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Abstract Along with the popular use of algorithms such as persistent con-
trastive divergence (PCD), tempered transition and parallel tempering, the
past decade has witnessed a revival of learning undirected graphical models
(UGMs) with sampling-based approximations. In this paper, based upon the
analogy between Robbins-Monro’s stochastic approximation procedure and
sequential Monte Carlo (SMC), we analyze the strengths and limitations of
state-of-the-art learning algorithms from an SMC point of view. Moreover, we
apply the rationale further in sampling at each iteration, and propose to learn
UGMs using persistent sequential Monte Carlo (PSMC). The whole learning
procedure is based on the samples from a long, persistent sequence of distribu-
tions which are actively constructed. Compared to the above-mentioned algo-
rithms, one critical strength of PSMC-based learning is that it can explore the
sampling space more effectively. In particular, it is robust when learning rates
are large or model distributions are high-dimensional and thus multi-modal,
which often causes other algorithms to deteriorate. We tested PSMC learning,
comparing it with related methods, on carefully-designed experiments with
both synthetic and real-world data. Our empirical results demonstrate that
PSMC compares favorably with the state of the art by consistently yielding
the highest (or among the highest) likelihoods. We also evaluated PSMC on
two practical tasks, multi-label classification and image segmentation, in which
PSMC displays promising applicability by outperforming others.
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1 Introduction

Learning undirected graphical models (UGMs), e.g. Markov random fields
(MRFs) or conditional random fields (CRFs), has been an important yet chal-
lenging machine learning task. On the one hand, thanks to its flexible and pow-
erful capability in modeling complicated dependencies, UGMs are prevalently
used in many domains such as computer vision, natural language processing
and social analysis. Undoubtedly, it is of great significance to enable UGMs’
parameters to be automatically adjusted to fit empiric data, e.g. by maximum
likelihood (ML) learning. A fortunate property of the likelihood function is
that it is concave with respect to its parameters (Koller and Friedman, 2009),
and therefore gradient ascent can be applied to find the unique maximum. On
the other hand, learning UGMs via ML in general remains intractable due to
the presence of the partition function. Monte Carlo estimation is a principal
solution to the problem. For example, one can employ Markov chain Monte
Carlo (MCMC) to obtain samples from the model distribution, and approxi-
mate the partition function with the samples. However, the sampling proce-
dure of MCMC is very inefficient because it usually requires a large number of
steps for the Markov chain to reach equilibrium. Even though in some cases
where efficiency can be ignored, another weakness of MCMC estimation is that
it yields large estimation variances. A more practically-feasible alternative is
MCMC maximum likelihood (MCMCML; Geyer 1991); see section 2.1. MCM-
CML approximates the gradient of the partition function with importance
sampling, in which a proposal distribution is initialized to generate a fixed
set of MCMC samples. Although MCMCML increases efficiency by avoiding
MCMC sampling at every iteration, it also suffers from high variances (with
different initial proposal distributions). Hinton (2002) studied contrastive di-
vergence (CD) to replace the objective function of ML learning. This turned
out to be an efficient approximation of the likelihood gradient by running only
a few steps of Gibbs sampling, which greatly reduces variance as well as the
computational burden. However, it was pointed out that CD is a biased esti-
mation of ML (Carreira-Perpinan and Hinton, 2005), which prevents it from
being widely employed (Tieleman, 2008; Tieleman and Hinton, 2009; Des-
jardins et al., 2010). Later, a persistent version of CD (PCD) was put forward
as a closer approximation of the likelihood gradient (Tieleman, 2008). Instead
of running a few steps of Gibbs sampling from training data in CD, PCD main-
tains an almost persistent Markov chain throughout iterations by preserving
samples from the previous iteration, and using them as the initializations of
Gibbs samplers in the current iteration. When the learning rate is sufficiently
small, samples can be roughly considered as being generated from the station-
ary state of the Markov chain. However, one critical drawback in PCD is that
Gibbs sampling will generate highly correlated samples between consecutive
weight updates, so mixing will be poor before the model distribution gets up-
dated at each iteration. The limitations of PCD sparked many recent studies
of more sophisticated sampling strategies for effective exploration within data
space (section 3). For instance, Salakhutdinov (2010) studied tempered transi-
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tion (Neal, 1994) for learning UGMs. The strength of tempered transition is
that it can make potentially big transitions by going through a trajectory of
intermediary Gibbs samplers which are smoothed with different temperatures.
At the same time, parallel tempering, which can be considered a parallel ver-
sion of tempered transition, was used by Desjardins et al. (2010) for training
restricted Boltzmann machines (RBMs). Contrary to a single Markov chain in
PCD and tempered transition, parallel tempering maintains a pool of Markov
chains governed by different temperatures. Multiple tempered chains progress
in parallel and are mixed at each iteration by randomly swapping the states
of neighboring chains.

The contributions of this paper are twofold. The first is theoretic. By link-
ing Robbins-Monro’s stochastic approximation procedure (SAP; Robbins and
Monro 1951; Younes 1988) and sequential Monte Carlo (SMC), we cast PCD
and other state-of-the-art learning algorithms into a SMC-based interpretation
framework. Moreover, within the SMC-based interpretation, two key factors
which affect the performance of learning algorithms are disclosed: learning rate
and model complexity (section 4). Based on this rationale, the strengths and
limitations of different learning algorithms can be analyzed and understood in
a new light. This to some extent can be considered as an extension of the work
from Asuncion et al. (2010) with wider generalization and deeper exploita-
tion of the SMC interpretation of learning UGMs. The second contribution is
practical. Inspired by the understanding of learning UGMs from a SMC per-
spective, and the successes of global tempering used in parallel tempering and
tempered transition, we put forward a novel approximation-based algorithm,
persistent SMC (PSMC), to approach the ML solution in learning UGMs. The
basic idea is to construct a long, persistent distribution sequence by inserting
many tempered intermediary distributions between two successively updated
distributions (section 5). According to our empirical results on learning two
discrete UGMs (section 6), the proposed PSMC outperforms other learning
algorithms in challenging circumstances, i.e. large learning rates or large-scale
models.

2 Learning Undirected Graphical Models

In general, we can define undirected graphical models (UGMs) in an energy-
based form:

p(x;θ) =
exp (−E(x;θ))

Z(θ)
(1)

Energy function: E(x;θ) = −θ>φ(x) (2)

with random variables x = [x1, x2, . . . , xD] ∈ XD where xd can take Nd dis-
crete values, φ(x) is a K-dimensional vector of sufficient statistics, and pa-
rameter θ ∈ RK . Z(θ) =

∑
x exp(θ>φ(x)) is the partition function for global

normalization. Learning UGMs is usually done via maximum likelihood (ML).
A critical observation of UGMs’ likelihood functions is that they are concave
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with respect to θ; therefore any local maximum is also global maximum (Koller
and Friedman, 2009), and gradient ascent can be employed to find the optimal
θ∗. Given training data D = {x(m)}Mm=1, we can compute the derivative of the

average log-likelihood L(θ|D) = 1
M

∑M
m=1 log p(x(m);θ) as

∂L(θ|D)

∂θ
= ED(φ(x))︸ ︷︷ ︸

ψ+

−Eθ(φ(x))︸ ︷︷ ︸
ψ−

, (3)

where ED(ξ) is the expectation of ξ under the empirical data distribution

pD = 1
M

∑M
m=1 δ(x

(m)), while Eθ(ξ) is the expectation of ξ under the model
probability with parameter θ. The first term in (3), which is often referred to as
positive phase ψ+, can be easily computed as the average of the φ(x(m)),x(m) ∈
D. The second term in (3), also known as negative phase ψ−, however, is not

trivial because it is a sum of
∏D
d=1Nd terms, which is only computationally

feasible for UGMs of very small sizes. Markov chain Monte Carlo (MCMC)
can be employed to approximate ψ−, although it is usually expensive and
leads to large estimation variances. The underlying procedure of ML learning
with gradient ascent, according to (3), can be envisioned as a behavior that
iteratively pulls down the energy of the data space occupied by D (positive
phase), but raises the energy over the entire data space XD (negative phase),
until it reaches a balance (ψ+ = ψ−).

2.1 Markov Chain Monte Carlo Maximum Likelihood

A practically-feasible approximation of (3) is Markov chain Monte Carlo max-
imum likelihood (MCMCML; Geyer 1991). In MCMCML, a proposal distri-
bution p(x;θ0) is set up in the same form as (1) and (2), and we have

Z(θ)

Z(θ0)
=

∑
x exp(θ>φ(x))∑
x exp(θ>0 φ(x))

(4)

=

∑
x exp(θ>φ(x))

exp(θ>0 φ(x))
× exp(θ>0 φ(x))∑

x exp(θ>0 φ(x))
(5)

=
∑
x

exp
(
(θ − θ0)>φ(x)

)
p(x;θ0) (6)

≈ 1

S

S∑
s=1

w(s) (7)

where w(s) is

w(s) = exp
(

(θ − θ0)>φ(x̄(s))
)
, (8)

and the x̄(s) are sampled from the proposal distribution p(x;θ0). By substi-

tuting Z(θ) = Z(θ0) 1
S

∑S
s=1 w

(s) into (1) and the average log-likelihood, we
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Algorithm 1 MCMCML Learning Algorithm

Input: training data D = {x(m)}Mm=1; learning rate η; gap L between two successive
proposal distribution resets

1: t← 0, initialize the proposal distribution p(x; θ0)
2: while ! stop criterion do
3: if (t mod L) == 0 then
4: (Re)set the proposal distribution to p(x; θt)
5: Sample {x̄(s)} from p(x; θt)
6: end if
7: Calculate w(s) using (8)

8: Calculate gradient
∂L̃(θ|D)

∂θ
using (9)

9: update θt+1 = θt + η
∂L̃(θ|D)

∂θ
10: t← t+ 1
11: end while
Output: estimated parameters θ∗ = θt

can compute the corresponding gradient (noting that Z(θ0) will be eliminated
since it corresponds to a constant in the logarithm) as

∂L̃(θ|D)

∂θ
= ED(φ(x))− Eθ0

(φ(x)), (9)

where Eθ0
(ξ) is the expectation of ξ under a weighted empirical data distri-

bution pθ0 =
∑S
s=1 w

(s)δ(x̄(s))/
∑S
s=1 w

(s) with data sampled from p(x;θ0).
From (9), it can be seen that MCMCML does nothing more than an impor-
tance sampling estimation of ψ− in (3). MCMCML has the nice asymptotic
convergence property (Salakhutdinov, 2010) that it will converge to the exact
ML solution when the number of samples S goes to infinity. However, as an
inherent weakness of importance sampling, the performance of MCMCML in
practice highly depends on the choice of the proposal distribution, which re-
sults in large estimation variances. The phenomenon gets worse when it scales
up to high-dimensional models. One engineering trick to alleviate this pain is
to reset the proposal distribution, after a certain number of iterations, to the
recently updated estimation p(x;θestim) (Handcock et al., 2007). Pseudocode
of the MCMCML learning algorithm is presented in Algorithm 1.

3 State-of-the-art Learning Algorithms

Contrastive Divergence (CD) is an alternative objective function of likeli-
hood (Hinton, 2002), and turned out to be de facto a cheap and low-variance
approximation of the maximum likelihood (ML) solution. CD tries to minimize
the discrepancy between two Kullback-Leibler (KL) divergences, KL(p0|p∞θ )
and KL(pnθ |p∞θ ), where p0 = p(D;θ), pnθ = p(D̄n;θ) with D̄n denoting the data
sampled after n steps of Gibbs sampling with parameter θ, and p∞θ = p(D̄∞;θ)
with D̄∞ denoting the data sampled from the equilibrium of a Markov chain.
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Usually n = 1 is used, and correspondingly it is referred to as the CD-1 algo-
rithm. The negative gradient of CD-1 is

−
∂
(
CD1(D;θ)

)
∂θ

= ED(φ(x))− ED̄1
(φ(x)) (10)

where ED̄1
(ξ) is the expectation of ξ under the distribution p1

θ. The key advan-
tage of CD-1 is that it efficiently approximates ψ− in the likelihood gradient
(3) by running only one step of Gibbs sampling. While this local exploration
of sampling space can avoid large variances, CD-1 was theoretically (Carreira-
Perpinan and Hinton, 2005) and empirically (Tieleman, 2008; Tieleman and
Hinton, 2009; Desjardins et al., 2010) proved to be a biased estimation of ML.

Persistent Contrastive Divergence (PCD) is an extension of CD by
running a nearly persistent Markov chain. For approximating ψ− in the like-
lihood gradient (3), the samples at each iteration are retained as the initial-
ization of Gibbs sampling in the next iteration. The mechanism of PCD was
usually interpreted as a case of Robbins-Monro’s stochastic approximation pro-
cedure (SAP; Robbins and Monro 1951; Younes 1988) with Gibbs sampling as
transitions. In general SAP, if the learning rate η is sufficiently small compared
to the mixing rate of the Markov chain, the chain can be roughly considered
as staying close to the equilibrium distribution (i.e. PCD→ML when η → 0).
Nevertheless, Gibbs sampling as used in PCD heavily hinders the exploration
of data space by generating highly correlated samples along successive model
updates. This hindrance becomes more severe when the model distribution is
highly multi-modal. Although multiple chains (mini-batch learning) used in
PCD can mitigate the problem, we cannot generally expect the number of
chains to exceed the number of modes. Therefore, at later stages of learning,
PCD often gets stuck in a local optimum, and in practice, small and linearly-
decayed learning rates can improve the performance (Tieleman, 2008).

Tempered Transition was originally developed by Neal (1994) to gen-
erate relatively big jumps in Markov chains while keeping reasonably high
acceptance rates. Instead of standard Gibbs sampling used in PCD, tempered
transition constructs a sequence of Gibbs samplers based on the model distri-
bution specified with different temperatures:

ph(x;θ) =
exp(−E(x;θ)βh)

Z(h)
(11)

where h indexes temperatures h ∈ [0, H] and βH are inverse temperatures
0 ≤ βH < βH−1 < · · · < β0 = 1. In particular, β0 corresponds to the original
complex distribution. When h increases, the distribution becomes increasingly
flat, where Gibbs samplers can more adequately explore. In tempered transi-
tion, a sample is generated with a Gibbs sampler starting from the original
distribution. It then goes through a trajectory of Gibbs sampling through
sequentially tempered distributions (11). A backward trajectory is then run
until the sample reaches the original distribution. The acceptance of the final
sample is determined by the probability of the whole forward-and-backward
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Algorithm 2 SAP for learning UGMs

Input: training data D = {x(m)}Mm=1.
1: t← 0, initialize the proposal distribution p(x; θ0).

2: Randomly initialize S sample particles {x̄(s)
0 }Ss=1

3: while ! stop criterion do
4: for s=1:S do
5: evolve particle x̄

(s)
t to x̄

(s)
t+1 with a transition operator which leaves p(x; θt) invari-

ant
6: end for

7: Calculate gradient
∂L̃(θ|D)

∂θ
using (3)

8: update θt+1 = θt + ηt
∂L̃(θ|D)

∂θ
9: t← t+ 1, decrease learning rate ηt

10: end while
Output: estimated parameters θ∗ = θt

trajectory. If the trajectory is rejected, the sample does not move at all, which
is even worse than local movements of Gibbs sampling, so βH is set relatively
high (0.9 in Salakhutdinov 2010) to ensure high acceptance rates.

Parallel Tempering, on the other hand, is a “parallel” version of Tem-
pered Transition, in which smoothed distributions (11) are run with one step
of Gibbs sampling in parallel at each iteration. Thus, samples native to more
uniform chains will move with larger transitions, while samples native to the
original distribution still move locally. All chains are mixed by swapping sam-
ples of randomly selected neighboring chains. The probability of the swap is

r = exp
(
(βh − βh+1)(E(xh)− E(xh+1))

)
(12)

Although multiple Markov chains are maintained, only samples at the original
distribution are used. In the worst case (there is no swap between β0 and β1),
parallel tempering degrades to PCD-1. βH can be set arbitrarily low (0 was
used by Desjardins et al. 2010).

4 Learning as Sequential Monte Carlo

Before we delve into the analysis of different learning algorithms, it is
better to find a unified interpretation framework, within which the behaviors
of all algorithms can be more apparently viewed and compared in a consistent
way. In most previous work, PCD, tempered transition and parallel tempering
were studied as special cases of Robbins-Monro’s stochastic approximation
procedure (SAP; Younes 1988; Tieleman and Hinton 2009; Desjardins et al.
2010; Salakhutdinov 2010). A pseudocode of SAP is presented in Algorithm 2.
These studies focus on the interactions between the mixing of Markov chains
and distribution updates. However, we found that, since the model changes
at each iteration, the Markov chain is actually not subject to an invariant
distribution; the concept of the mixing of Markov chains is fairly subtle based
on SAP due to the time inhomogeneity.
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Asuncion et al. (2010) considered that PCD can be interpreted as a se-
quential Monte Carlo procedure by extending MCMCML to a particle filtered
version. To give an quick overview of sequential Monte Carlo More and how
it is related to learning UGMs, we first go back to Markov chain Monte Carlo
maximum likelihood (MCMCML; section 2.1) and examine it in an extreme
case. When the proposal distribution in MCMCML is reset at every iteration
as the previously updated estimation, i.e. L = 1 in Algorithm 1 and the pro-
posal distribution is left as p(x;θt−1) at the tth iteration, the weights will be
computed as w(s) = exp(θt − θt−1)>φ(x̄(s)). Since the parameters θ do not
change very much across iterations, it is not necessary to generate particles1

from proposal distributions at each iteration. Instead, a set of particles are
initially generated and reweighted sequentially for approximating the negative
phase. However, if the gap between two successive θ is relatively large, particles
will degenerate. Usually, the effective sampling size (ESS) can be computed
to measure the degeneracy of particles, so if ESS is smaller than a pre-defined
threshold, resampling and MCMC transition are necessary to recover from it.
The description above notably leads to particle filtered MCMCML (Asuncion
et al., 2010), which greatly outperforms MCMCML with a small amount of
extra computation.

More interestingly, it was pointed out that PCD also fits the above sequen-
tial Monte Carlo procedure: importance reweighting + resampling + MCMC
transition (Chopin, 2002; Del Moral et al., 2006). One property worth noting
is that PCD uses uniform weights for all particles and enforce a Gibbs sam-
pling as the MCMC transition. Here we extend this analogy further to general
Robbins-Monro’s SAP, into which tempered transition and parallel tempering
are also categorized, and write out a uniform interpretation framework of all
learning algorithms from SMC perspective (see Algorithm 3). Note that all
particle weights are uniformly assigned; resampling has no effect and can be
omitted. In addition, the MCMC transition step is forced to take place at
every iteration.

It is also worth noting that when applying algorithms in Algorithm 3, we
are not interested in particles from any individual target distribution (which
is usually the purpose of SMC). Instead, we want to obtain particles faithfully
sampled from all sequential distributions. In our case of learning UGMs, se-
quential distributions are learned by iterative updates. Therefore, learning and
sampling are intertwined. It can be easily imagined that one badly sampled
particle set at the tth iteration will lead to a biased incremental update ∆θt.
Consequently, the learning will go to a wrong direction even though the later
sampling is perfectly good. In other words, we are considering all sequentially
updated distributions p(x;θt) as our target distributions.

At the first sight of Algorithm 3, the SMC interpretation of learning UGMs
seems ad hoc and far-fetched since all particles are uniformly reweighted and
therefore no resampling. However, it can be argued that Algorithm 3 is a

1 From now on, we use “particles” to fit SMC terminology, it is equivalent to “samples”
unless mentioned otherwise.
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Algorithm 3 Interpreting Learning as SMC

Input: training data D = {x(m)}Mm=1; learning rate η
1: Initialize p(x; θ0), t← 0

2: Sample particles {x̄(s)
0 }Ss=1 ∼ p(x; θ0)

3: while ! stop criterion do
4: // importance reweighting

Assign w(s) ← 1
S
, ∀s ∈ S

5: // resampling is ignored because it has no effect

6: // MCMC transition

7: switch (algorithmic choice)
8: case CD:
9: generate a brand new particle set {x̄(s)

t+1}Ss=1 with one step of Gibbs sampling from
D

10: case PCD:
11: evolve particle set {x̄(s)

t }Ss=1 to {x̄(s)
t+1}Ss=1 with one step of Gibbs sampling

12: case Tempered Transition:

13: evolve particle set {x̄(s)
t }Ss=1 to {x̄(s)

t+1}Ss=1 with tempered transition
14: case Parallel Tempering:

15: evolve particle set {x̄(s)
t }Ss=1 to {x̄(s)

t+1}Ss=1 with parallel tempering
16: end switch
17: // update distribution

Compute the gradient ∆θt according to (3)
18: θt+1 = θt + η∆θt
19: t← t+ 1
20: end while
Output: estimated parameters θ∗ = θt

perfectly valid SMC procedure when |η∆θt| → 0 since all weights w(s) =

lim|η∆θt|→0
p(x̄

(s)
t ;θt)

p(x̄
(s)
t ;θt+η∆θt)

= 1. Therefore, the SMC interpretation scheme

holds when the gaps between successive distributions are relatively small. Or,
in other words, it is inappropriate to use uniform weights when the gaps are
large. By using uniform reweighting, the larger gaps exist between successive
distributions, the more badly the SMC scheme will be violated and therefore
the performance will be harmed. Obviously, one straightforward way to en-
sure good performance is to reduce gaps. This is consistent with SAP learning
framework where small learning rates are preferred. Meanwhile, by following
SMC thinking, another possible remedy is to use real importance reweighting
instead of the uniform one. Actually, this is the key advantageous property
of the SMC interpretation beyond the SAP one. A new avenue of approxi-
mate learning for UGMs is revealed, where many possible improvements can
be achieved by bring in state-of-the-art outcomes of SMC research. Particle
filtered MCMCML (Asuncion et al., 2010) and the novel method introduced
later are two successful examples under this consideration.

In addition, the gaps between successive distributions also matter in MCMC
transition. Within the SMC-based interpretation, we can see that the four
algorithms differ from each other at MCMC transitions, which is an impor-
tant component in SMC (Schäfer and Chopin, 2013). In PCD, a one-step
Gibbs sampler is used as MCMC transition. As for tempered transition, a
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Metropolis-Hastings (MH) move based on a forward-and-backward sequence
of Gibbs samplers of different temperatures is employed. Likewise, parallel
tempering also uses a MH move. This move is generated by swapping particles
native to the distributions of different temperatures. By contrast, in CD, a
brand new particle set is generated by running one-step Gibbs sampling from
training data, which is actually not a MCMC transition. When the learning
rate is small and two successive distributions are smooth (e.g. at the early
stage of learning or when the model is of low dimension), PCD, tempered
transition and parallel tempering can traverse the sampling space sufficiently
well. However, when the learning rate is large or two sequential distributions
exhibt multiple modes (e.g. at a late stage of learning or when the model is
high-dimensional), highly correlated particles from the one-step Gibbs sam-
pler’s local movement cannot go through the gap between two distributions.
Tempered transition and parallel tempering, instead, are more robust to the
large gap since it moves closer to the later distribution by making use of many
globally-tempered intermediary distributions. The worst case is CD, which
always samples particles within the vicinity of training data D. So it will even-
tually drop D down into an energy well surrounded by barriers set up by their
proximities.

Above all, since the update at each iteration is conducted as θt+1 = θt +
η∆θt, the gap between p(x;θt) and p(x;θt+1) can be intuitively understood
as the product of learning rate η and model complexity O(θ). Therefore, we
consider learning rate and model complexity2 are two key factors that challenge
learning algorithms. We can verify this argument by checking the Kullback-
Leibler divergence between p(x;θt) and p(x;θt+1):

KL(p(x; θt)||p(x; θt+1)) (13)

=
∑
x

p(x; θt) log
p(x; θt)

p(x; θt+1)
(14)

= Ep(x;θt)

[
log

(
exp(θ>t φ(x))

exp(θ>t φ(x) + η∆θ>t φ(x))
·
∑

x exp(θ>t φ(x) + η∆θ>t φ(x))∑
x exp(θ>t φ(x))

)]
(15)

= Ep(x;θt)

[
log
(

exp(−η∆θ>t φ(x)
)

+ log

(∑
x

(
exp(θ>t φ(x)) · exp(η∆θ>t φ(x))

)∑
x exp(θ>t φ(x))

)]
(16)

= Ep(x;θt)

[
−η∆θ>t φ(x) + log

(∑
x

( exp(θ>t φ(x))∑
x exp(θ>t φ(x))

exp(η∆θ>t φ(x))
))]

(17)

= Ep(x;θt)

[
−η∆θ>t φ(x)

]
+ Ep(x;θt)

[
log

(∑
x

p(x; θt) exp(η∆θ>t φ(x))

)]
(18)

= Ep(x;θt)

[
log
(
Ep(x;θt)

[
exp(η∆θ>t φ(x))

])]
− Ep(x;θt)

[
η∆θ>t φ(x)

]
(19)

= log
(
Ep(x;θt)

[
exp(η∆θ>t φ(x))

])
− Ep(x;θt)

[
η∆θ>t φ(x)

]
(20)

2 Here we consider the dimensionality of a distribution as its complexity, since high-
dimensional distributions can more easily establish multiple modes than low dimensional
ones.
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Based on Jensen’s inequality and concavity of log function:

log
(
Ep(x;θt)

[
exp(η∆θ>t φ(x))

])
≥ Ep(x;θt)

[
log
(

exp(η∆θ>t φ(x))
)]

= Ep(x;θt)

[
η∆θ>t φ(x)

] (21)

which leads to a trivial result from (20), i.e. non-negativity of Kullback-Leibler
divergence. Here, to investigate how learning rate and model complexity can
affect the Kullback-Leibler divergence, we will exploit an upper bound of
Jensen’s inequality (Dragomir, 1999-2000).

Theorem 1 (Dragomir, 1999-2000) X = {xi} is a finite sequence of real
numbers belonging to a fixed closed interval I = [a, b], a < b, and P = {pi},

∑
i pi =

1 is a sequence of positive weights associated with X. If f is a differentiable
convex function on I, then we have:∑

i

pif(xi)− f(
∑
i

pixi) ≤
1

4
(b− a)(f ′(b)− f ′(a)) (22)

Now we can write our result.

Corollary 1 In Algorithm 3, the upper bound of the Kullback-Leibler diver-
gence between successive distributions, i.e. p(x;θt) and p(x;θt+1) is monoton-
ically increasing with respect to learning rate η and model complexity O(θ).

Proof Let U = maxx{exp(η∆θ>t φ(x))} , L = minx{exp(η∆θ>t φ(x))}, then
substitute f, b, a in (22) with −log, U, L respectively:

log
(
Ep(x;θt)

[
exp(η∆θ>t φ(x))

])
− Ep(x;θt)

[
η∆θ>t φ(x)

]
≤ 1

4 (U − L)( 1
L −

1
U ) = 1

4 (UL + L
U − 2)

(23)

By combing (23) and (20),we have:

u {KL(p(x;θt)||p(x;θt+1))} =
1

4
g

(
U

L

)
− 1

2
(24)

where u{·} denotes upper bound, g(z) = z+ 1
z and it is monotonically increas-

ing when z ≥ 1. We can further denote ∆θ as

∆θ = |∆θ|e∆θ = e∆θ

O(θ)∑
i=1

|∆θi|2
1/2

(25)

where e∆θ is the unit vector of the same direction as ∆θ, ∆θi is the magnitude
of i−th dimensional gradient. Then (24) can be rewritten as:

u {KL(p(x;θt)||p(x;θt+1))} = 1
4g

[(
maxx{exp(e>∆θφ(x))}
minx{exp(e>∆θφ(x))}

)η(∑O(θ)
i=1 |∆θi|

2
)1/2]

− 1
2

(26)
Since h(z) = ωz is a monotonically increasing function when ω > 1. Therefore,
given fixed gradient magnitudes, it is obvious that u {KL(p(x;θt)||p(x;θt+1))}
is monotonically increasing with respect to η and O(θ). �
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5 Persistent Sequential Monte Carlo

It was explained that learning UGMs can be interpreted as a SMC procedure.
Within the SMC interpretation, it is quite clear that most existing methods
will deteriorate when learning rates or models’ complexities are high due to
uniform reweighing. A trivial yet novel cure is to employ importance weighting
to make it a real SMC.

In addition, here we propose to apply this rationale further in learning
UGMs with a deeper construction of sequential distributions. The basic idea
is very simple; given particles from p(x;θt), many sub-sequential distributions
are inserted to construct a sub-SMC for obtaining particles from p(x;θt+1).
Inspired by global tempering used in parallel tempering and tempered transi-
tion, we build sub-sequential distributions {ph(x;θt+1)}Hh=0 between p(x;θt)
and p(x;θt+1) as

ph(x;θt+1) ∝ p(x;θt)
1−βhp(x;θt+1)βh , (27)

where 0 ≤ β0 ≤ β1 ≤ · · · ≤ βH = 1. In this way, the length of the distribu-
tion sequence will be extended in SMC. In addition, obviously, pH(x;θt+1) =
p(x;θt+1) while p0(x;θt+1) = p(x;θt). Therefore, the whole learning can be
considered to be based on a long, persistent sequence of distributions, and
therefore the proposed algorithm is referred to as persistent SMC (PSMC).

An alternative understanding of PSMC can be based on using standard
SMC for sampling p(x;θt) at each iteration. In standard SMC, the sub-
sequential distributions are

ph(x;θt+1) ∝ p(x;θt+1)βh , (28)

where 0 ≤ β0 ≤ β1 ≤ · · · ≤ βH = 1. The schematic figures of standard SMC
and PSMC are presented in Figure 1 where we can see a prominent difference
between them, the continuity from p0(x;θt) to pH(x;θt+1). Intuitively, PSMC
can be seen as a linked version of SMC by connecting p0(x;θt) and pH(x;θt+1).

In addition, in our implementation of PSMC, to ensure adequate explo-
ration, only half of the particles from p0(x;θt) are preserved to the next iter-
ation; the other half of the particles are randomly initialized with a uniform
distribution UD (Figure 1(b)). These extra, uniform samples balance particle
degeneration and particle impoverishment, which is important in particular
when the distribution has many modes(Li et al., 2014).

One issue arising in PSMC is the number of βh, i.e. H, which is also a
problem in parallel tempering and tempered transition3. Here, we employed
the bidirectional searching method (Jasra et al., 2011). When we construct
sub-sequential distributions as (27), the importance weighting for each particle

3 Usually, there is no systematic way to determine the number of βh in parallel tempering
and tempered transition, and it is selected empirically.
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{x̄(s)}Ss=1 ∼ UD

p0(x;θt) p1(x;θt) · · · pH(x;θt)Iteration t:

{x̄(s)}Ss=1 ∼ UD

p0(x;θt+1) p1(x;θt+1) · · · pH(x;θt+1)Iteration t+ 1:

{x̄t,(s)}Ss=1 ∼ pH(x;θt)

{x̄t+1,(s)}Ss=1 ∼ pH(x;θt+1)

(a)

{x̄(s)}S/2s=1 ∼ UD {x̄t−1,(s)}S/2s=1 ∼ pH(x;θt−1)

p0(x;θt) p1(x;θt) · · · pH(x;θt)

{x̄(s)}S/2s=1 ∼ UD {x̄t,(s)}S/2s=1 ∼ pH(x;θt)

p0(x;θt+1) p1(x;θt+1) · · · pH(x;θt+1)

{x̄t+1,(s)}S/2s=1 ∼ pH(x;θt+1)

(b)

Fig. 1 Schematics of (a) standard sequential Monte Carlo and (b) persistent sequential
Monte Carlo for learning UGMs. Solid boxes denote sequential distributions and solid arrows
represent the move (resampling and MCMC transition) between successive distributions.
Dashed boxes are particle sets and dashed arrows mean feeding particles into a SMC or
sampling particles out of a distribution.

is

w(s) =
ph(x̄(s);θt+1)

ph−1(x̄(s);θt+1)

= exp
(
E(x̄(s);θt)

)−∆βh
exp

(
E(x̄(s);θt+1)

)∆βh
(29)

= exp
(

(E(x̄(s);θt+1)− E(x̄(s);θt))∆βh

)
(30)

where ∆βh is the step length from βh−1 to βh, i.e. ∆βh = βh+1 − βh. We can
also compute the ESS of a particle set as (Kong et al., 1994)

σ =

(∑S
s=1 w

(s)
)2

S
∑S
s=1 w

(s)2
∈
[

1

S
, 1

]
(31)

Based on (30) and (31), we can see that, when a particle set is given, ESS σ
is actually a function of ∆βh. Therefore, assuming that we set the threshold
on ESS as σ∗, we can then find the biggest ∆βh by using bidirectional search
(see Algorithm 4) . Usually a small particle set is used in learning (mini-batch
scheme), so it will be quick to compute ESS. Therefore, with a small amount
of extra computation, the gap between two successive βs and the length of
the distribution sequence in PSMC can be actively determined, which is a
great advantage over the manual tunning in parallel tempering and tempered
transition. It is worth reminding that usually uniform temperatures are used
in parallel tempering and tempered transition since the criterion for active
tempering in them is lacking. By integrating all pieces together, we can write
out a pseudo code of PSMC as in Algorithm 5.
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Algorithm 4 Finding ∆βh
Input: a particle set {x̄(s)}Ss=1, βh
1: l← 0, u← 1, α← 0.05
2: while |u− l| ≥ 0.005 and 1 ≥ u do
3: compute ESS σ by replacing ∆βh with α according to (31)
4: if σ < σ∗ then
5: u← α, α← (l + α)/2
6: else
7: l← α, α← (α+ u)/2
8: end if
9: end while
Output: Return ∆βh = min(α, 1− βh)

Algorithm 5 Learning with PSMC

Input: a particle set {x(m)}Mm=1, learning rate η
1: Initialize p(x; θ0), t← 0

2: Sample particles {x̄(s)
0 }Ss=1 ∼ p(x; θ0)

3: while ! stop criterion do
4: h← 0, β0 ← 1
5: while βh < 1 do
6: assign importance weights {w(s)}Ss=1 to particles according to (30)

7: resample particles based on {w(s)}Ss=1
8: compute the step length ∆βh according to Algorithm 4
9: βh+1 = βh +∆β

10: h← h+ 1
11: end while
12: Compute the gradient ∆θt according to (3)
13: θt+1 = θt + η∆θt
14: t← t+ 1
15: end while
Output: estimated parameters θ∗ = θt

6 Experiments

In our experiments, PCD, parallel tempering (PT), tempered transition (TT),
standard SMC and PSCM were empirically compared on 2 different discrete
UGMs, i.e. fully visible Boltzmann machines (VBMs) and restricted Boltz-
mann machines (RBMs). As we analyzed in section 4, large learning rate and
high model complexity are two main challenges for learning UGMs. There-
fore, two experiments were constructed to test the robustness of algorithms
to different learning rates and model complexities separately. On one hand,
one VBM was constructed with small size and tested with synthetic data. The
purpose of the small-scale VBM is to reduce the effect of model complexity.
In addition, the exact log-likelihood can be computed in this model. On the
other hand, two RMBs were used in our second experiment, one medium-
scale and the other large-scale. They were applied on a real-world database
MNIST4. In this experiment, the learning rate was set to be small to avoid
its effect. In both experiments, mini-batches of 200 data instances were used.

4 http://yann.lecun.com/exdb/mnist/index.html
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Fig. 2 performance of the algorithms with small learning rates. (a): log-likelihood vs. num-
ber of epochs; (b) and (c): the number of βs in PSMC and SMC at each iteration (blue)
and their mean values (red).

When PSMC and SMC were run, σ∗ = 0.9 was used as the threshold of ESS.
We recorded the number of βs at each iteration in PSMC, and computed the
average value H. In order to ensure fairness of the comparison, we offset the
computation of different algorithms. In PT, Hβs were uniformly assigned be-
tween 0 and 1. In TT, similarly, H βs were uniformly distributed in the range
[0.9, 1]5. Two PCD algorithms were implemented, one is with one-step Gibbs
sampling (PCD-1) and the other is with H-step Gibbs sampling (PCD-H).
In the second experiment, the computation of log-likelihoods is intractable, so
here we employed an annealing importance sampling (AIS)-based estimation
proposed by Salakhutdinov and Murray (2008). All methods were run on the
same hardware and experimental conditions unless otherwise mentioned.

6.1 Experiments with Different Learning Rates

A Boltzmann machine is a kind of stochastic recurrent neural network with
fully connected variables. Each variable takes a binary value x ∈ {−1,+1}D.
Using the energy representation (2), parameters θ correspond to {W ∈ RD×D,b ∈
RD×1} and φ(x) = {xx>,x}. Here we used a fully visible Boltzmann machine
(VBM), and computed the log-likelihood to quantify performance. In this ex-
periment, a small-size VBM with only 10 variables is used to avoid the effect of
model complexity. For simplicity, Wiji,j∈[1,10] were randomly generated from an

identical distribution N (0, 1), and 200 training data instances were sampled.
Here we tested all learning algorithms with 3 different learning rate schemes:

(1) ηt = 1
100+t , (2) ηt = 1

20+0.5×t , (3) ηt = 1
10+0.1×t . The learning rates in the

three schemes were at different magnitude levels. The first one is smallest, the
second is intermediate and the last one is relative large.

For the first scheme, 500 epochs were run, and the log-likelihood vs. number
of epochs plots of different learning algorithms are presented in Figure 2(a).

5 In our experiment, we used a TT similar to what used by Salakhutdinov (2010) by
alternating between one Gibbs sampling and one tempered transition.
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Fig. 3 Performance of the algorithms with intermediate learning rates. (a): log-likelihood
vs. number of epochs; (b) and (c): the number of βs in PSMC and SMC at each iteration
(blue) and their mean values (red).
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Fig. 4 Performance of the algorithms with large learning rates. (a): log-likelihood vs. num-
ber of epochs; (b) and (c): the number of βs in PSMC and SMC at each iteration (blue)
and their mean values (red).

The number of βs in PSMC and SMC are also plotted in Figures 2(b) and
2(c) respectively. We can see that the mean value H in PSMC is around 10,
which is slightly higher than the one in SMC. For the second and third learning
rate schemes, we ran 100 and 40 epochs respectively. All algorithms’ perfor-
mances are shown in Figure 3(a) and 4(a). We found that the number of βs
in PSMC and SMC are very similar to those of the first scheme (Figures 3(b),
3(c), 4(b) and 4(c)). For all three schemes, 5 trials were run with different ini-
tial parameters, and the results are presented with mean values (curves) and
standard deviations (error bars). In addition, maximum likelihood (ML) solu-
tions were obtained by computing exact gradients (3). For better quantitative
comparison, the average log-likelihoods based on the parameters learned from
six algorithms and three learning rate schemes are listed in the upper part of
Table 1.

The results of the first experiment can be summarized as follows:

1. When the learning rate was small, PT, TT, SMC, PSMC and PCD-10
worked similarly well, outperforming PCD-1 by a large margin.
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Models (Avg.) Log-Likelihoods

(Size) Learning rate schemes PCD-1 PCD-H PT TT SMC PSMC

VBM ηt = 1
100+t -1.693 -1.691 −1.689 -1.692 -1.692 -1.691

(15) ηt = 1
20+0.5×t -7.046 -2.612 -1.995 -2.227 -2.069 −1.891

ηt = 1
10+0.1×t -25.179 -3.714 -2.118 -4.329 -2.224 −1.976

MNIST

RBM training data -206.3846 -203.5884 206.2819 -206.9033 -203.3672 −199.9089
(784× 10) testing data -207.7464 -204.6717 206.2819 -208.2452 -204.4852 −201.0794

RBM training data -176.3767 -173.0064 -165.2149 -170.9312 -678.6464 −161.6231
(784× 500) testing data -177.0584 -173.4998 -166.1645 -171.6008 -678.7835 −162.1705

Table 1 Comparison of Avg.log-likelihoods with parameters learned from different learning
algorithms and conditions.
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Fig. 5 Performance of the algorithms on the medium-scale RBM. (a): log-likelihood vs.
number of epochs for both training images (left) and testing images (right) in the MNIST
database; (b) and (c): the number of βs in PSMC and SMC at each iteration (blue) and
their mean values (red).

2. When the learning rate was intermediate, PT and PSMC still worked suc-
cessfully, which were closely followed by SMC. TT and PCD-10 deterio-
rated, while PCD-1 absolutely failed.

3. When the learning rate grew relatively large, the fluctuation patterns were
obvious in all algorithms. Meanwhile, the performance gaps between PSMC
and other algorithms was larger. In particular, TT and PCD-10 deterio-
rated very much. Since PCD-1 failed even worse in this case, its results are
not plotted in Figure 4(a).

6.2 Experiments with Models of Different Complexities

In our second experiment, we used the popular restricted Boltzmann machine
to model handwritten digit images (with the MNIST database). RBM is a
bipartite Markov network consisting of a visible layer and a hidden layer. It
is a “restricted” version of Boltzmann machine with interconnections only
between the hidden layer and the visible layer. Assuming that the input data
are binary and Nv-dimensional, each data point is fed into the Nv units of the
visible layer v, and Nh units in hidden layer h are also stochastically binary
variables (latent features). Usually, {0, 1} is used to represent binary values
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Fig. 6 Performance of the algorithms on the large-scale RBM. (a): log-likelihood vs. number
of epochs for both training images (left) and testing images (right) in the MNIST database;
(b) and (c): the number of βs in PSMC and SMC at each iteration (blue) and their mean
values (red).

in RBMs to indicate the activations of units.The energy function E(v,h) is
defined as E(v,h) = −v>Wh−h>b−v>c, where W ∈ RNv×Nh , b ∈ RNv×1

and c ∈ RNh×1. Although there are hidden variables in the energy function,
the gradient of the likelihood function can be written in a form similar to (3)
(Hinton, 2002). Images in the MNIST database are 28×28 handwritten digits,
i.e. Nv=784. To avoid the effect of learning rate, in this experiment, a small
learning rate scheme ηt = 1

100+t was used and 1000 epochs were run in all
learning algorithms. Two RBMs were constructed for testing the robustness
of learning algorithms to model complexity, one medium-scale with 10 hidden
variables (i.e. W ∈ R784×10), the other large-scale with 500 hidden variables
(i.e. W ∈ R784×500)6. Similarly to the first experiment, we first ran PSMC
and SMC, and recorded the number of triggered βs at each iteration and their
mean values (Figure 5(b), 5(c), 6(b) and 6(c)). For the medium-scale model,
the number of βs in PSMC and SMC are similar (around 100). However, for
the large-scale model, the mean value of |{β0, β1, · · · }| is 9.6 in SMC and 159
in PSMC. The reason for this dramatic change in SMC is that all 200 particles
initialized from the uniform distribution were depleted when the distribution
gets extremely complex. For other learning algorithms, H was set 100 and
200 in the medium- and large-scale cases, respectively. Since there are 60000
training images and 10000 testing images in the MNIST database, we plotted
both training-data log-likelihoods and testing-data log-likelihoods as learning
progressed (see Figure 5(a) and 6(a)). More detailed quantitative comparison
can be seen in the lower part of Table 1. Similarly, we conclude the results of
the second experiments as follows:

1. When the scale of RBM was medium, PSMC worked best by reaching the
highest training-data and testing-data log-likelihoods. SMC and PCD-100
arrived the second highest log-likelihoods, although SMC converged much
faster than PCD-100. PT, TT and PCD-1 led to the lowest log-likelihoods
although PT and TT raised log-likelihoods more quickly than PCD-1.

6 Since a small-scale model was already tested in the first experiment, we did not repeat
it here.
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2. When the scale of RBM was large, all algorithms displayed fluctuation pat-
terns. Meanwhile, PSMC still worked better than others by obtaining the
highest log-likelihoods. PT ranked second, and TT ranked third, which was
slightly better than PCD-200. PCD-1 ranked last. SMC failed in learning
the large-scale RBM, so its results are not presented in Figure 6(a).

7 Real-world Applications

In this section we present some evaluations and comparisons of different learn-
ing algorithms on two practical tasks: multi-label classification and image seg-
mentation. Different from previous experiments where generative models were
learned, here we trained discriminative models. Therefore, two conditional ran-
dom fields (CRFs) were employed. Generally speaking, let us denote x as input
and y ∈ Y as output, and our target is to learn an UGM:

p(y|x) =
exp(θ>φ(y,x))

Z
(32)

where the partition function Z is

Z =
∑
y∈Y

exp(θ>φ(y,x)) (33)

where φ(y,x) is defined based on task-oriented dependency structure. Note
that the partition function Z is computed by marginalizing out only y because
our interest is a conditional distribution. Six algorithms were implemented:
PCD-H, PCD-1, PT, TT, SMC and PSMC. Similar setups were used for all
algorithms as the previous section. Learning rate ηt = 1

10+0.1∗t was used and
100 iterations were run. Different from generative models, learning CRFs needs
to compute gradient on individual input-output-pair. For each input x, the size
of particle set {ŷ(s)} is 200. Similar to other supervised learning schemes, a
regularization 1

2 ||θ||
2 was added and a trade-off parameters was tuned via

k-fold cross-validation (k = 4).
It is worth mentioning that better results can be expected in both exper-

iments by running more iterations, using better learning rates or exploiting
feature engineering. However, our purpose here is to compare different learning
algorithms under the same conditions rather than improving state-of-the-art
results in multi-label classification and image segmentation respectively.

7.1 Multi-Label classification

In multi-label classification, inter-label dependency is rather critical. Assume
that input x ∈ Rd and there are L labels (i.e. y ∈ {−1,+1}L), here we mod-
eled all pairwise dependencies among L labels, and therefore the constructed
conditional random field is

p(y|x) =
exp(y>WEy + y>Wvx)

Z
, (34)
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Precision(%) Recall(%) F1(%)
PCD-1 57.7 59.3 58.5
PCD-5 70.3 72.6 71.4

TT 70.0 67.5 68.7
PT 72.2 77.1 74.6

SMC 71.7 75.1 73.4
PSMC 71.9 78.5 75.1

Table 2 A comparison of six learning algorithms on the multi-label classification task.

where WE ∈ RL×L captures pairwise dependencies among L labels while
Wv ∈ RL×d reflects the dependencies between input x and all individual
labels. In the test phase, with learned WE and Wv, for a test input x†, we
predict the corresponding y† with 100 rounds of Gibbs sampling based on
(34).

In our experiment, we used the popular scene database (Boutell et al.,
2004), where scene images are associated with a few semantic labels. In the
database, there are 1121 training instances and 1196 test instances. In total
there are 6 labels (L = 6) and a 294-dimensional feature vector was extracted
from each image (x ∈ R294). Readers are referred to Boutell et al. (2004) for
more details about the database and feature extraction.

We evaluated the performance of multi-label classification using precision
(P), recall (R), and the F1 measure (F). For each label, the precision is com-
puted as the ratio of the number of images assigned the label correctly over
the total number of images predicted to have the label, while the recall is the
number of images assigned the label correctly divided by the number of images
that truly have the label. Then precision and recall are averaged across all la-
bels. Finally, the F1 measure is calculated as F = 2P×RP+R . The results of all six
algorithms are presented in Table 7.1. The average number of temperatures
in PSMC is around 5, so PCD-5 was implemented. Also 5 temperatures were
used in PT and TT. We can see that PSMC yields the best F1 measure of
75.1, followed by PT and SMC with 74.6 and 73.4 respectively. The results of
PCD-5 and TT are relative worse, while PCD-1 is the worst.

7.2 Image Segmentation

Image segmentation essentially is a task to predict the semantic labels of all
image pixels or blocks. Inter-label dependencies within a neighborhood are
usually exploited in image segmentation. For instance, by dividing an image
into equal-size and non-overlapping blocks, the label of a block depends not
only on the appearance of the block, but also on the labels of its neighbor-
ing blocks. For simplicity, here we only consider binary labels. In addition,
we assume that blocks and inter-label dependencies are position invariant.
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Therefore, a conditional random filed can be constructed as

p(y|x) =
exp(

∑
u,v∈E yuWeyv +

∑
v∈V yvw

>
v xv)

Z
, (35)

where yv ∈ {−1,+1}, E denotes the set of all edges connecting neighboring
blocks, We ∈ R encodes the dependency between neighboring labels, V denotes
the set of all block’s labels, and wv ∈ Rd×1 encodes the dependency between
block label and its appearance which is represented by a d-dimensional feature
xv ∈ Rd. Similarly to the multi-label classification experiment, desired labels
are predicted via 100 rounds of Gibbs sampling in the test phase.

In our experiment, we used the binary segmentation database from Kumar
and Hebert (2003), where each image is divided into non-overlapping blocks
of size 16× 16 and each block is annotated with either “man-made structure”
(MS) or “nature structure” (NS). Overall, there are 108 training images and
129 test images. The training set contains 3004 MS blocks and 36269 NS
blocks, while the test set contains 6372 MS blocks and 43164 NS blocks. Each
block’s appearance is represented by a 3-dimensional feature which includes the
mean of gradient magnitude, the ‘spikeness’ of the count-weighted histogram
of gradient orientations, and the angle between the most frequent orientation
and the second most frequent orientation. The feature was designed to fit this
specific application. More explanation of the database and its feature design
can be found in Kumar and Hebert (2003).

We found that the average number of temperatures in PSMC is 20; there-
fore PCD-20 was run and 20 temperatures were used in TT and PT. We
quantify the segmentation performance of six algorithms with confusion ma-
trices, which are presented in Figure 7. We can see that PSMC outperforms
all others (by checking the diagonal entries of confusion matrices). For qual-
itative comparison, an example image and corresponding segmentations are
shown in Figure 8. It can be seen that the segmentation by PSMC is closer to
the ground truth compared to the others.

8 Conclusion

A SMC interpretation framework of learning UGMs was presented, within
which two main challenges of the learning task were disclosed as well: large
learning rate and high model complexity. Then, a persistent SMC (PSMC)
learning algorithm was developed by applying SMC more deeply in learn-
ing. According to our experimental results, the proposed PSMC algorithm
demonstrates promising stability and robustness in various challenging cir-
cumstances with comparison to state-of-the-art methods. Meanwhile, there
still exist much room for improvement of PSMC, e.g. using adaptive MCMC
transition (Schäfer and Chopin, 2013; Jasra et al., 2011). In addition, as we
pointed out earlier, bring learning UGMs under SMC thinking makes it possi-
ble to leverage research outcomes from SMC community, which suggests many
possible directions for future work.
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Fig. 7 Confusion matrices of binary segmentation by six algorithms.

Another research brunch of approximately learning UGMs or estimating
partition function is variational principle (Wainwright and Jordan, 2008). Dif-
ferent from sampling-based method, variational methods approximate log par-
tition function with mean filed theory free energy or Bethe free enegry. These
methods are usually preferred to sampling-based methods because of bet-
ter efficiency. In particular, dual decomposition techniques (Schwing et al.,
2011) can make computation parallel. However, the applicabilities of varia-
tional methods are rather limited, e.g. they are only guaranteed to work well
for tree-structured graphs. Even though some progresses were made to handle
densely-connected graphs, they are still restricted to the higher-order poten-
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tials of certain specific form, e.g. a function of the cardinality (Li et al., 2013)
or piece-wise linear potentials (Kohli et al., 2009). By contrast, sampling-
based methods are more general since they can work on arbitrary UGMs
given enough computation resources. In addition, with the development of
parallelization of sampling methods (Vergé et al., 2015), it is also possible to
employ distributed computing to boost the efficiency of sampling-based meth-
ods. After all, as two research streams of approximate learning or inference, so
far there can be no quick conclusion on which one is superior to the other. In-
stead, it will be more interesting and meaningful to investigate the connection
between these two directions, which was lightly touched in Yuille (2011).
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Fig. 8 An example image and corresponding segmentations by six algorithms. Regions
within white boxes are predicted as “man-made structures” while the remaining are “nature
structures”.
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