20.0
Joint SVM (Gau) 80.68 6.92 40.8 37.1 38.9
Joint SVM (Pol) 76.48 9.11 48.5 38.0 42.6

Table 4: Comparison between one joint SVM and multiple SVMs on Corel5k dataset. Two input kernels (Gaussian and 2-degree
polynomial) are tried in both learners.

Corel5K Espgame Taprtcl2
Method P(%) R%) F1(%) P%) R%) FL(%) P%) R%) FL(%)
MBRM [9] 24.0 25.0 24.0 18.0 19.0 18.0 24.0 23.0 23.0
JEC [3] 27.0 32.0 29.0 24.0 19.0 21.0 29.0 19.0 23.0

TagProp [10] 33.0 42.0 37.0 39.0 27.0 32.0 45.0 34.0 39.0
FastTag [11] 32.0 43.0 37.0 46.0 22.0 30.0 47.0 26.0 34.0
JSVM 48.5 38.0 42.6 32.7 31.6 32.2 422 29.4 34.6
JSVM+0dd 48.8 37.1 42.2 274 27.1 27.2 329 28.6 30.6
JSVM+Pol(2)  46.6 37.0 41.3  32.6 24.4 279 379 26.6 31.2
JSVM+Pol(3) 41.5 31.3 35.7  28.5 21.3 244 38.0 26.1 31.0
JSVM-Per 37.5 29.8 33.2  25.0 19.0 21.6  29.2 20.8 24.3

Table 5: Comparison between different versions of joint SVM and other related methods on three benchmark databases.

7.6. Comparison with Independent SVMs

At first, we applied both a joint SVM, and many independent SVMs on Corel5k dataset with the feature
combination selected above. To ensure fairness, no user-designed kernel is used on output for the joint SVM
(plain joint SVM), while Gaussian kernel and 2-degree polynomial kernel are tried for inputs in both learners.
In the learning phase, the optimization problems (Eq.(7)) and (Eq.(12)) were solved with the same coordinate
descent method [20]. In addition, the same cross-validation procedure is used for both many independent
SVMs and the joint SVM to find the best hyper-parameters C,d, c,o. To measure the efficiency, training
and testing time were recorded as well. All experiments were run on the same simulation and hardware
conditions (Python 3, Intel Core i7). The comparison of accuracy and efficiency between independent SVMs
and joint SVM is presented in Table 4. While the learning and testing time of independent SVMs scale
with the number of tags, the computation time of joint SVM approximately equals a SVM for single-tag
classification. At the same time, in terms of accuracy, joint SVM also worked much better than independent
SVMs. We can also see that 2-degree polynomial input kernel worked better than Gaussian input kernel for
both learners.

7.7. Comparison with state-of-the-art

More intensive experiments of joint SVM were conducted with different pre-designed, explicit output
kernels: odds-ratio based kernel (JSVM+40dd), 2-degree polynomial (JSVM+Pol(2)), 3-degree polynomial
(JSVM+Pol(3)). Also, online learning algorithm of joint SVM (JSVM-Per) was also implemented. All
configurations were run on all three datasets, with optimal feature combination and 2-degree polynomial
kernel on inputs. The experimental results, together with the reported results from other related work, are
presented in Table 5. We can see that plain joint SVM (JSVM) outperforms all other results on Corel5k and
Espgame datasets, yielding the best results so far. JSVM is also the second best result on Iaprtcl12 dataset.
The results of JSVM+0Odd and JSVM+Pol(2) are similar on all three datasets. It is worth noting that
JSVM+0dd and JSVM+Pol(2) also worked better than previous methods by a large margin. Meanwhile,
JSVM+Pol(3) is worse than JSVM+Pol(2). JSVM-Per’s performance is inferior to other JSVM versions,
although it is still better than two classic methods [9, 3].

12
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7.8. Discussions

Based on our experiments, it seems that plain joint SVM (JSVM) works more robustly than the joint
SVMs with explicit output kernels. In order to dig deeper to find an explanation, we can study the corre-
lation matrices of output tag-sets in three datasets. In Figure 3, for each dataset, we plot the histograms
(in log scale) of all correlation values in both training sets and testing sets. We can see that most entries in
correlation matrices are 0, which means that the pairwise correlation (or roughly speaking, dependencies)
is rather sparse. Although JSVM, JSVM+0dd both encode linear pairwise dependencies, it should be re-
minded that the implicit output kernel in JSVM is in regularization term, which implies that simpler output
kernels (dependencies) are encouraged. However, JSVM+0Odd does not have this preference. Therefore,
JSVM can implicitly learned most simple output kernels when no more complex ones are needed. Analo-
gously, the same principle can explain why JSVM+Pol(2), or even JSVM+Pol(3) led to worse results. If we
look closer, we can observe that in Corelbk datasets, stronger correlations are displayed in its testing set,
and correspondingly, the performance gaps between JSVM, JSVM+0dd and JSVM+Pol(2) are also rather
small.

As for JSVM-Per, one reason of its inferiority is that the regularization is computed instance-wisely,
which might conflict the global effect it is supposed to have. However, we gain tractability, for extremely
large datasets, with acceptable accuracy cost. As a future direction work, we will investigate some alternative
online regularization strategies.

8. Conclusions

A novel joint SVM was presented for automatic image tagging. It is superior to conventional SVMs based
on our empirical results. In particular, it compares favorably with state-of-the-art methods. As possible
future work directions, we would like to apply and improve joint SVM in other multi-label learning domains.
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Figure 3: The histograms (in log scale) of all correlation values in both training sets and testing sets: (a) Corel5k, (b) Espgame
(c) Iartcl2.
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4.2 Homogeneity Analysis for Object-Action Relation Learn-

ing

In statistics community, structured data are usually handled with multivariate analysis
(MVA) techniques. For instance, canonical correlation analysis (CCA) has been used
for modeling the dependencies between two set of variables. Another case, homogeneity
analysis, is for multiple categorical values. Both CCA and homogeneity analysis detect
the dependencies among variables by projecting them in low-dimensional spaces. There-
fore, these two techniques are also often used as visualization tools for high-dimensional
data. Intuitively speaking, MVA techniques model the joint distributions of multiple

variables with low-rank projections, in which dependencies are implicitly encoded.

In this section, homogeneity analysis is briefly introduced, and in particular, its appli-
cation on object-action learning is studied. Homogeneity analysis fits the scenario well
since the objects’ properties and action effects are usually represented by categorical

values. More technical details and results are presented in the paper VII by the author.

VII Hanchen Xiong, Sandor Szedmak, Justus Piater Homogeneity Analysis for
Object-Action Relations Reasoning in Kitchen Scenarios, In Proceedings of 2nd Work-
shop on Machine Learning for Intelligent Systems (MLIS13), pp 37-44, 2013, ACM.
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ABSTRACT

Modeling and learning object-action relations has been an
active topic of robotic study since it can enable an agent
to discover manipulation knowledge from empirical data,
based on which, for instance, the effects of different actions
on an unseen object can be inferred in a data-driven way.
This paper introduces a novel object-action relational model,
in which objects are represented in a multi-layer, action-
oriented space, and actions are represented in an object-
oriented space. Model learning is based on homogeneity
analysis, with extra dependency learning and decomposi-
tion of unique object scores into different action layers. The
model is evaluated on a dataset of objects and actions in a
kitchen scenario, and the experimental results illustrate that
the proposed model yields semantically reasonable interpre-
tation of object-action relations. The learned object-action
relation model is also tested in various practical tasks (e.g.
action effect prediction, object selection), and it displays
high accuracy and robustness to noise and missing data.

Categories and Subject Descriptors

1.2.9 [Robotics]: Manipulation; 1.2.6 [Learning]: Knowl-
edge acquisition— Object-action relation learning

General Terms

Algorithms, Experimentation

Keywords

Homogeneity analysis, Object-action relation learning
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Manipulations of objects are core and indispensable func-
tions in robotic systems to fulfill various practical tasks.
However, because of the diversity of real-world objects in
shape, material and other properties, manipulation design
at the instance level is very effort-consuming and thus pro-
hibitive. Learning principles or correlation patterns of dif-
ferent actions based on trial experiences is an appealing di-
rection of robotics research. In other words, an agent can
acquire knowledge of object-action relations in a data-driven
manner by making use of a limited number of experiments.
In addition, the study of object-action relations has also at-
tracted attention within the cognition and psychology com-
munities [5, 10], since it is expected to be related to how
human beings accumulate knowledge by physically interact-
ing with different objects. Humans begin to interact with
their environment in their infancy, and in many interactions,
two elements are involved: objects and actions. Actions
are executed on objects with the humans’ motor capabili-
ties, and the effects of these actions are observed with their
perception abilities. Based on such repeated interactions,
human beings can quickly acquire object-action knowledge,
and easily fulfill different actions on various objects by trans-
ferring such knowledge to novel objects. Although the exact
mechanism of how the human brain organizes and learns
object-action relations is still unknown, it has been pointed
out that computational modeling of object-action relations
can be a plausible perspective for the study of both robotics
and human cognition.

Nevertheless, modeling and learning object-action rela-
tions has been a difficult task. The difficulties mainly stem
from two sources. First, the structure of descriptions of both
objects and actions can be very complex. The descriptions
are derived from several sources, and the corresponding fea-
ture spaces are high-dimensional (i.e., objects and actions
are characterized by large numbers of parameters). The
second difficulty is due to the small number of experiments
which can confirm the effects of different actions on objects.
Even worse, in some cases, the experiments might provide
contradicting outcomes. In consequence, the empirical data
are rather sparse and noisy.

In this paper we put forward a novel model of object-
action relations, in which objects are represented in a multi-
layer action-oriented space, and actions are represented in
an object-oriented space. The object-action relations are
encoded in these two spaces, on which various reasoning
tasks can be performed. The training data for the model
are constructed from two sources, objects and the collec-
tion of effects (positive and negative) of different actions
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Figure 1: A sample set of kitchen objects

executed on objects. Two pieces of information are sum-
marized in a structure called object-action profiles. Objects
are represented by categorical indicators of basic properties
and binary labels of various low- and high-level geometric
features. Actions are represented by binary labels of object-
dependent effects. The model is learned with homogeneity
analysis. The strength of homogeneity analysis is that it can
map multi-variate categorical /binary data to a homogeneous
Euclidean space. Via these projections, objects and actions
can be effectively represented with object scores and cate-
gory quantifications. Basically, the object scores are com-
puted as the average of quantifications of categories which
they belong to, and category quantifications are computed
as the geometric centroid of objects they belong to. These
two projections are iteratively updated until convergence.
Based on homogeneity analysis, action-category quantifica-
tions are represented in an object-oriented manner. The
resulting object scores, however, do not fit our modeling
scenario. The object scores are computed by treating all
variables of object-action profiles equivalently, and therefore
the scores are unique for all actions. By contrast, our model
is designed to represent objects differently with respect to
different actions. Therefore, we provide dedicated means
to determine the dependencies between category quantifi-
cations of object and action variables, and decompose the
object scores/representations into different action layers.

We present our model and associated learning/reasoning
procedures in the context of object-action relations within
a kitchen scenario (Figure 1). A database of typical kitchen
objects and actions is constructed as well to evaluate our
model. The experimental results demonstrate that the model
yields semantically good interpretation of object-action rela-
tions by displaying reasonable dependencies and correlations
between object and actions variables. In addition, the ex-
periment with sparseness and noise added into training data
highlights the robustness of our model to noisy and missing
data.

1.1 Related Work

For object manipulation knowledge modelling, the con-
cept of affordance [5] has been widely used [9, 8, 10, 3, 4]
to link objects and actions in terms of object-action-effect
triples. An affordance defines how an object “affords” a ma-
nipulation by an agent based on its motor abilities, and how
this manipulability can be perceived by the agent [5]. For
instance, the grasping affordance of a stone is much higher
for a human being than a dog since human hands have better
motor control of fingers than dogs’ paws. More concretely,
object affordances represent how can an agent interact with
real-world environment by encoding the relations among ac-
tions, objects and effects. Although there have been numer-

ous studies on how affordances can be modelled such that
they can be effectively learned and utilized to assist practi-
cal robotic manipulation, the object/action affordance prob-
lem, at its base, is about how an agent can understand ob-
jects based on interactions with them by using its motor and
perceptual capabilities. However, most previous studies are
limited to one isolated object affordance (e.g. grasping). In
some cases, multiple objects are involved and interact with
each other within one manipulation. For example, a sin-
gle action such as cutting involves two objects, the cutting
tool (e.g. knives) and the object being cut (e.g. an apple).
In [7], the affordance definition was extended to object re-
lations. However, since only geometric relation (distance,
angle of orientations) between multiple objects are used in
[7], it still cannot model concepts such as cutting affordances
for objects. Our work, by contrast, seeks to model general
object-action relations. Our relational model connects ob-
jects and all possible actions that can be performed on them.

Our model is mainly inspired by [3], of which the basic as-
sumption is that objects that share similar parts (e.g. rim,
handles) should also hold similar grasping affordances. We
extend [3] in two ways: first, we consider general object-
action relations instead of only grasping affordances; second,
the dependency of actions on different parts can be learned,
in which way, for different actions, different co-occurring
parts among objects will be considered for their action-effect
reasoning.

Other related work involves modeling of sensorimotor co-
ordination [9], where a Bayesian network is employed to
model multiple affordances associated with objects based on
visual properties (e.g. color, size, concavity) and basic motor
actions (grasping, touching, tapping). The dependences be-
tween actions, perception and effects are encoded in the di-
rected edges within the Bayesian network. One shortcoming
of this model is the dependency learning (i.e. the Bayesian
network structure). Since in a Bayesian framework it is im-
practical to estimate the likelihoods of all possible depen-
dency structures, Markov chain Monte Carlo (MCMC) sam-
pling was used to approximate them. However, one practical
problem with MCMC is that it can be quite inefficient (usu-
ally multiple chains are necessary); secondly, the approxi-
mation can be misleading when the training data is small
in size, noisy and incomplete. By contrast, the dependency
learning of our model is based on the category quantifica-
tions from homogeneity analysis, which is robust to noisy
and missing data.

2. MODELING

In this section, two basic elements are explained for object-
action relation modeling. First, we introduce a new data
structure constructed from empirical object and action data
(section 2.1). Secondly, section 2.2 presents an overview of
the model structure (Figure 3), in which objects are repre-
sented in a multi-layered action-oriented space, and actions
are likewise represented in an object-oriented space.

2.1 Data Structure

Since our objective is to learn the relations between ob-
jects and actions, the training data is constructed from two
sources. One is the object dataset, in which basic properties
(e.g. size, functionality, material) are labelled, and various
low- and high-level geometric properties can be extracted
by visual perception. The other source is the action dataset
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Figure 2: (a) Two examples of object-action profiles.
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(b) Collection of object-action profiles, * denoting

missing data. Incompleteness (or sparseness) will always be a problem in training data.

that collects the effect of different actions applied on ob-
jects. In our study, the information from these two sources
is merged into object-action profiles. Figure 2(a) presents
two examples of object-action profiles. In the upper part,
object shape is displayed. Some basic properties are labelled
and geometric features are extracted. Because we are only
concerned with the kitchen scenario, functionalities are lim-
ited to {container, food, cooker, cutting tool, eating tool},
and materials are limited to {plastic, glass, wood, plant, an-
imal, metal}. For size, a binary indicator is used to check if
it is smaller than the gripper’s maximum range. In addition,
low-level and high-level geometric features of objects can be
detected or labelled (although we currently only use high-
level geometric features such as rim, handle', because they
are more informative of our actions than low-level features).
In the lower part, the resulting effects of different actions
on the object are recorded with binary values (+1 means
successful and —1 otherwise). We consider some more-or-
less common kitchen actions {grasping by closing fingers,
rolling, cutting, grasping by expanding fingers, chopping}.
It is worth noting that the strategies of feature labelling
and action selection used in this paper are just one among
many ways of describing the proposed model (section 2.2)
and learning/reasoning procedure (section 3); they can be
replaced by equivalent or more elaborate mechanisms. It
should also be noted that in practice a very limited num-
ber of action experiments or simulations can be conducted
on only a few objects, so incompleteness (or sparseness) of
experimental data is a fact we have to deal with (Figure

2(b)).
2.2 Model Structure

In this paper, the object-action relations are modeled as
shown in Figure 3. Actions and objects are represented in
different spaces, that is, action space and object space re-

1Such labels can be obtained by straightforward shape anal-
ysis systems.

spectively. The object space is composed of different layers
that correspond to different actions. In each layer of the
object space, the objects are linked pairwise (Figure 3), and
the connection between a pair of objects is weighted propor-
tionally to their similarity with respect to the corresponding
action. The similarities between objects can be measured
based on co-occurring properties or geometric features that
can influence the outcome of the action. For instance, if ob-
ject A (mug) and B (goblet) are both containers (therefore
exhibit hollow structure), their similarities will be high in
the “Grasp by expanding fingers” layer. However, their sim-
ilarity would be low in the “roll” layer since A has a handle
but B does not, and having a handle or not is a decisive
factor for rolling.

In action space there is only one layer. Different actions
are connected with each other, likewise with the connections
weighted proportionally to their similarities. The similari-
ties between actions can be interpreted as the similarities
between their corresponding layers in object space.

3. MODEL LEARNING AND REASONING

With training data organized in the form of Figure 2(b),
we straightforwardly apply homogeneity analysis [2, 6] to
project all columns of Figure 2(b) to category quantifications
and rows to object scores (section 3.1). However, the object
scores computed by homogeneity analysis are the same for
all actions, which does not fit our multi-layer object space
(section 2.2). The underlying principle of our multi-layer ob-
ject representations is that the dependencies between every
action and object properties and geometric features are dif-
ferent; therefore, objects should be represented differently
with respect to different actions. Meanwhile, the depen-
dency and correlation relations between different basic prop-
erties, geometric features and actions are usually compli-
cated. Two examples of such dependencies can be seen in
Figure 4. It can be easily imagined that if a container is
smaller than the gripper range in size, then it probably can
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Action Space

Grasp by .
closing AR

fingers
» Object Space
; Object Space

; Object Space

A)bject Space

Object Space

Figure 3: Object-action relational model. The ob-
ject space is composed of action-specific layers, in
which objects are interconnected (solid lines denote
strong and dashed lines weak connections). There
is only one layer in action space, and actions are
connected in a similar way.

be graspable by expanding fingers, so there should be depen-
dencies on “Container” and “<Gripper” for action “Grasp by
expanding fingers”(Figure 4(a)). At the same time, contain-
ers smaller than the gripper are often made of ceramic or
glass (e.g. bowls, mug, wineglass) in contrast to larger ob-
jects (e.g. plastic buckets or metal trash cans), so “Grasp by
expanding fingers” might also be correlated with “Ceramic”
and “Glass” (dashed lines). Similarly, usually an object is
graspable if it is smaller than the gripper size or if it has a
handle or rim, so it is reasonable to add dependencies be-
tween them (Figure 4(b)). Food items and plants are usually
smaller than the gripper in a kitchen scenario, and they are
unlikely to have handles. So extra dependencies on “Food”
and “Plant” may be added as well. Instead of tediously rea-
soning about the dependencies for all actions, in section 3.2
a dependency checking mechanism is provided to remove
unlikely or weak dependencies. The computed dependencies
are also utilized to remap objects to different action layers
with dependency weights.

3.1 Initial Learning with Homogeneity Anal-
ysis

Homogeneity analysis [2, ] is a popular statistical tool
for categorical multivariate analysis. Here we briefly re-
view the procedure of homogeneity analysis with its appli-
cation to object-action profile data. There are M object-
action profiles in the dataset, each profile represented by a
J-dimensional vector O; = [v1,v,...,v;]" (i=1,..., M),
with each variable v; denoting an attribute in the profile.
Variable v; takes on n; categorical values (e.g., the action
effect has binary values £1). By gathering the values of v;
over all M profiles in an M X n; binary indicator matrix
G, the whole set of indicator matrices can be gathered in a
block matrix:

G = [G1|Ga|---|Gy] (1)

expanding
fingers

Figure 4: Two examples of dependencies between
actions and objects’ basic properties and geometry
features: (a) grasp by expanding fingers; (b) grasp
by closing fingers.

The key feature of homogeneity analysis is that it simul-
taneously produces two projections to the same Euclidean
space R?, one from J-dimensional profiles O;, the other from
the M-dimensional categorical attribute indicator vectors
(columns of G). These projections are referred to as object
score and category quantification, respectively [2, 6]. Sup-
pose the collection of object scores is represented by an M xp
matrix X, and category quantifications for variable v; are
represented by a n; X p matrix Y;. Then, the cost function
of a projection can be formulated as:

J
XY, Yo) = 5 30X = GyY) (X = GY) (2)
j=1

As emphasized above, in realistic cases the training dataset
is usually sparse and incomplete, i.e., values of some v; are
missing. So for each G, we construct an M x M diagonal
matrix S; with diagonal values equal the sum of the rows of
Gj, i.e., S;j(i,4) = 0 if the v; value of O; is missing. Then
the corresponding cost function is

J
XY Ya) = 5 36X =GY) T 8,(X ~GyYy) (3)

j=1

Usually two extra constraints are added to avoid trivial so-
lution (X =0,Y; = 0):
1

MlLXIS*X

1 ot .
SXTSX = 1 (5)

0 (4)

Here, S. = E}'le S;. The first constraint (4) essentially nor-
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malizes the projected object scores to be centered around the
origin. The second restriction (5) standardizes all p dimen-
sions of object score by rescaling the square length of each
dimension to M. In addition, another effect of (5) is that
the p columns of X are imposed to be orthogonal to each
other.

To minimize the cost function (3) under these constraints
(4, 5), usually the alternating least squares (ALS) algorithm
[2, 6] is used. The basic idea of ALS is to iteratively optimize
with respect to X or to [Y1,---,Yam]| with the other held
fixed. Assuming X is provided arbitrarily at iteration
t = 0, each iteration of ALS can be summarized as:

1. update Yj:
v =(G]s,6)7 6] X, (6)
2. update X:
J
X+ st ZG]'th§ (7)
j=1
3. normalize X:
XY = Gram-Schmidt(X V). (8)

It can be seen (6) that category quantification of Y; is com-
puted as the centroid of the object scores that belong to it.
Step 2 (7) updates object scores X by taking the average of
the quantifications of the categories it belongs to. In step 3
(8) a Gram-Schmidt procedure is used to find the normal-
ized and orthogonal basis of updated object scores from the
previous step.

3.2 Dependency Learning

According to the description in the previous section, the
objects and action effects can be projected into two spaces
(object scores X and category quantifications Y; of action
variables v;) by applying homogeneity analysis on the set of
object-action profiles. Although this observation is close to
how we model object-action relations (section 2.2), there still
exist some obstacles that prevent us from directly putting
them to practical use. First, by using homogeneity anal-
ysis, basic properties, geometric features and action effects
are simultaneously projected to their corresponding category
quantifications without modelling their interrelations explic-
itly. As we illustrated in Figure 4, the dependency between
them is an important factor in our object-action relational
model, so we must disentangle how each action depends on
different basic properties and geometric features. Secondly,
in our model the objects are represented at different lay-
ers corresponding to different actions, while the representa-
tions of objects with homogeneity analysis are unique object
scores. Hence, it is also required to strategically decompose
the object scores into different action layers.

To resolve these two problems, some extra steps can be
developed to exploit more information from the object scores

and category quantifications. First, the J variables [v1, v2, . ..

of each object O; are divided into two groups, the object
(variable) group V, which covers basic properties and ge-
ometry features, and the action (variable) group V, which
contains action effects on the object O;. We initially as-
sume that each variable in action group vj € V, depends
on all variables of the object group V,. Then, for variable

7'UJ]

vg, we find its corresponding positive and negative category
quantifications Y4, and Y4 _, and compute the distances
between them and all categories’ quantifications in the ob-
ject group as

A4/ = Yor) = IY5 /- — Y kll2 9)

where Y, denotes the k-th category quantification of vari-
able vJ in the object group. We compute the maximum
ratio between them as

} (10)

NI {d(Y;,+,Y£,k> d(YE_Y2,)
w,k T

d(Yg_,Y2,) d(Yg, ,YS,)
and eliminate the dependencies between action variable v
and category quantifications in Vj if
B
/\w,k

B
Zw,k )\w,k

where o € [0,1] is a predefined threshold. The elimination
criterion (11) is defined based on the concept that the ob-
ject variables on which the action variable depends should
have good discriminative abilities between its positive and
negative categories.

Once the dependencies have been found, the second prob-
lem can be solved as well. Instead of computing object scores
as the average of the all quantifications of the categories they
belong to (7), the representations of objects in each action
layer 8 are computed as the weighted average of quantifica-
tions of the (positive and negative) action categories and the
category quantifications in V,, which the action is dependent
on:

<o

(11)

(12)

Ww,kéw,ka,k
w,kEdependent(B)
where the }A’w,k are the category quantifications (out of n.,)
of variable vg, on which action variable vg depends. CAT'ch,
S, are the corresponding indicator matrix and diagonal ma-
trix. 7, denotes the normalized dependency weights which
reflect how 8 depends on quantifications in Yw,k:

B
ALL/7IC

(13)

T =
DS A
w,kedependent(8) "‘w,k

Correspondingly, the centroid of object representations which
belongs to positive and negative category in [ action layer
is:

B =(Ghiy-Sp4/-Gpyy-) "Gl oy Xp

where Gpg 4 ,_ is the positive/negative-category column in
Gp and Ss,g is corresponding diagonal counting matrix.

The dependencies between action variables can be also
similarly learned to find the correlation or anti-correlation
between object effects. Since our model is dedicated to re-
lations between objects and actions, action-action relations
will be exploited in our future work.

(14)

3.3 Reasoning

Given the object-action relational model learned with the
procedure above, typical reasoning tasks are presented in
Table 1. First, we discuss effect (F) prediction given object
(O) and action (B). Assume O is an unseen object. Its rep-
resentation in action layer 3 can be computed (12), and then
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input [ output | applications

object & action | effect
action & effect | object
object & effect action

effect outcome prediction
object selection
action planing/recognition

Table 1: Typical applications of the object-action
relation model.

Figure 5: Robot hand used for action labelling

the binary effect classification can be easily done by major-
ity voting of the k-nearest neighbouring objects of training
set (or using any other suitable classifier).

Second, the model can perform object (O) selection out
of a set of candidates C based on action (8) and effect
(E € [-1,1]). Given the desired category E of action 3,
first object representations in candidate set Xéoec) can be
computed (12). Then the ratio of the distance between each

X/go) and BF to the distance between Xéo) and B;F (14)
can be computed:

d(xy”, BE)
= 15
vo d(x©, %) 1)

The optimal object O is the one with smallest ¢o. Al-
ternatively, with the ratios of all objects in C computed,
the object retrieval result can be ranked by their ratios in
increasing order.

Finally, action selection or planning is also useful to find
an optimal action among many that share similar seman-
tic effects based on certain criteria. For example, both
cutting and chopping are actions that break objects into
smaller parts. However, they are executed with different
tools (cleavers for chopping and knives for cutting) and with
different strength. So if the task is to break an object O into
parts with minimum strength from the higher-level planner,
then one may want to perform a chopping action only if
necessary. To this end, we compute the representation of
O in cutting and chopping layers respectively and predict
their corresponding effects, based on which the most energy-
saving action will be selected.

4. EXPERIMENTS
4.1 Synthetic Database and Model Learning

To evaluate the proposed object-action relational model
and learning method, we constructed a synthetic dataset
of object-action profiles. We collected 140 kitchen objects
(Figure 1) from the web [1] and annotated them as shown in
Figure 2. The labeling and actions are set in the same way
as described in section 2.1. Basic properties and high-level

geometry features® of objects were labelled by a student vol-
unteer. The effects of different actions applied on objects are
labeled as well based on common sense®. The robot gripper
is presented to the labeller (Figure 5) for the consideration
of different actions.

First, the model is learned with full and noisy-free data.
By applying homogeneity analysis as described in section
3.1, we obtain 3-dimensional category quantifications of 10
variables in object-action profiles (Figure 6). With extra
maximum ratio computation (10) (Figure 7), the depen-
dency between each action and objects’ basic properties and
geometric features are discovered (Table 2). Table 2 shows
that “grasp by expanding fingers” and “grasp by closing fin-
gers” exactly match our previous dependency analysis in Fig-
ure 4, i.e. the proposed model yields semantically reasonable
object-action relations.

4.2 Reasoning Tasks

To quantitatively evaluate the proposed model, the follow-
ing experiments test the model on two reasoning tasks, effect
prediction and object selection?. In both experiments, the
140 object-action profiles are randomly divided into train-
ing set (100) and test set (40). In addition, as we already
pointed out, in practice the empirical object-action data can
be noisy and incomplete because of inaccuracy of perception
systems and lack of real (or simulated) experiments. There-
fore, to test the robustness of the model to noise and missing
data, 10% noise are added and 20% entries are removed from
the 100 training instances. The noise is generated by shift-
ing the labels of variables with probability 0.1, and entries
in Figure 2 are removed with probability 0.2.

Effect Prediction

According to the reasoning procedure described in section
3.3, 40 test objects are first projected to different represen-
tations at different action layers. Then the final effects of
actions are decided by using a simple k-nearest-neighbour
(KNN) classifier with the 100 representations of training
objects. We use k = 10 for both full-data and missing-
and-noisy-data conditions. We ran 50 trials in which differ-
ent size-100 training (both full and missing-and-noisy) and
size-40 test data sets are randomly generated. The average
precision of correct effect classification of five actions are
presented in Figure 8(a), from which it can be seen that the
prediction results with both full training data and missing-
and-noisy data are rather accurate, with the former slightly
outperforming the latter (as is to be expected).

Object Selection

The object selection experiment is set up to test how ac-
curate an object can be “recommended” to meet the effect
of an action. The reasoning is based on the procedure in
section 3.3, and the recommendation is ranked based on ra-
tios (15). Similarly to the effect-prediction experiment, 50
trials with different training and test data are run, and the
average results of 5 actions (positive and negative) are pre-

2We did not use low-level geometric features in our experi-
ments.

3In future work, we plan to use simulated and ultimately
physical robotic action.

4Since action selection applications usually require higher-
level planners to handle constraints, robustness criteria etc.,
we did not consider them in our pilot experiments.
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Category Quantification
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funcl =container func2=food
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Figure 6: Category quantifications of variables in object-action profiles (best viewed in color).

(a) (b)

(d)

(e)

Figure 7: Check the dependency of five actions ((a) grasp by closing fingers (b) roll (¢) cut (d) chop (e)
grasp by expanding fingers) on category quantifications of object variables (from left to right bars denotes
the maximum ratios (10) of <gripper-, <gripper+, rim-,rim-+, handle-, handle+, container, food, cooker,
cutting tool, eating tool, plastic, glass, ceramic, plant, animal, metal).

Va | Depended category quantification of variable in V,
graspc <gripper-, <gripper+, handle-, rim-, rim+,function=food, material=plant
roll <gripper-, handle-, handle+, function=cooker,function=cutting tool, function=eating tool, material=metal
cut function=food, material=plant
chop function=cutting tool, function=eating tool, material=metal
graspe function=container, material=glass, material=ceramic

Table 2: Dependency of five actions on category quantifications of object variables after elimination (11).

sented in Figure 8(b)-8(f) with precision-recall curves. It
can be seen that except for the poor results on grasping by
closing fingers, object retrieval of all other actions and ef-
fects are acceptable. The reason for poor performance in
the negative case of grasping by closing fingers, according
to our preliminary analysis, is that there are are too few in-

stances of graspc— in the training data; most objects in the
kitchen are graspable. The results with missing-and-noisy
training data are slightly inferior to those with full training
data. Two obvious performance gaps appear in the nega-
tive case of chopping, and in the positive case of grasping by
expanding fingers. In conclusion, both effect prediction and
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Figure 8: (a) The average precision of correct effect prediction of five actions; (b)-(f) the precision-recall
curves of average object selection results in all positive and negative of five actions.

object selection experiments quantitatively demonstrate the
promising capabilities of our object-action relational model
by displaying its high accuracies and robustness to noisy and
incomplete data.

5. CONCLUSION

We presented a novel computational model of object-action
relations. Actions are represented in terms of their effects
on objects, and objects are represented as well in an action-
oriented manner. The model can be effectively learned with
homogeneity analysis and extra discovery of dependencies
between action and object variables. One strength of the
proposed model is that it does not require complex, highly-
combinatorial descriptions of objects and actions. The ob-
ject representations with respect to different actions are com-
puted with only a small number of the most decisive object
variables. Actions are presented by their positive and neg-
ative action-effect category quantifications. Another merit
of the model, according to experimental results, is that it is
robust to noisy and missing data, which is an unavoidable
problem in practice.
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4.3 Multi-Label Learning with Kernel Generalized Homo-
geneity Analysis

During the past two decades, kernel methods have been combined with many multi-
variate analysis (MVA) techniques (Shawe-Taylor and Cristianini, 2004), such as kernel
canonical correlation analysis (kernel CCA), kernel principal component analysis (ker-
nel PCA), etc. In this section, an attempt is made to develop a kernelized version of

homogeneity analysis.

First, some connections between homogeneity analysis and CCA are revealed by gener-
alizing homogeneity analysis for continuous variables. Based on the connections, kernel
generalized homogeneity analysis (KGHA) is proposed, which turns out to be a relaxed
version of multi-set kernel CCA. Furthermore, KGHA is related to many other methods
when it is applied on multi-label learning. In particular, KGHA for multi-label learn-
ing is an interesting framework which integrates low-rank output kernel learning and
co-regularized multi-view learning. More technical details and results are presented in

the paper X by the author.

X. Hanchen Xiong, Sandor Szedmak, Justus Piater Multi-Label Learning with Ker-
nel Generalized Homogeneity Analysis, Unpublished, 2015.
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Multi-Label Learning with Kernel Generalized
Homogeneity Analysis
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{hanchen.xiong,sandor.szedmak,justus.piater} @uibk.ac.at

Institute of Computer Science, University of Innsbruck

Abstract

Canonical correlation analysis (CCA) and homogeneity analysis (HA) are two
popular methods for analyzing multivariate data. Although they are applied on
different data types — the former is used on two sets of variables while the latter
operates on multivariate categorical variables — we reveal that they are actually
closely related. Building on this relation, we generalize HA to handle continu-
ous variables, which leads to a relaxed variant of multiple-set CCA. Furthermore,
kernel functions are also utilized to enable generalized HA to learn nonlinear de-
pendencies within data.

In present paper, we in particular investigate how kernel generalized HA (KGHA)
can be applied to multi-label learning. We found that, for vector-valued functions,
KGHA works as a learning method consisting of two advantageous components:
low-rank output kernel learning and co-regularized multi-view learning. Low-rank
output kernel learning coincides with lower-dimensional latent label space discov-
ery, while co-regularized multi-view learning is related to multiple kernel learning
for heterogeneous information fusion. Furthermore, a large-scale KGHA learn-
ing scheme is developed by employing a block-wise Nystrom approximation. We
evaluate KGHA on two multi-label classification applications, image annotation
and protein function prediction. Our experimental results on several benchmark
databases demonstrate that KGHA compares favorably to other state-of-the-art
methods.

1 Introduction

The study of embedding complex data into a lower-dimensional space is an impor-
tant task in machine learning. Relevant methods include principal component analysis
(PCA), canonical correlation analysis (CCA), homogeneity analysis (HA, also known
as multiple correspondence analysis), to name just a few. These methods are generally
known as multivariate analysis (MVA; Izenman 2008). Originally, MVA methods were
proposed with linear projections to satisfy different objective functions, in supervised
or unsupervised contexts. For instance, the objective of PCA is to maximize the vari-
ances of linear projections of data onto a small number of principal bases. CCA seeks
two lower-dimensional coordinate frames in which two sets of variables (e.g. input and
output) are maximally correlated. HA, by contrast, operates on multivariate categorical
data, and outcomes are a set of linear projections which can map both data instances
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and categorical values to a low-dimensional space such that their consistency is pre-
served as much as possible. Although these methods have been successfully employed
in various application domains, detecting linear patterns within data is rather limited in
the face of increasingly more complicated data. Therefore, some nonlinear embedding
techniques, e.g. kernelized versions of the above-mentioned MVA methods or nonlin-
ear manifold learning methods (Ma & Fu, 2011), are increasingly used in modern data
analysis.

We start with introductions to CCA and HA (Section 2), in which their correspond-
ing objective functions, constraints, solutions and properties are explained. Similar to
CCA, in a supervised-learning context, HA can be employed by considering one set
of variables as outputs and the remaining sets as input features from heterogeneous
information sources. Then, in section 3, by reformulating CCA on J sets of variables
with J > 2, we arrive at an objective function of a form identical to HA. Building on
this relationship, we generalize homogeneity analysis to handle continuous variables,
which leads to a relaxed variant of multiple-set CCA. Furthermore, in section 4, we add
a trade-off parameter to fit supervised-learning scenarios and kernel functions to enable
generalized HA for learning nonlinear patterns. We refer to this novel HA as kernel
generalized HA (KGHA). Similarly to regular HA, KGHA is trained via alternating
least squares (ALS), which is more efficient than the multiple pair-wise eigenvalue
computation in multiple-set CCA.

In section 5 we study KGHA in the multi-label learning case. We show that when
used for learning vector-valued functions (e.g. multi-label, multi-task learning), KGHA
is an elegant combination of low-rank output kernel learning and co-regularized multi-
view learning. Low-rank output kernel learning coincides with multi-label dimension-
ality reduction (Ye et al., 2011), which enables learners to gain higher efficiency and
accuracy (Ji & Ye, 2009) by exploiting more compact yet informative latent space.
Also, co-regularized multi-view learning is related to multiple kernel learning (MKL;
Bucak et al. 2014), in which heterogeneous information is encoded in an ensemble of
kernels to match outputs. One feature worth noting is that, since multi-label is encoded
in a lower-dimensional latent space, co-regularization in KGHA takes place in a sub-
sapce of multi-view, which differs from conventional co-regularization (Rosenberg &
Bartlett, 2007).

This paper makes four contributions. First, we reveal the close connections be-
tween HA and multiple-set CCA, which sheds light on new understanding and poten-
tial extensions of these two MVA techniques. Second, we propose a novel multi-label
learning method, KGHA, which is composed of two advantageous components, low-
rank output kernel learning and co-regularized multi-view learning. Third, we develop
a large-scale learning scheme for KGHA by employing a block-wise Nystrom method
for approximating kernel matrices and conjugate gradient for solving ALS. Finally, ac-
cording to our experimental results in image annotation and protein function prediction
tasks, KGHA can improve performance on several benchmark databases.

1.1 Related Work

Our study can be connected to many other work in different respects. The following
gives a short summary of recent advances of relevant research.

Variants of CCA. It has been shown that CCA is related to other MVA techniques,
such as partial least square (PLS) (Sun et al., 2009) and Fisher linear discriminative
analysis (Sun et al., 2011). More extensions of CCA for multi-label learning can
be found in Hardoon et al. Hardoon et al. (2004) and Sun et al. Sun et al. (2011).
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Multi-Label Prediction. Basically, multi-label learning has been studied with differ-
ent “canonical” learning schemes , e.g. regression (Hsu et al., 2009; Lin et al., 2014)
and ranking (Elisseeff & Weston, 2002). Recently, structured output learning has also
been leveraged (Hariharan et al., 2010; Xiong et al., 2014) for this study. Our method
belongs to the regression category. Multi-Label Dimensionality Reduction. Much
effort has been put into learning a shared subspace for multi-label outputs (see a review
by Ye et al. 2011). Other notable work includes projection via compressed sensing
(Hsu et al., 2009) and feature-aware label encoding (Lin et al., 2014). MKL. MKL
has been recruited as a framework for integrating multiple input features from hetero-
geneous information sources (Wang et al., 2008). Especially in computer vision and
bioinformatics applications (Bucak et al., 2014; Mostafavi & Morris, 2010), since vari-
ous visual features and bio-related features are available, MKL plays an important role
in manipulating geometric structures of data in multiple features to fit certain applica-
tions. Co-regularization for Multi-View Learning. Co-regularization has been well
investigated in multi-view learning (Rosenberg & Bartlett, 2007; Sridharan & Kakade,
2008), however, these studies focus on semi-supervised learning. A similar subspace
co-regularization in supervised-learning circumstance was proposed in Guo & Xiao
(Guo & Xiao, 2012), where nevertheless only two views are considered.

Two pieces of work closely related to KGHA are FalE (Lin et al., 2014) and
MultiK-MHKS (Wang et al., 2008) respectively. First, in FalE, lower-dimensional
projections of multi-label data are found by jointly optimizing the correlations between
input features and projections and recoverability of projections back to the original out-
put data. From a different perspective, KGHA can be formulated as an objective func-
tion rather similar to FalE. KGHA goes beyond FalE by considering multiple features
from heterogeneous sources of information. Secondly, in MultiK-MHKS, an extra reg-
ularization is used to encourage consensus among predictions from multiple kernels,
which is identical to our co-regularized multi-view learning. Our work differs from
MultiK-MHKS in that we learn multiple kernels in a non-binary subspace, and thus
use least-squares loss instead of misclassification loss. In this sense, KGHA can be
considered a combination of FalE and MultiK-MHKS.

2 Preliminaries

2.1 Canonical Correlation Analysis

Canonical correlation analysis (CCA) (Hardoon et al., 2004) was developed to find
the correlations between two sets of variables. The essence of CCA is to seek a pair
of linear transformations, one for each set, such that the correlation of transformed
variables is maximized. Assume that a data instance is composed of two set of variates,
[9{, g5 |, of which the dimensions are d; and dy respectively. A dataset D consisting
of M such instances can be represented as a M x (d; + d2) matrix of the form D =
[G1, G3)]. By using two matrices wi € R%*P and wy € R%*P with p < min(dy, ds),
we can project the data into a lower, p-dimensional space:

75 = [G1W1,G2W2] (1)

Assuming the original data are already centered, D will be centered as well, and the
covariance of D is w1G1Gows. The objective of CCA is to select wy; and ws to
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maximize the correlation between GG;wy and Gowa:

T~T

w, G G2W2
wk w3 = argmax 171
twivws} = argmax (o e Twa Gl

T
W1 012W2

(2)

= argmax
Wi1,W2 \/WICllWlW;—CQQWQ

where Co, C'11, Cyo are blocks within the covariance matrices of D:

CYll C’12 :|

3
Ca1 Cao )

cov(D) = [

(2) can be rewritten as

{wi, w3l = argmaxw, Clowy 4)
Wi1,W2

s.t. wlTC’llwl = 1, W;—CQQWQ =1

It has been shown (Bie et al., 2005; Hardoon et al., 2004) that the solution to (4) can
be obtained by solving following generalized eigenvalue problem:

0 012 W1 o 011 0 W1
(e @))% e)) o

There can be many solutions for (5), which correspond to different eigenvectors. One
important property of different solution pairs (e.g. when we have p solution pairs

W; = [wi,...,wl], Wy = [w},...,wh]) is that the projections onto different
wf:el%p I are uncorrelated to each other:
Vi=1,2, W/ CiiW,; =1, ©)
Vk # h, W’fTClgwg =0

It was also shown that the solutions of (5) w1, ws lie in the span of G; and G5 respec-
tively, i.e. wi = G| a1, wo = Gy s, a, ap € RM. By substituting the alternative
form of wy, ws into the primal form of CCA (5), we can write out the dual form of
CCA (Bie et al., 2005; Hardoon et al., 2004) as

0 K1 K o\ K? o0 o
G o) (@)= & )(2) o
where K € RM*M g the Gram matrix of the data, i.e. K;—1 2 = G;G. . Therefore,
by comparing (5) and (7), we can see that when M < d; + do, the dual form can be
used to accelerate computing. The value of the dual form is even more significant when
the kernel method is used on the data and the Gram matrix is replaced with a kernel
matrix:

(G, G) = (6i(G™), 0i(G) ) ®)

where ¢; : R% — H is a feature map from original data space to a reproducing kernel
Hilbert space (RKHS). Kernel methods are of great help in detecting nonlinear patterns
within the data.

2.2 Homogeneity Analysis

Homogeneity analysis (Michailidis & de Leeuw, 1998) is a popular tool for analyzing
and visualizing multivariate categorical data. Assume that there are M data instances
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in a dataset D = {O,,,}M_,, and each data instance is represented by a J-dimensional
vector O, = [v1,va,...,v5]7 (m =1,..., M). Variable v; takes on n; categorical
values. Here we briefly review the procedure of homogeneity analysis with its applica-
tion to this simple dataset. Since the data is represented in a categorical space, we need
to convert them to a vector space. To this end, we list n; categorical values of v; over
all M data instances into an M x n; binary indicator matrix G ;. The set of indicator
matrices can be gathered in a block matrix

G = [G1]|Ga|--- ]G] )

The key feature of homogeneity analysis is that it simultaneously produces two pro-
jections into the same Euclidean space RP, one from .J-dimensional data instances O;,
the other from the M -dimensional categorical attribute indicator vectors (columns of
(7). These projections are referred to as object scores and category quantifications,
respectively (Michailidis & de Leeuw, 1998). In addition, these two projections are in-
tended to preserve the consistency among data instances and attribute values as closely
as possible to the data in the original categorical space:

e data instances that exhibit similar attribute values are located closely together;
e data instances are close to their attribute category values.

Suppose that the collection of data instances is represented by an M X p matrix X, and
category quantifications for variable v; are represented by a n; X p matrix Y;. Then,
the cost function of projections can be formulated as:

J
1
FX Vi, Yy) =5 ) [1IX =Gl (10)
j=1
where || - || p denotes the Frobenius norm. Two extra constraints are added to avoid the

trivial solution (X = 0,Vj € [1,J] Y; =0):
1,,,X = 0 (1)
X'X = I, (12)

The first constraint (11) essentially normalizes the projected object scores to be cen-
tered around the origin. The second restriction (12) standardizes all p dimensions of
the object score by rescaling the square length of each dimension to M. In addition,
another effect of (12) is that the p columns of X are imposed to be orthogonal to each
other.

To minimize the cost function (10) under these constraints (11, 12), usually the
alternating least squares (ALS) algorithm (Michailidis & de Leeuw, 1998) is used. The
basic idea of ALS is to iteratively optimize with respect to X or to [Y7, ..., Y| with
the other held fixed. Assuming X (©) is provided arbitrarily at iteration ¢ = 0, each
iteration of ALS can be summarized as:

1. Vj € [1, J],update Y;:

yjﬁt) = (G, Gy 'a x (13)
2. update X:
J
Xt = g1y gy Y (14)
j=1
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3. normalize X:
XY = Gram-Schmidt( X ¢+ (15)

It can be seen (13) that the category quantification of Y is computed as the centroid of
the object scores that belong to it. Step 2 (14) updates object scores X by taking the
average of the quantifications of the categories it belongs to. In step 3 (15) a Gram-
Schmidt procedure is used to find the normalized and orthogonal basis of updated object
scores from the previous step. In this way, the object scores will be located close to the
category quantifications they fall in, and category quantifications will be close to the
object scores belonging in them.

3 Linking CCA and HA

Based on the previous section, we can see that CCA and HA are used in two differ-
ent data types: the former operates on two sets of variables while the latter is used on
multivariate categorical variables. We reveal that they are closely related when CCA
is generalized to multiple sets of variables. Suppose we want to find 2 sets of p lin-
ear projections W1 = [wi,...,w!], Wy = [wi, ... wh] for regular CCA. We can
rewrite (2) as
{W3i W3l = argmin ||Gi; W] — GoW,||%
Wi, W,
(16)
s.it. Vie{l,2},Vk,he[l,p,k#1
WZTC”WZ = Ip, Wlchlgwg =0
When we have J > 2 sets of variables, (16) will be:
J
{Wi,..., W5} = argmin > ||G;iW, — G; W,
1y Wi i=1,j=1
a7
s.t. Yi,je[l,J],Yk,h € [1,p],k#h
WIC”WZ = Ip, WfTCUW? =0

Lemma 3.1 The objective function in (17) is equivalent to

J
. 1
mmWJ;IIX—GjoH% (18)

Proof For simplicity, we only consider one data instance D = [g{ ,...,g)]. Vi, j €
[1,J],i # j, we denote W, g; and Wjng as v; and v; respectively, v;, v; € RP. Then
the objective function in (17) is

J
2
|[vi — v,
1=1,7=1
J p
2 2
= E E ('Uik + v — 2Uik’vjk)
i=7,7=1k=1
P J J J (19)
_ 2 2
= ik + Vjg — 20k Vjk
k=1 \i=1,j=1 i=1,j=1 i=1,j=1
p J J J J
2 2
= E JE vik—{—JE vjk—2g Uz‘kE Vik | -
k=1 i=1 j=1 i=1 j=1
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In addition, by denoting M} = = Z}le Vg, M =2 23‘7:1 vfk, (19) is equal to
p
T2 (ME = (ME)?). (20)
k=1

Since (M5 — (MF)?) is the variance of the kth component in {v;};_;, this is further
equal to

p J J
TN ik = ME? = T2 [jo; — My |? 1)
k=1j=1 j=1
where M; = [M1,..., M¥]T. (21) can be phrased as a rescaled optimization problem

J
! 2
g ;:1: [lvi — X] (22)

with optimal solution X = M; = Z}]:1 v;. When M data instances are considered,
it is straightforward to extend (22) to

J
1 2
min < > _[|GiW; — X][F (23)
Jj=1
which completes the proof of the lemma. |

Comparing (10) and (23), we can see that multiple-set CCA has the same objective
function as HA (by replacing Y; with W;), yet with different constraints; see (11),
(12) and (17). In the following, we will show some connections between constraints in
multiple-set CCA €2,,,cc 4 and constraints in HA Q7 4.
First, since in Qucca, Vi € [1,J], 1], G W, = 0,10, X =357 17, G;W; =

0, which coincides with the first constraint in 277 4 (11). Secondly, in 2,,cca, Vi, j €
[1,J],Vk,h € [1,pl,k # h, W] C;W; = I,, w;TCijywh = 0. Therefore, X T X =
(XL, W C,;W, +2 > iz Wi CijW;). We can see that when the correlation
of projected data in every pair (i, j) are ideally maximized to 1, X T X = I,,, which
is a rescaled version of the second constraint in 2774 (11). However, satisfying 2z 4
cannot ensure satisfaction of any constraint in £2,,cc . Therefore, roughly speaking,
we can consider {2,,cc4 as a sufficient but not necessary condition for {274, or in
other words, {2 4 is a relaxed version of €2,,,ccA.

4 Kernel Generalized Homogeneity Analysis

Based on the analysis above, we can generalize HA as a relaxed variant of multiple-
set CCA by replacing binary indicator matrices of J types of features. One strength
we gain by using HA is that normalization constraints on J individual projections are
eliminated. Therefore, by using ALS for training, multiple pair-wise eigenvalue com-
putations can be avoided. In a supervised-learning context, we can assume that the Jth
set of variables are outputs (denoted by 1" = [t(l),t(2), .. ,t(M)]T € RMx*dsy and the
remaining J — 1 sets of variables represent J — 1 input features from heterogeneous
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information sources. Then (10) is rewritten as

f(X7W7"'aWJ—17P)

J—1
1
= 7<ZUX—GjoH%ﬁUX—TPH%) 24

-

=t Pj ™

where P is the projection associated with outputs 7''. Interestingly, p; and 7 in (24)
are identical to the predictability and recoverability of X respectively, which are two
concepts recently introduced in FalE (Lin et al., 2014). More concretely, predictability
i1s measured by how much input features are correlated with lower-dimensional repre-
sentations of multi-label outputs, while recoverability refers to how successfully the
compact representations can be decoded back to binary vectors. It is worth noting that
only one p; was used in FalE. Following the philosophy of Lin et al. (2014), we also
introduce a trade-off parameter A to balance Z}]:1 p; and 7. After rescaling we can
further rewrite (24) as:

J—1
=AY 11X = GWl[5 + |IX — TP||% (25)

j=1

Similarly to kernel CCA and kernel FalE, we can add a kernel function (8), for
each feature, on a pair of data points, ; (Gém), G;n)),j € [1,J],m,n € [1, M]. We
refer to this novel learning method as kernel generalized HA (KGHA). Since updates
of Y; in (13) solve a multivariate linear regression (MLR), by replacing it with a dual
form of kernel multivariate ridge regression (KMRR), we can develop a dual learning
algorithm for KGHA by changing the first two steps in ALS to

1. Vj € [1, J], update the dual matrix ac; € RM*P:

o\ = (K; +¢;In) 71X (26)
2. update X:
" 1 J—1
XD — RS ;,\Kjaj+KJaJ (27)

where c; is a ridge parameter for each feature . K; denotes the kernel matrix of the
data within the kth feature or the Gram matrix if no kernel function is applied.

S Multi-Label Learning with KGHA

We now investigate the application of KGHA on multi-label learning, in which KGHA
works as a learning framework with low-rank output kernel learning and subspace co-
regularized multi-view learning. For the kernel on the jth feature (j € [1,J — 1]), the
original data are mapped to a RKHS ¢j(G§m)) € Hj,m € [1, M]. We define a linear
kernel on multi-label outputs as did Hariharan et al. (2010) and Dinuzzo et al. (2011):

K (61 = <¢T(t(m)),¢T(t("))> _ <QTt(m>’QTt<n>> (28)

'From now on, we refer to the same thing by using G 5 or T, and similarly, P and W  are equivalent.
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where (") t(") ¢ B = T, Q € R% 4% captures the pairwise dependencies be-
tween elements in ¢("™). Using a pairwise formulation as in (17), the objective function
of KGHA is I )
25=1 |95 (G5)W; — TQP)|[;
4
+ A Z;],J_:l12¢]l|¢z<Gz)Wz — ¢ (Gj)wj”%

-~

(29)

where ¢;(G;) = [0;(G;)W, ..., 0;(G;)P]T, Zj;ll Aj; corresponds to low-rank

output kernel learning with J — 1 features, while Z;’J_:l“ £ B;; corresponds to co-

regularization for multi-view learning.

5.1 Low-Rank Output Kernel Learning

Let Q = QP be a low-rank feature map ggT for 7. Then, ICT(t(m) , t(”)) = tmMTQQT™ =
t™TL(™  In each A, with a feature map defined on both input and output, a func-

tion to be learned is defined as fj(Gg.m), tm)y =WwJ (¢j(G§~m)) ® QNST(t(m))>, where
® denotes tensor product. Therefore, within the framework of regularization in repro-
ducing kernel Hilbert spaces (RKHS) of vector-valued functions (Micchelli & Pontil,

2005), the unique kernel H; associated with the RHKS of ¢ (T)-valued function is

Hy = (o(GI™)@r(t™),6(G") @ dr(t™))
= (oG 0(GT)) (k™). br (™))
= <t(m),IC;”’"Lt(”)>,

where KC"" is the kernel value KC; (G;m), ¢(G§-n)). Ci*" L defines an operator-valued,

positive semidefinite 7-kernel: R% xR% — R% *4s Because of the decomposability
H,; = K;-L (Dinuzzo et al., 2011), L corresponds to a low-rank output kernel (Dinuzzo
& Fukumizu, 2011). Since Q itself specifies a linear dimensionality reduction, a plain
Gram matrix is used for 7" in (26) to learn Q Low-rank output kernel learning, to
some extent, is equivalent to multi-label dimensionality reduction (see a review by Ye
et al.2011), whose target is to find a lower-dimensional latent space for multi-label
space so as to capture inter-label dependencies as well as to remove nuisance noise.

5.2 Co-regularized Multi-view Learning

Co-regularization has been popularly employed in multi-view learning (Farquhar et al.,
2005; Brefeld et al., 2006; Rosenberg & Bartlett, 2007). Essentially, co-regularization
works as an extra model-complexity controller by penalizing functions which tend to
generate big disagreements among multiple views (see pairwise 5;; in (29)). In par-
ticular, an improved generalization bound of using co-regularization was presented by
Rosenberg & Bartlett (2007) in terms of Rademacher complexities. While most co-
regularization is for semi-supervised learning, quite similar to our work, a subspace
co-regularised multi-view learning paradigm was proposed by Guo & Xiao (2012) for
supervised learning. A similar regularization is also used in MultiK-MHKS (Wang
et al., 2008) for multiple kernel learning, which strategically integrates heterogeneous
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information with an ensemble of kernels. Since MultiK-MHKS works on the origi-
nal binary output space, the squared misclassification loss is used. However, a least-
squares loss is used in KGHA as a regression on lower-dimensional representations of
multi-label outputs.

5.3 Prediction

With training data D = [G1,Gs,...,G -1;T], we can obtain J — 1 dual matrices
{a}j;ll and one linear output decoding matrix Q = 7' " av;. Then, given a test inputs

Dtest = [GIT, GQT, ..., G _], the predicted lower-dimensional representation is
=
X=5— > Ki(G,Gj)ey; (30)
j=1

where K;(G;, G;) is a cross kernel matrix. Then the score values of labels are com-
puted as . o

T=XxQ'(QQ") (31)
where T denotes the Moore-Penrose pseudoinverse. Finally, labels can be predicted by
retrieving top—! (! is the desired number of labels) ranked score values.

6 Large-Scale KGHA Learning

The computation in each ALS iteration is dominated by the matrix inversion in (26);
thus the time complexity of training KGHA is O(JM?3). On the other hand, the space
complexity is O(JM?). In modern machine learning tasks, it is not uncommon to
come across databases with large numbers (e.g. millions) of training instances. Like
other kernel-based methods, learning on such large-scale databases is challenging since
the storage and computation of large kernel matrices will go beyond the memory of
normal PCs. To enable KGHA for large-scale learning, in our experiments we used
low-rank approximations of kernel matrices with Memory Efficient Kernel Approxi-
mation (MEKA, Si et al.2014). MEKA is essentially a block-wise Nystom algorithm
by first clustering instances to obtain dense diagonal kernel blocks, and then obtaining
rank-£ (k is small) approximations of all diagonal blocks with Nystom algorithm and
also off-diagonal blocks with regression. For the kernel matrix of the j-th feature,

f{j ~ WijWjT (32)

where W, = E]alewj(s) (i.e. the direct sum of W;S) in S blocks, W; € R5kx5k)
and L; € R5%*5F consists of S? block-linking matrices. MEKA was reported to
outperform other low-rank approximations by exploiting the block structure in kernel
matrices (Si et al., 2014). By using MEKA, the space complexity of training KGHA
decreases to O(J(MFk + (ck)?)). In addition, to avoid the matrix inverse in (26), we
employed conjugate gradient (CG) to solve the linear equation for each feature:

(Kj + CjIM)OLj =X (33)

and consequently, time complexity of solving ALS is reduced to O(JME).

10



Chapter 4. Kernel-Based Structured Output Learning 110

Dataset #labels  #training #test #average
instances  instances labels
Corel5k 260 4500 500 3.3965

Espgame 268 18689 2081 4.6859
laprtc12 291 17665 1962 5.7187

Table 1: Statistics of three image-annotation benchmark datasets.

Feature Dim  Source Descriptor Location
DenseHueV3H1 300  texture Hue dense
DenseSiftV3H1 3000 texture Sift dense
Gist 512 - Holistic -
HarrisHueV3H1 300  texture Hue Harris
HarrisSiftV3H1 3000 texture Sift Harris
HsvV3HI1 5184 color HSV -
LabV3H1 5184 color LAB -
RgbV3H1 5184  color RGB -

Table 2: A summary of 8 heterogeneous visual features.

Corel5K Espgame lapric12
p/dy P(%)R(%)F1L(%)  P(%)R(%)F1(%)  P(%)R(%)F1(%)
0.2 26.1 30.7 28.2 30.1 18.8 23.1 359247 293
0.4 30.8 35.1 32.8 33.7 244 28.3 38.2 25.2 30.4
0.5 33.7 42.5 37.6 37.8 27.3 31.7 40.1 29.7 34.1
0.6 29.1 38.6 33.2 33.1 26.8 29.6 40.7 26.4 32.0
0.8 28.5 38.1 32.6 31.9 25.5 28.3 41.3 26.5 322

Table 3: Performance of KGHA with different p values.

Corel5K Espgame laprtc12
Method  P(%)R(%)F1(%) P(%)R(%)FL(%) P(%)R(%)F1(%)
MBRM 24.0 25.0 24.0 18.0 19.0 18.0 24.0 23.0 23.0
JEC 27.0 32.0 29.0 24.0 19.0 21.0 29.0 19.0 23.0
TagProp 33.0 42.0 37.0 39.0 27.0 32.0 45.0 34.0 39.0
FastTag 32.0 43.0 37.0 46.0 22.0 30.0 47.0 26.0 34.0
r-MLR 27.7 29.3 28.5 243 19.3 21.5 34.8 19.5 25.0
r-KMLR 31.7 35.1 333 24.8 26.6 25.7 36.6 20.1 26.0
L-HA 30.0 27.5 28.7 25.1 224 23.7 38.1 22.5 28.3
KGHA—-d 33.1 38.1 37.5 32.7 27.2 29.7 43.8 21.3 28.7
KGHA—r 31.3 32.6 32.0 28.8 18.6 22.6 31.2 22.6 26.2
KGHA 33.7 42.5 37.6 37.8 27.3 31.7 40.1 29.7 34.1

Table 4: Comparison between KGHA and other related methods on three image-

annotation benchmark databases. The results in the upper panel were reported by Chen
et al. (2013).

7 Experiments

To evaluate the proposed KGHA for multi-label learning, we test it on image annotation
and protein function prediction tasks.

11
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7.1 Image Annotation
7.1.1 Data and Evaluation

In this experiment, we used three benchmark datasets, Corel5k, Espgame and laprtc12.
These three datasets have been widely used in image annotation studies (Guillaumin
et al., 2009; Makadia et al., 2010; Chen et al., 2013) with performance evaluations re-
ported therein. Therefore, we can easily compare our method with others. Statistics
of the three benchmark datasets are summarized in Table 1. Readers are referred to
Makadia et al. (2010) for more details of the three datasets. We worked with 8 visual
features extracted by Guillaumin et al. (2009). They include one Gist descriptor, three
global color histograms and four histograms of local bag-of-words texture features?.
The descriptions of 8 features are summarized in Table 2. Readers are referred to
Guillaumin et al. (2009) for more details on extracting these features. Our large-scale
learning scheme (section 6) is applied on Espgame and laprtc12 since these contain
large numbers of instances.

Following Chen et al. (2013), 5 labels with top prediction score values were anno-
tated to each image. We evaluated annotation performance using precision (P), recall
(R), and the FI measure (F). For each tag, the precision is computed as the ratio of the
number of images assigned the tag correctly over the total number of images predicted
to have the tag, while the recall is the number of images assigned the tag correctly
divided by the number of images that truly have the tag. Then precision and recall are

averaged across all tags. Finally, the F1 measure is calculated as F' = 2 Pj; i

7.1.2 Results and Comparison

First, KGHA was implemented and tested on three databases. A Gaussian kernel
KCGauss = exp(—||G§-m) — ng)H% /20%) was used on all 8 visual features, with o

set to the average value of ||G§m) — G;n)||2, m,n € [1,M]. The reduced dimen-
sion p is set to different 5 values (p = {0.2,0.4,0.5,0.6,0.8} x dj). Hyperpa-
rameters (A, {c; 3-]:_11) were selected by grid search with 4-fold cross validation from
{107°,{107%,1073,1072,10~1}. Here for simplicity we use a common ridge param-
eter c for all J features, and we found it almost does not affect performance. Experi-
mental results are presented in Table 3. It can be seen that the best performance was
achieved with p/d; = 0.5. on all three datasets. To verify the significance of low-
rank output kernel learning and co-regularization, we also implemented another five
simplified methods for comparison: (1) multivariate linear ridge regression (r-MLR);
(2) multivariate kernel ridge regression (r-KMLR); (3) linear HA (L-HA); (4) KGHA
with p = d; (KGHA—d, no dimensionality reduction); (5) KGHA with extremely
small A (KGHA —r, no manifold regularization). To ensure fairness, the same Gaussian
kernel construction and appropriate hyperparameter searching are used in all methods.
The results of all six methods are presented in the lower panel of Table 4. We see that
KGHA generally outperforms other methods, which empirically proves the importance
of low-rank output kernel learning and co-regularization. In addition, the upper panel
of Table 4 lists the results of some notable methods that were recently developed or
surveyed (Guillaumin et al., 2009; Makadia et al., 2010; Chen et al., 2013). KGHA
demonstrates promising capabilities by comparing favorably to the state-of-the-art.

%In the original dataset, two versions of color features and texture features are available, with and without
spatial layout; here we use only those with layout.

12
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information sources #labels  #instances #ave.
Dataset for kernels labels

domain composition
complexes
protein-DNA/RNA-interaction
Human p-transcriptional modification
tissue expression 254 3704 3.7268
protein interaction
OMIM disease
Su-tissue expression

Pfam domain structure
co-participation
Yeast PPI network 13 3588 1.5279
gene interaction network
cell cycle&gene expression

Table 5: The statistics and heterogeneous features of two datasets.

7.2 Protein Function Prediction
7.2.1 Data and Evaluation

Two datasets were used in the second experiment. The first one is Human from
Mostafavi & Morris (2010) and the second one is Yeast from Tsuda et al. (2005).
Following the same preprocessing on Human dataset by Yu et al. (2013), we filtered
out some protein instances with too general or too narrow functions. For both datasets,
multiple kernels (similarity networks) were already pre-computed. The statistics and
heterogeneous features of two datasets are listed in Table 5.

For better comparison with the state-of-the-art results in bioinformatics community,
we evaluated performances with 1—RankinglLoss (Yu et al., 2012, 2013). RankingLoss
is computed as the average fraction of label pairs which are incorrectly ordered. To
align with Macro F1, 1—RankingLoss was used instead. The score values of all labels
in (31) were used for ordering. In the Human experiment, 60% of the instances were
used for training and 40% for testing. On the other hand, 80% of instances were used
for training and 20% for testing in Yeast experiment. In both cases, 5 independent
trials were run with different random subsets, based on which the average and standard
deviation of 1—Rankingl.oss were computed and reported.

7.2.2 Results and Comparison

Similarly to our image-annotation experiment, KGHA with five different p values were
tried on Human and Yeast databases. Also, the same hyper-parameter tuning was
conducted. Results are presented in Table 6, from where we can see that optimal p is
0.5 x d; in the Human experiment and 0.6 x d; in Yeast. Three simplified methods
(r-MLR and L-HA were not used since only kernel values are provided in original
datasets) were also tried on two datasets with results listed in the lower panel of Table
7. KGAH is again superior to all others, which suggests its robustness and stability.
In addition, four state-of-the-art results on these two datasets (see the upper panel of
Table 7) were reported in Yu et al. Yu et al. (2012, 2013). It can be seen that KGHA
yielded rather comparable performance.

13
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p/dy Human Yeast
0.2 70.03 (£0.69) 71.58 (£0.63)
0.4 78.63 (£0.53) 76.00 (£0.89)
0.5 82.74 (+0.56) 81.13 (£0.75)
0.6 77.14 (£0.42) 80.06 (£0.83)
0.8 76.31 (£0.61) 83.97 (£0.80)

Table 6: Evaluation of KGHA using 1—RankingLoss (%) with different p values.

Method Human Yeast

SW 78.49 (+0.58) 84.35 (+£0.73)
GRF-MK 81.11 (£0.51) 80.93 (£0.99)
PfunBG-MK 81.60 (£0.50) 80.50 (£0.87)
TMEC 83.40 (£0.46) 80.79 (£1.01)
r-KMLR 72.10 (£0.65) 73.11 (+0.94)
KGHA—-d 78.69 (+0.57) 75.25 (£0.92)
KGHA—r 77.15 (£0.78) 72.69 (+1.24)
KGHA 81.74 (+0.56) 83.97 (+0.80)

Table 7: Comparison between KGHA and other related methods using 1 —RankingLoss
(%) on three image-annotation benchmark databases. The results in the upper panel
were reported by Yu et al. (2013) and Yu et al. (2012).

8 Conclusion

A novel multi-label learning framework, kernel generalized homogeneity analysis (KGHA),
was proposed. Starting from the connections between regular HA and multiple-set
CCA, we revealed that HA can be generalized as a relaxed variant of multiple-set CCA

to handle multiple heterogeneous features. By using kernel functions, we showed that
KGHA, in multi-label learning, works as a method consisting of low-rank output kernel
learning and co-regularized multi-view learning. We also presented some interesting
links between low-rank output kernel learning and multi-label dimensionality reduc-
tion, co-regularization and multiple kernel learning, respectively. Promising results are
achieved by using KGHA in our experiments on image annotation and protein function
prediction.
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Chapter 5

Optimization on Structures

“For the things we have to learn before we can do them, we learn by doing them”

Aristotle

This chapter is dedicated to the optimization on structured data. Basically, two forms
of structures are considered. First, in section 5.1, optimization on graphical models is
studied. Second, in section 5.2, structures on manifold are considered. More precisely,

the optimization on matrix manifolds are studied.

5.1 Optimization on Graphs

In this section, two optimization methods are reviewed: maz-product (loopy) belief prop-
agation and iterated conditional modes (ICMs). Max-product (loopy) belief propagation
is an extension of belief propagation inference, which was explained in section 2.2, while
ICMs is an iterative “greedy” strategy for local optimization. There also exist other
notable optimization methods for graphical models, such as graph cut, tree-reweighted
message passing. Meanwhile, they are not added in this dissertation. Readers are re-

ferred to Szeliski et al. (2008) for a review and comparison of them.
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5.1.1 Max-product (Loopy) Belief Propagation

In the belief propagation algorithm (section 2.2), a variable node sends a message to one
of its neighbours by first receiving messages from other neighbours and summing itself
out in the product of incoming messages and the occupied potential function. Therefore,
it is also referred to as sum-product algorithm for factor graphs. Optimization actually
can be also considered as inference by replacing sum with maz, which results in max-

product belief propagation, of which the pseudo-code is presented in Algorithm 7

Algorithm 7 Max-product Belief Propagation for tree-structured Markov networks

1: select one variable as the root;
2: starting from all leaves, propagate beliefs toward the root as:

mis(27) = max § d(wi ;) [[ meoite)
’ keNe(d)\j

3: when the root receives all messages from its neighbors, then propagate backwards
the “inverse beliefs” as the step 2;
4: the optimization solution of each variable is computed as:

T; = argmax H Mmp—si(x;)
i keNe(d)

where Ne(7) denotes the neighboring variables of z; in the graph.

Analogously, the max-product loopy belief propagation can be written out (see Algo-

rithm 8) for loopy Markov networks.

Algorithm 8 Max-product Loopy Belief Propagation for Loopy Markov networks

1: initialize all messages m;_,; in both directions of all connected variables randomly
or with a constant value (e.g. 1);

2: while all messages converge do

3:  update messages as:

m ) () = max§ o ey) [T mil (@)
keNe(i)\j

4: end while

5.1.2 Iterated Conditional Modes

Iterated conditional modes (ICMs) is a simple “greedy” strategy for the optimization of

Markov networks. Basically, all variables are initialized randomly and then the state of
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each variable z; is determined by maximizing the product of all potential functions which

involve x;. This state update is iteratively carried out for all variables until convergence.

5.2 Optimization on Matrix Manifolds

In many practical problems, the optimization is with respect to matrices which satisfy

certain properties. A few examples are enumerated as follow:

e Oblique manifold: M = {X € R™™ : diag(X " X) = 1,,};
e Stiefel manifold: M = {X e R™™: XX = I,,,};

e SO(n) manifold: M = {X e R"": XX = [, and det(X) = 1}.

These matrices can also be considered as structures, in which entries are dependent by
satisfying different constraints. Usually, optimization techniques on matrix manifolds
are used to find the optimal matrix. A review of relevant methods is provided in Absil
et al. (2007). In the following subsection, an application of the optimization on the SE(3)
manifold on 3D shape registration is presented, which shows a representative example

of this type of optimization.

5.2.1 3D Point Cloud Registration with Optimization on SE(3) Man-
ifold

Despite intensive study, 3D shape registration remains an open question. Here, a novel
and efficient registration method is proposed. Quite different from previous registration
methods, instead of computing correspondence and aligning in 3D space, the proposed
algorithm first maps points to a higher dimensional reproducing kernel Hilbert space
by applying kernel methods. Registration is subsequently performed within the feature
space by aligning principal components using kernel PCA. The alignment is projected
back into 3D pose space. The whole procedure is theoretically elegant and efficient. Ker-
nel PCA is used to avoid explicit computation in feature space, and SE(3) on-manifold
optimization is employed for the convex optimization in the alignment projection. Em-
pirical results demonstrate that the proposed method is quite accurate and robust to
various challenging circumstances (e.g. large motions, outliers), and remarkably, it is
much faster than other state-of-the-art methods with comparable performance. More

technical details and results are presented in the paper IX by the author.
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IX Hanchen Xiong, Sandor Szedmak, Justus Piater Efficient, General Point Cloud
Registration With Kernel Feature Maps, In Proceedings of 10th International Conference

on Computer and Robot Vision (CRV13), pp 83-90, 2013, IEEE.
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Efficient, General Point Cloud Registration With Kernel Feature Maps

Hanchen Xiong, Sandor Szedmark, Justus Piater
Institute of Computer Science, University of Innsbruck
Technikerstr.21a A-6020, Innsbruck, Austria
Email: {hanchen.xiong, sandor.szedmark, justus.piater}@uibk.ac.at

Abstract—This paper proposes a novel and efficient point
cloud registration algorithm based on the kernel-induced
feature map. Point clouds are mapped to a high-dimensional
(Hilbert) feature space, where they are modeled with Gaussian
distributions. A rigid transformation is first computed in
feature space by elegantly computing and aligning a small
number of eigenvectors with kernel PCA (KPCA) and is then
projected back to 3D space by minimizing a consistency error.
SE(3) on-manifold optimization is employed to search for the
optimal rotation and translation. This is very efficient; once the
object-specific eigenvectors have been computed, registration is
performed in linear time. Because of the generality of KPCA
and SE(N) on-manifold method, the proposed algorithm can
be easily extended to registration in any number of dimensions
(although we only focus on 3D case). The experimental results
show that the proposed algorithm is comparably accurate
but much faster than state-of-the-art methods in various
challenging registration tasks.

Keywords-kernel method; point cloud registration; SE(3) on-
manifold optimization

I. INTRODUCTION

3D free-form shape registration is an important problem
in many fields and has sparked a large volume of related
research literature. During the past two decades, 3D point
clouds have become an increasingly more important and
popular data structure to represent 3D shapes. Especially
in contemporary robotics, 3D point cloud registration is an
essential component of autonomous systems to assist in the
perception of 3D objects and environments.

Until now, most existing 3D point cloud registration
algorithms decompose the registration problem into two
parts, correspondence assignment and alignment, because
they argue that computing either of two steps will facilitate
the other. A popular method is Iterative Closest Point (ICP)
[1], which undoubtedly has been most widely used due to its
simplicity in implementation. First, a pseudo correspondence
is established by finding the nearest neighbor of each point.
Then, the optimal rotation and translation are computed so as
to minimize the average of Euclidean distances between all
pairs of corresponding points. These two steps are iterated
until converge. Obviously, the closest-distance criterion for
correspondence is too weak, and therefore ICP can easily
fail in practice when the displacement between two point
clouds or outlier rate is relatively large. To enhance the
accuracy of the correspondence, many improved versions of

ICP were proposed by incorporating color, normal vectors,
curvature, or strategically ignoring some unlikely corre-
spondences [2]. However, despite various improvements,
the hard assignment strategy employed by ICPs causes
problems that require manual assistance in practical appli-
cations. To overcome this limitation, SoftAssign [3] and
EM-ICP [4] were proposed by establishing one-to-many soft
correspondences. Both methods assume that one point may
correspond to all points in the other cloud with different
likelihoods by constructing a correspondence matrix. To
iteratively update this matrix, deterministic annealing is used
in SoftAssign while an Expectation-Maximization (EM)-
style method is employed in EM-ICP. Meanwhile, recently a
Gaussian-mixture (GM) method [5] was developed to avoid
iteratively computing the correspondences and alignment.
GM probabilistically and globally models 3D point clouds as
Gaussian mixtures in R3, and the optimal alignment between
point clouds is computed by minimizing the discrepancy (L2
distance [5]) between their corresponding distributions.

For the task of aligning 3D point clouds M; = {xgl)}lle
with My = {xl(-z)}?:l, all methods described above can be
interpreted as optimizing a common objective function:

PR )
{R*,b"} = argmin > >~ (Rx§” tb— x;?)) wi; (1)

i=1 j=1

where w; ; denotes the correspondence between every pair
of xl(-l) and xéQ). In ICP w;; € {0,1}, and (1) is solved
by iteratively updating w; ; in a winner-take-all manner
under a shortest-distance criterion and solving a least-
squares problem with respect to R and b. In EM-ICP,
wy ; is interpreted as the probability of the correspondence,
so a one-way constraint (w;; € [0,1], Z? w;; = 1)
is implicitly imposed. In SoftAssign, a stricter two-way
constraint (w; ; € [0,1], Z? wij =1, Y w; = 1) is
introduced to enforce globally consistent point correspon-
dences. Although GM does not model the correspondences
explicitly, they can likewise be understood as an instance
of (1) with Euclidean distance replaced by Mahalanobis
distance, and an uniform prior of w; ; = i for each pair
of 7, j. In conclusion, so far 3D point cloud registration can
be achieved either by explicitly modeling correspondences
and laboriously updating them (EM-ICP and SoftAssign), or
by making some fragile correspondence assumptions to sim-
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plify the optimization procedure (ICP and GM). In addition,
all these methods share the same computational complexity
of O(n?) !, which will be a heavy computational burden
if the number of points n is relatively large. Therefore, a
registration solution that can both express realistic priors
over point correspondence matches and can be computed
in a simpler (possibly non-iterative) and cheaper (possibly
non-quadratic time) way is highly desirable. The method
proposed in this paper fulfills both demands. Instead of
doing point-wise correspondence search and computing in
3D space, our method first maps all points to a higher-
dimensional (reproducing kernel Hilbert) feature space using
kernel methods. The optimal transformation in feature space
is then found by aligning Gaussians that approximate the
two mapped point clouds. To project back to the 3D space,
an objective function is constructed based on the fact that
the transformed mapped points should be consistent with
mapped transformed points. Finally, an SF(3) on-manifold
optimization scheme is exploited to provide an elegant and
efficient gradient-type algorithm for registration.

Compared to previous registration methods, the strength
of our method can be summarized in four points: (1)
Although our algorithm was not developed on the basis of
point correspondences, the form of its objective function
(section III-A) suggests that correspondences are implicitly
derived and to large degree it is consistent with the correct
matches; (2) The experimental results (section IV) show that
our method can work accurately and robustly in various chal-
lenging cases (large motion, outlier points); (3) Our method
is much more efficient than other state-of-the-art methods,
actually the computation complexity is O(nlogn); (4) By
using Kernel PCA and SFE(3) on-manifold optimization, the
algorithm can be used as general point cloud registration
framework with high flexibility and extensibility to any
dimension.

II. RIGID TRANSFORMATION IN HILBERT SPACE

Intuitively, a straightforward way to align point clouds
without point-wise correspondences is to first probabilisti-
cally fit each point cloud to a single Gaussian distribution in
R3 and then align their means (translation) and covariances
(rotation). However, the modeling ability of one single
Gaussian in 3D space is too limited to capture the 3D
point distribution of real-world objects, i.e. the mean and
covariance in R? are very sensitive to outliers. Inspired
by kernel methods developed for set-format data [6], a 3D
point clouds can be implicitly mapped to a much higher-
dimensional Hilbert feature space, where a single Gaussian
can fit well (Fig. 1) and hence yields higher tolerance to 3D
disturbance in the original point cloud (e.g. outliers or non-
rigid transformation). In addition, by applying kernel PCA,

Ithe complexity of ICP is O(n logn) if K-d trees are used for searching
for the nearest neighbour

feature space

original 3D space

Figure 1. Mapping point clouds from 3D space to an infinite-dimensional
Hilbert space, where a single Gaussian is sufficient to model distributions
of complex shape.

the eigenvectors of covariances can be efficiently computed
and aligned without explicit computation in feature space.

A. Probabilistic modeling in Hilbert space

Inspired by kernel methods that have been widely used in
machine learning, in order to map all points in a point cloud
M = {x;}!_, to a higher, possibly infinite-dimensional
feature space, we can define a kernel function on 3D points
K(x;,x;). Then, a feature map can be implicitly induced
by satisfying

K(xi,x;5) = (¢(xi), (%)) 2

where ¢ is the corresponding feature map: R® — %, and
‘H is referred to as the reproducing Hilbert feature space.
Since the structure of M can be far too complicated in R3,
to ensure that one single Gaussian is capable of modeling
the distribution of {gb(xi)}i:l in H, in this paper we select
the kernel function as the radial basis function (RBF)
x| -
202

because the induced feature map is a scaled Gaussian
probability density function (PDF),

K(x;,x;) = exp

2
€ — x:
d(xi) = f(€lxi) = exp %
i.e., ¢(+) corresponds to an infinite-dimensional feature map.

With all points mapped into feature space, a Gaussian
(mean and covariance) in H can be easily fitted by using
maximum likelihood estimation (MLE):

“

l

Py = %Zéb(xi) = %¢(M)Tll )
l

B = Y00 — ) (06 i) ©)

where ¢(M) " = [p(x1), ¢(x2),-- -, d(x;)] and 1; is an I-
dimensional vector with all elements equal to 1.

B. Kernel PCA

To achieve the alignment between two covariances, their
eigenvectors should be computed first. However, this com-
putation is non-trivial in feature space. Kernel principal
component analysis (KPCA) [7] is a technique developed
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to compute eigenvectors in feature space without explicit
computation in H. Here we briefly review the procedure of
KPCA with its application to 3D point clouds.

Assuming all points are already centered in feature space,
the covariance X4 of the Gaussian can be estimated as

l
=1 > obx)éx) )
i=1

which is a symmetric bilinear form on 7. Analogous to
the symmetric covariance matrices in the finite-dimensional
case, its nonzero eigenvalue A\ and corresponding eigenvec-
tor uy should satisfy

Ay = Ty uy. ®)

By substituting (7) into (8), we have

1
1

e = - Ty = ;a%(xi) ©)

where af = ‘Mx)‘\) 2k Therefore, all eigenvectors uy with

A # 0 must lie 1r]; the span of ¢(x1), ¢(x2),...,o(x;), and
(9) is referred to as the dual form of uy. By left-multiplying
Z§=1 #(x;) T on both sides of equation (8), we have

! 1
Doolx) M = Y o(x))  Swuy
j=1 =1
L

& A Z AP K(x;,x;) = 7 K(xi,%;)?

ij=1 i j=1
& Dpak = Ka

(10

where K is an [ x [ kernel matrix with K;; = K(z;,x;),
of = (af ak,...,aF)T. It can be seen that {a* n* =
[Ak} is actually an eigenvalue-eigenvector pair of matrix
K. Therefore, by using dual forms of eigenvectors, the
eigenvector decomposition of 34, can be transformed to the
decomposition of the finite matrix K. In addition, because

all uy should be unit vectors:

1—uZu;C = <a Ko* )= 77k kT ok (11)
the a* should be normalized as:
k
ok« 2 (12)

vk

However, though the point cloud can be easily centered in
3D space, it does not mean it is also centered in feature

space. By replacing ¢(x;) with b(xi) = ¢(xi) — . the
corresponding kernel matrix K is

~ 1 1 1

K=K~ ;EK - JKE + ;EKE (13)

where E denotes an [ x [ matrix with all entries equal
to 1. After similar eigenvector decomposition (10) and

(@ (b) © ()

Figure 2. (a) A point cloud of table tennis racket; (b—d) reconstruction
using the first 1-3 principal components. For each point in the bounding-
box volume, the darkness is proportional to the density of the Gaussian in
the feature space .

normalization (12) steps, we obtain eigenvectors

l
- de (p(xi) — p) = (M) T (T, — %E) & (1)
=1 N—

I1E

where I; is an [ x [ identity matrix and & is the kth
eigenvector of the matrix K.

As analyzed in [6], it is misleading and wasteful to use
full covariances, so only a small number of eigenvectors are
sufficient to capture the structural property of the covariance
34 . Fig. 2 displays an example of a table tennis racket point
cloud. Its Gaussian distribution in the feature space H can be
well reconstructed using only 3 of its principal components
associated with top largest eigenvalues.

C. Alignment of Gaussians

Assume the task is to align a point cloud M; = {x(l)}
with My = {X(Q)} /1, instead of computing the optlmal
alignment in 3D space directly, we can alternatively first
align them in feature space, and then project them back
to R? (section III). With the modeling procedure above
applied on M; and Mo, the alignment of two point clouds in
feature space corresponds to aligning two Gaussians. In this
paper, we assume D eigenvectors are computed for the co-
variance of each point cloud: U = [a},...,aF,...,aP],
INJQ = [ﬁ%, R ﬁ]g, . ,ﬁQD]. Therefore, the rotation in
feature space Ry is estimated by simultaneously aligning D
pairs of corresponding eigenvectors: U, = Ry U;. Because
different eigenvectors of each point cloud are orthogonal to
each other, based on the computation result in (14), it is easy
to derive:

Ry

0,07
D

(M) T 1IF <Z

) I ¢(M1)  (15)

Oq

Since the rotation (15) can be applied only if M has already
been centered in feature space, to fully align two Gaussians,
the translation in feature space by, obviously should equal
the mean of the Gaussian that models M5 in feature space:

by = ) = oM 1, (16)
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1 1
x o(x{")

{R,b} l{waH}

(1) 5D
d(Rx;’ +b) ~Ryop(x;) + by
R gl) 1 > t ) ( t )

Figure 3. The consistency error is defined as the discrepancy between
(f)(Rl’t + b) and RH¢(Zt) + b’H

Now we can align two Gaussians in feature space with
{Ry,by} computed in (15) and (16). However, due to
the infinite-dimensional feature map defined in (4), there
still exist two obstacles to be overcome: First, (15) and (16)
cannot be computed in an analytic form; secondly, there is no
trivial way to map {Ry, by } back to 3D space. Fortunately,
by designing a consistency error (section III-A), these two
issues can surprisingly be solved simultaneously in a very
smooth and elegant manner.

ITII. CARTESIAN POINT CLOUD ALIGNMENT

In this section we will project the rotation and translation
in the feature space H back to 3D space by minimizing
a specifically-designed consistency error (Fig. 3). It turns
out that the final objective function can be constructed and
solved without explicit computation in feature space. In
addition, further connections with other registration methods
will be exposed by discovering the hidden commonality
among their objective functions. To enhance the generality of
the proposed algorithm, an SE(3) on-manifold optimization
scheme is employed to search for the optimal transformation.

A. Consistency Error

Instead of tediously finding the inverse function ¢—1(-)
corresponding to the definition in (4) and applying it to
{Ry#,by} to map them back to 3D space {R,b}, here
we define a novel consistency error between ¢(Rz: + b)
and Ry (¢(z1) — 1) + by based on the fact that mapping
after transformation should be consistent with transformation
after mapping (Fig. 3). Therefore, we can find the optimal
rotation and translation in 3D space by minimizing the
average consistency error:

Iy
1
{R*,b*}=arg%1}gE;II‘I’t—'I’tllz (17)

Because ||®(x)||? is the integration over the square of a
Gaussian, which preserves constant under any translation b
and rotation R, and W, is fixed, by substituting (15) and
(16) into (17), we have

ly
* * 1 T
{R*,b"} = argmax ;- ;21 v, o,

1 W . (18)
:argr&fﬁg{E;K(th +b,M) p,

o

(a) (b)

Figure 4. (a) Two identical point clouds with exactly the same point
permutation. (b) Visualization of p¢; computed for all pairs of points.

1
—1, (19)

1
p = Oq <K(x§1)71\/[1) - HKII[I) + L

where K (in” + b,M;) is an [>-dimensional vec-
tor with K(Rx!" + b,M,); = K(Rx!" + b,x?),
and K (xgl),Ml) is an [;- dimensional vector with
K(xgl),Ml)j = K(xgl),xél)). It can be seen that by
employing the kernel trick (2), we can elegantly avoid
computation in the feature space H in both (18) and (19).

B. Relation to Other Approaches

As analyzed in section I, most existing registration meth-
ods can be unified to a general objective function (1) with
different correspondence assumptions or iterative update
strategies. The objective function (18) can be easily extended
as follows:

[P
* * . 1 2

{R",b"} = arglﬁl}él;; ~KRxM + b,xg Npei  (20)
By considering —K(-,-) as an exponential distance and
replacing p;; with wy;, it turns out that surprisingly our
method (20) is also a special case of (1), although we
arrive there from a completely different starting point. This
suggests that p;; somehow implicitly encodes the corre-
spondence likelihood between xgl) and xz(?) as well. To
verify this argument experimentally, in Fig 4(a) there are
two identical point clouds with exactly the same point
permutation. We compute p;; for all pairs of points in Fig
4(b). It can be seen that Fig 4(b) shows a very evident
diagonal pattern with uniformly distributed noise, which is
the reflection of our prior knowledge. However, different
from most of other approaches, we do not model w;;
explicitly or update them iteratively. Instead, p; ; is derived
from eigenvector alignment in feature space and only need
to be computed once.

There is another way our method is related to Gaussian
mixtures. By relaxing the non-negative coefficient constraint
in the definition of Gaussian mixtures, each eigenvector
in (14) can be considered as a pseudo Gaussian mixture
with ¢(-) defined as in (4). In this way, instead of aligning
two Gaussian mixtures in 3D space, what our method is
actually doing is to simultaneously align D pairs of Gaussian
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(2)(3) compute the gradient
w.r.t w and v, and find

(1) initial P, the optimal move in se(3)

tangent space: se(3)

.

(4) map back to SE(3)

SE(3) manifold

Figure 5. The SE(3) manifold and its optimization scheme: (1) start from
a rotation matrix Pg; (2) use equation (26) as the local parametrization of
the manifold at point P, and compute the gradient with respect to {w, v};
(3) compute the best move in se(3) by mapping the update of {w, v}; (4)
map back to SE(3): P1 < exp(A)Pg; (5) repeat step (2)(3)(4) until
convergence

mixtures in feature space, and then implicitly maps back to
original 3D space.

C. SE(3) on-manifold optimization

When solving the optimization problem (18), the orthog-
onality constraint of the rotation matrix R must be taken
into account: RTR = I. This constraint is a common
obstacle in various rotation-related optimization problems,
which drove many researchers to alternatives such as unit
quaternions [5] or dual quaternion number [8]. However,
although all these methods can work satisfactorily for 3D
rotation, they are difficult to be extend to higher dimensions.
Although we only focus 3D point cloud registration here,
to make our algorithm more general, here we employ an
SE(3) on-manifold optimization scheme [9], which can
be easily adapted to rotation matrices in any dimension.
Another virtue of SE(3) on-manifold optimization is that
combined with gradient computing, an elegant optimizer
can be developed based on its associated Lie algebra to
circumvent the orthogonality constraint.

Each rotation and translation in 3D space {R, b} can be
jointly treated as a Euclidean transformation P in R3® by
using homogeneous coordinates. From now on, x is used to
denote homogeneous coordinate, and X for the original one:

xT = [x7,1] @1)
and correspondingly,
R b
P= 22
{ O1x3 1 } 22

One specific P is actually an element of Lie group SE(3)
(Special Euclidean Group), which is a smooth manifold
embedded in R3. Intuitively, the SE(3) manifold can be
considered as a topological space wherein all points are 4 x4
Euclidean transformation matrices, and at each point, there

exists a tangent space A, which happens to be its associated
Lie algebra se(3) . The mathematical connection between
SE(3) and se(3) is

s5¢(3) = SE(3) : P =exp(A) (23)

where exp(-) denotes the exponential map. The tangent
space se(3) can be considered as a linearization of the SE/(3)
manifold within the infinitesimally small vicinity of certain
point Py, so inversely, the exponential map works as a ‘de-
linearization’. All concepts described above are illustrated
in Fig. 5. The Lie algebra se(3) is a collection of matrices

of the form J(w)
w) Vv
A= 24
[ Oix3 O } 24

where J(w) is an skew-symmetric matrix, which can be
constructed from a 3D vector w with a skew operator J(-):

w 0 —ws we
W = wa — J(W) = ws 0 —W1q (25)
w3 —Wag w1 0

and v is an usual 3D vector. Therefore, Therefore, when
exp(A) — I3 (e.g. computing gradient), we can establish a
straightforward map from R to the local neighboring region
of Py on manifold as

P:expdj(w) ‘O’D-PO (26)

01x3

Last but not least, combination with a gradient-type
method yields an final optimization procedure for SE(3)
parameters. By using (26), we can see that when computing
the gradient with respect to w and v, the orthogonality
constraint will be avoided, and therefore, the constrained op-
timization problem in SE(3) (18) is naturally and smoothly
transformed to a much simpler, unconstrained problem in
RS. Meanwhile, different from conventional gradient meth-
ods, instead of computing gradient and updating within the
same space, in SE(3) on-manifold optimization, after every
update of {w, v}, it need to be mapped back to SE(3),
and subsequently the gradient is computed with the local
parametrization of the corresponding neighboring region.
The whole procedure of SFE(3) on-manifold optimization
scheme is illustrated in Fig. 5.

D. Reduction of Computational Complexity

If we reexamine the objective function O (18), an inter-
esting property can be leveraged to significantly reduce the
computation complexity:

(P, Py)
- D -
= oPx")T (Z afal’ (¢<x$,”) - ul) +u2)
k=1

D
= @b, o@Px))@f, p(xV) — py) + (1, (PxD)) 27N

el
-

(@, p(Px{V)) (@, Rygd(xV) — py) + (pa, (Px{))

Mo

k=1
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where we can see that qﬁ(PxEl)) and RH¢(X§1)) — p, are
D

projected onto D eigenvectors {1112“} respectively, and
k=1

an additional projection of qﬁ(Pxil)) onto p,. Therefore,
the computation of the objective function is actually done

in a space spanned by D eigenvectors {'&’5} and one

Mo, Which is a subspace of H. We denote thisks:u]bspace by
S. The feature map of each point ¢(x;) can be projected
onto S in the following way:

D+1

S(d(xi) = > Birrs (28)
k

where r;, are referred to as D + 1 reference vectors in S,
and f3; ), are the corresponding coefficients used to express
S (¢(x;)). In other words, in S, only D+1 reference vectors,
of which D should be linearly independent, can represent
any S(¢(x;)). Therefore, to ensure that ®; and W, are

consistent with each other for all points xgl) in My, we
only need to align D + 1 predefined reference vectors. In
practice, we can randomly select D + 1 S(¢(x;)) because
they are very likely to be linear independent in S. Thus, the
objective function can be simplified to

D+1
* * 1
{R", b7} = argmax o= > K(Rx§) +b,Ms) p, (29)
’ t=1

where S denotes the randomly selected subset of M;. To
practically apply SFE(3) on-manifold optimization on the
objective function O (29), we compute the derivatives of
(29) w.r.t. w and v as follows:

o 1 Di:l d0  dPxy) 0
diwT,vT]T  D+1 dPX(slt) dlwT,vT]|"

t=1

where

o
dO 1 T
—dP ) :Zpsth (Px(slt),xf)) p= (x§2) — Px(slt)) 31
Xt

j=1
8Px(sl) 8eXP(A)P0x<Sl) Poxy) :
opx) (1)

Xs, _ Oexp(A)Pox; = [I3,05x1] " &3
ov ov

IV. EXPERIMENTS
A. Implementation details

Since the computed eigenvectors (14) are of no direction,
there could be 2P possible alignments for D eigenvectors
in feature space. Fortunately, according to experiment, we
found that D = 3 is actually enough to make sufficiently
good alignment. Therefore, one has to compute all 8 pos-
sible alignments in feature space and project them back to
R3, then the final optimal one is picked by checking the
accumulated distances between every pair of corresponding
points in two clouds, and we use shortest distance as the
correspondence here. An outline of the proposed algorithm

is given in Algorithm 1. In practice, to speed up the
convergence of the algorithm, some sophisticated stepsize
tricks can also be added. In addition, we also find that in
Algorithm 1 computing eigenvectors (line 2) is the most
time-consuming part, so in our implementation, fast-PCA
[10] is employed to accelerate the computation.

Algorithm 1 3D Point Cloud Registration

Input: M, = {x{"}/1, and M = {x{"}2 | x e R?
Output: the optimal motion estimation P* which can

align M with Ms

1: construct two matrices K; and Kz (13)

2: compute eigenvalue-eigenvector pairs for K; and Kj:
{am,lw nm,k} m=1,2

3: normalize eigenvectors (12)

select D = 3 eigenvectors with largest eigenvalues for

both M; and M,

randomly select a subset of N > D + 1 size from M;

set initial Py randomly

compute ®, (15) with the subset

while 1 do
compute the gradient V, and V, with current P,,
(30-33)

10:  if both V, and V, are small enough then

11: return P,

12z end if

13:  map the update of w and v back to SE(3) (26)

14: setn<+n+1

15: end while

16: repeat line 7-15 2P times with different sign com-
binations of eigenvectors, and select the final optimal
P* which yields the minimal accumulated distances
between every pair of closest points in P,,M; and M,

»

R A

B. Qualitative Evaluation

For the sake of visualization, we first test our algorithm
on some toy point clouds to see how it work qualitatively.
In Figure 6, some test examples on handwritten letters
are displayed. It can be seen that in rather challenging
circumstances, i.e. (1) the motion between two point clouds
is arbitrarily large (Figure 6(a)), (2) a large portion of
outliers are added (Figure 6(b)), (3) nonrigid transformation
is applied (Figure 6(c)), the proposed algorithm can still
discover roughly correct corresponding points > between two
point clouds (green lines in Figure 6) and make qualitatively
acceptable alignment.

C. Quantitative Evaluation
To obtain a more precise and convincing evaluation of

the the proposed algorithm, KIT database [!1] is used for

2the correspondence for point x£1)

J* = argmaxje(y i,) Pt

is determined by finding the index
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(a)

(b)

Figure 6. Test of the proposed algorithm in typical challenging circumstances for registration: (a) large motion; (b) outliers; (c) nonrigid transformation

Figure 7. Some test results on KIT 3D object database

more intensive test (some test results can be seen in Figure
7). In addition, for quantitative comparison, ICP method,
Gausssian Mixture(GM) and SoftAssign * are implemented
as well. To ensure fairness, the same SFE(3) on-manifold
optimization strategy is employed for their corresponding
objective functions. Since the objects in KIT database is in
triangulated mesh format, point clouds are generated by first
sampling a triangle with the probability proportional to its
area and then uniformly sampling a point from the selected
triangle.

First, we test the robustness of four algorithms on different
scales of motions. In our experiment, for motion scale i, the
rotation angles of yaw, pitch and roll are ¢ x [30°,5°,5°] ,
and translations are 7 x [Sg, Sy, S.], where [S;, S, S| are
standard deviations of point clouds in three axes. Different
motions are applied to the point cloud of each object (points
cloud is sampled with size 1000) to generate a target point
cloud to align with. Since we know the correspondence
between the original and target point clouds, the error
for each registration is computed as the average distance
between every pair of corresponding points in two point

3the comparison in [12] has reported that SoftAssign and EM-ICP
perform similarly, so we are not going to include EM-ICP in our experiment

wf |-a-IcP P -a-icP
—GM s} [——GM

%
s - = SoftAssign 5 - = SofAssign
s " Our method ) Our method
§ o s | - [
2 L --
B g
= g
g7 e 2

2| g

108 -

T is 2 25 3 385 4 45 %2 03 o+ o5 0s o7 [T
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Figure 8.  Test of four registration algorithm on (a) different scales of

motions; (b) different portion of outliers added.

clouds. The test result is plotted in Figure 8(a). We can
see that four algorithms can work similarly well for small
motions (scale ¢ = 1). However, as ¢ increases, the accuracy
of ICP, GM and SoftAssign decrease, although GM and
SoftAssign are much more robust than ICP for intermediate
motions (scale ¢ = [2, 3]). Our method, by contrast, performs
consistently well for all scales of motions. A test example
is displayed in Figure 9(a), from which we can see that the
instability of ICP, GM and SoftAssign stems from the fact
that they are likely to to stuck into local optimum when the
motion is large (although the local optimum can be avoided
by setting up many intial poses, it would take more time to
guarantee that the global optimum is found).

Secondly, we test the robustness of four algorithms by
adding different portion (the percentage of point cloud size)
of outliers which are randomly sampled within the space
around objects. The generated outliers are concatenated into
the original point clouds, so the correspondence is still
available and the registration error is computed in the same
way as in the motion experiment. To avoid the effect of
large motion, a relatively small motion (motion scale i = 1)
is applied to all point clouds. The test result is plotted in
Figure 8(b). We can see that SoftAssign is most stable for
the case in which outliers are presented, GM and our method
are slightly worse, and ICP is very sensitive to outlier even
when the portion is small. A test example is displayed in
Figure 9(b), from which we can see that except ICP, the
result of other three algorithms are acceptable.

Last but never least, efficiency is a significant strength
of our method, which enables it can be used for real
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Our Method
Error: 0.32521

GaussianMixture
Error: 70.6946

SoftAssign

Before Alignment
Error: 72.5856

Icp
Error: 72,7512

Before Alignment ICP
Error: 40.0439

Our Method
Error: 26.6303

GaussianMixture
Error: 25.2715

SoftAssign
Error: 24.0306

(a)

(b)

Figure 9. Comparison of four registration algorithms: (a) motion scale ¢ = 5; (b) outlier portion= 0.8.

[ 100 ] 200 | 500 [ 1000 [ 2000

Our method 1.172 | 1.489 | 2.162 5.126 | 21.165

ICP [1] 0.012 | 0.023 0.051 0.154 0.469

GaussianMixtures [5] | 1.859 | 3.998 | 15.245 | 43.570 172.4

SoftAssign [3] 2.059 | 4.801 | 83.925 592.1 3812
Table I

AVERAGE EXECUTION TIME (SECONDS)

time applications. As we can see in Algorithm 1, after
computing eigenvectors for kernel matrices, the complexity
of computing optimal motion is linear to the size of points
n. Since the complexity of fast PCA is O(nlogn) [10],
the overall complexity of Algorithm 1 is O(nlogn). To
compare the efficiency, all four algorithms are implemented
in Matlab and run on the same hardware platform (usual i7
intel core laptop). Point clouds of all objects are generated
with 5 different sizes (100, 200, 500, 1000, 2000), on which
four algorithms are tested respectively. For each point cloud,
a randomly generated motion is applied and random portion
of outliers are added (to get an approximate average). Note
that in this experiment we are only concerned about the
running time, so the algorithms will stop when they converge
even if the registration is bad. The average execution time
(in seconds) of four algorithms on five set of point clouds
are presented in Table I. We can see that the complexity of
our algorithm is the same as ICP O(nlogn), and it is much
faster than SoftAssign and Gausssian Mixtures(GM) with
complexity O(n?) (however, SoftAssign is usually more
expensive than GM because it needs to iteratively update
correspondence matrix).

CONCLUSION

We introduced a novel point cloud registration algorithm
based on kernel-induced feature maps, kernel PCA and
SE(3) on-manifold optimization. The framework is theoret-
ically elegant, and exhibits robustness and accuracy in fairly
challenging circumstances. It is quite general and flexible
to be extended to different dimensions and intra-category
instances alignment . Remarkably, it outperforms most other
methods in terms of efficiency.
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Chapter 6

Conclusion

“The true face of Lushan is lost to my sight, for it is right in this mountain that I

reside.”

Su Shi

In previous chapters, structured domains were dealt with different forms and corre-
spondingly computed with different methods. The contributions of this dissertation
are twofold. The first one is practical, along with a number of experiments on prac-
tical tasks, some basic principles in the modeling and computation of structured data
are illustrated. The second one, however, is relative theoretic, several novel models
and learning algorithms were proposed, gaining deeper insights into structured-output

learning problems.

After going through four technical chapters, it is useful to step outside and look at the
big picture. Although the dissertation is organized with three separate parts: inference,
learning and optimization, one can be already aware of that they are highly connected.

Some connections can be listed as follows:
e A Bayesian network can be considered as a special case of a Markov network with
conditional distributions as its potential functions;
e conditional random fields are related to max-margin Markov networks;

e a max-margin Markov network is essentially equivalent to structural SVM;
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e joint SVM is a special case of structural SVM on multi-label learning with linear

output kernels;

e learning undirected graphical models with maximum likelihood estimation is highly
dependent on the inference performance, for example, persistent Sequential Monte

Carlo is a learning algorithm based on sampling-based inference;

e optimization of graphical models using max-product (loopy) belief propagation is

an extension of (loopy) belief propagation inference.

All connections are also visualized in Figure 6.1. It can be seen that working with
structured data itself is a structure where different topics can interact each other. For
example, better inference can improve learning performance while better learning can
make inference-based prediction more accurate; a good learning method for max-margin

Markov networks can be also promising for the structural SVM and vice verse.

Optimization
on Matri

Graphical Models

Bayesian
Network

Markov chain

Monte Carlo L. .
Optimization
on Structures

Variational

Method Markov (Loopy) Belief

Network Propagation

Structural .
SV M Joint SVM
Persistent SVM
Sequential
Monte Carlo

Conditional
Random Field

g Kernel-based
Generalized Structural Out-
Graph-based NN put Learning
Structural Out- Markov

put Learning Network

F1GURE 6.1: How different chapters and sections relate to each other.

Therefore, the main message delivered from the dissertation is to keep a “structure” mind

when confronting multiple data. Given a task, based on its nature or characteristic, a
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structure form is selected and some components in Figure 6.1 will be involved. Further-
more, check how the involved components interact with other ones in the diagram, and

then improve the performance by exploiting their connections.

Above all, the content presented in this dissertation is limited. There exist more studies
which are influential in relevant areas. Also, more developments of working on structured

data are expected with increasingly strong desires in practice.



Bibliography

P.-A. Absil, Robert Mahony, and Rodolphe Sepulchre. Optimization Algorithms on
Matrix Manifolds. Princeton University Press, Princeton, NJ, USA, 2007.

David Barber. Bayesian Reasoning and Machine Learning. Cambridge University Press,
2012.

Adam L. Berger, Vincent J. Della Pietra, and Stephen A. Della Pietra. A maximum
entropy approach to natural language processing. Comput. Linguist., 22:39-71, March
1996.

Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Sci-
ence and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

Matthew R. Boutell, Jiebo Luo, Xipeng Shen, and Christopher M. Brown. Learning
multi-label scene classification. Pattern Recognition, 37(9):1757 — 1771, 2004.

Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. Algorithms for learning
kernels based on centered alignment. J. Mach. Learn. Res., 13:795-828, March 2012.

Guillaume Desjardins, Aaron Courville, Yoshua Bengio, Pascal Vincent, and Olivier De-
lalleau. Tempered Markov Chain Monte Carlo for training of restricted Boltzmann
machines. In International Conference on Artificial Intelligence and Statistics (AIS-
TATS), 2010.

Brendan J. Frey. Graphical Models for Machine Learning and Digital Communication.
MIT Press, Cambridge, MA, USA, 1998.

Kevin Gimpel and Noah A. Smith. Softmax-margin CRF's: Training Log-linear Models
with Cost Functions. In Human Language Technologies: Annual Conference of the

North American Chapter of the Association for Computational Linguistics, 2010.

John. M. Hammersley and Peter. E. Clifford. Markov fields on finite graphs and lattices.
Unpublished manuscript, 1971.

131



Bibliography 132

Tamir Hazan and Raquel Urtasun. A primal-dual message-passing algorithm for approxi-
mated large scale structured prediction. In Advances in Neural Information Processing
Systems (NIPS), 2010.

Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and Tech-
niques. MIT Press, 2009.

Sanjiv Kumar and Martial Hebert. Discriminative fields for modeling spatial depen-
dencies in natural images. In Advances in Neural Information Processing Systems

(NIPS), 2003a.

Sanjiv Kumar and Martial Hebert. Man-made structure detection in natural images us-
ing a causal multiscale random field. In IEEFE International Conference on Computer
Vision and Pattern Recognition (CVPR), pages 119-126, 2003b.

John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. Conditional random
fields: Probabilistic models for segmenting and labeling sequence data. In Interna-
tional Conference on Machine Learning (ICML), 2001.

Steffen. L. Lauritzen and David. J. Spiegelhalter. Local computations with probabilities
on graphical structures and their application to expert systems. In Glenn Shafer
and Judea Pearl, editors, Readings in Uncertain Reasoning, pages 415-448. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1990.

Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible In-
ference. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1988.

Patrick Pletscher, Cheng Soon Ong, and Joachim M. Buhmann. Entropy and margin
maximization for structured output learning. In FCML PKDD, 2010.

Herbert Robbins and Sutton Monro. A Stochastic Approximation Method.
Ann.Math.Stat., 22:400-407, 1951.

Ruslan Salakhutdinov. Learning in Markov random fields using tempered transitions.
In Advances in Neural Information Processing Systems (NIPS), 2010.

John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern Analysis. Cam-
bridge University Press, 2004.

Richard Szeliski, Ramin Zabih, Daniel Scharstein, Olga Veksler, Vladimir Kolmogorov,
Aseem Agarwala, Marshall F. Tappen, and Carsten Rother. A comparative study of
energy minimization methods for Markov random fields with smoothness-based priors.
IEEE Trans. Pattern Anal. Mach. Intell., 30(6):1068-1080, 2008.



Bibliography 133

Benjamin Taskar, Carlos Guestrin, and Daphne Koller. Max-margin Markov networks.

In Advances in Neural Information Processing Systems (NIPS), 2003.

Tijmen Tieleman. Training Restricted Boltzmann Machines using Approximations to
the Likelihood Gradient. In International Conference on Machine Learning (ICML),
pages 1064-1071, 2008.

Toannis T'sochantaridis, Thomas Hofmann, Thorsten Joachims, and Yasemin Altun. Sup-
port vector machine learning for interdependent and structured output spaces. In

International Conference on Machine Learning (ICML), 2004.

Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag New
York, Inc., New York, NY, USA, 1995.

S. V. N. Vishwanathan, Nicol N. Schraudolph, Mark W. Schmidt, and Kevin P. Murphy.
Accelerated training of conditional random fields with stochastic gradient methods.

In International Conference on Machine Learning (ICML), 2006.

Martin J. Wainwright and Michael I. Jordan. Graphical models, exponential families,

and variational inference. Found. Trends Mach. Learn., 1(1-2), January 2008.

Jonathan S. Yedidia, William T. Freeman, and Yair Weiss. Constructing Free-energy
Approximations and Generalized Belief Propagation Algorithms. IEFEE Trans. Inf.
Theor., 51(7):2282-2312, July 2005.

Laurent Younes. Estimation and annealing for Gibbsian fields. Annales de linstitut

Henri Poincaré (B) Probabilités et Statistiques, 24(2):269-294, 1988.



	Declaration of Authorship
	Abstract
	Acknowledgements
	Contents
	1 Introduction
	1.1 Work on Structured Domains
	1.2 Overview
	1.2.1 Part I: Inference with Graphical Models
	1.2.2 Part II: Structured Output Learning
	1.2.3 Part III: Optimization on Structures

	1.3 Author's Contribution

	2 Graphical Models: Structural Modeling and Inference
	2.1 Probabilistic Graphical Models
	2.1.1 Bayesian Networks
	2.1.2 Markov Networks
	2.1.3 Connecting Bayesian Networks and Markov Networks

	2.2 Exact and Approximate Inference
	2.2.1 Belief Propagation
	2.2.2 Markov Chain Monte Carlo
	2.2.2.1 Metropolis Algorithm
	2.2.2.2 Metropolis-Hastings Algorithm
	2.2.2.3 Gibbs Sampling Algorithm

	2.2.3 Variational Methods

	2.3 3D Part-Based Shape Modeling with Spatial Latent Dirichlet Markov Random Fields

	3 Graph-Based Structured Output Learning
	3.1 Conditional Random Fields
	3.1.1 Maximum Likelihood Estimation
	3.1.2 Max-Margin Markov Networks
	3.1.3 Regularization as Maximum Entropy
	3.1.3.1 Maximum Entropy while Maximizing Margin
	3.1.3.2 Maximum Entropy within MAP Learning


	3.2 Training Undirected Graphical Models with Persistent Sequential Monte Carlo
	3.2.1 Training Conditional Random Fields for Image Annotation and Image Segmentation
	3.2.1.1 Multi-Label Learning
	3.2.1.2 Image Segmentation



	4 Kernel-Based Structured Output Learning
	4.1 Joint SVM
	4.1.1 Structural SVM for Multi-Label Learning
	4.1.2 Joint SVM: Output Kernel Learning and Regularization 

	4.2 Homogeneity Analysis for Object-Action Relation Learning
	4.3 Multi-Label Learning with Kernel Generalized Homogeneity Analysis

	5 Optimization on Structures
	5.1 Optimization on Graphs
	5.1.1 Max-product (Loopy) Belief Propagation
	5.1.2 Iterated Conditional Modes

	5.2 Optimization on Matrix Manifolds
	5.2.1 3D Point Cloud Registration with Optimization on SE(3) Manifold


	6 Conclusion
	Bibliography

