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Abstract. The state-of-the-art of deep learning models is becoming
useful in real-world tasks such as disassembly of electronic devices by
robotic manipulation. We have previously proposed a visual intelligence
scheme to automate the robotic disassembly of computer hard drives.
This extended paper addresses the remaining problems during the scene
analysis, such as encountering various screw types and wires. We pro-
pose an extension to our previously published visual scheme for dis-
assembly of devices by robotic manipulation and implement additional
supervised learning modules that utilize state-of-the-art deep learning
models to solve the remaining significant problems. We evaluate these
models individually and also evaluate the extended scheme’s capabilities
on a completely unseen device (a graphical processing unit), to evaluate
the schemes generalization capability. To our knowledge, this is the first
scheme to address the entire disassembly process of the chosen device
including various screw types and wires.

Keywords: Wire Detection, Screw Classification, Automation, E-Waste,
Recycling

1 Introduction

Due to the latest developments in information technology, the volume of obso-
lete electronic devices (e-waste) is growing. The composition of these products
raise two main issues: firstly, electronic products (such as mobile phones, com-
puters and televisions) contain heavy metals such as Mercury or Beryllium. The
exposure of humans to these elements (e.g., destructive disassembly routines)
have the potential to cause cancer [45] or pollute the environment. Secondly,
electronic products contain precious materials in higher proportion than natural
ore deposits (e.g. 100 times more gold in a tonne of discarded mobile phones
than in a tonne of gold ore [40]). The destructive recycling process causes both
health and economical dangers and thus there are both health and economical
reasons to improve automation of the disassembly and recycling processes.
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E-waste disassembly represents an interesting application for autonomous
robotics: it is desirable to automate it due to the tedious repetitive actions re-
quired from the operator; but there is a high variability of devices or shapes
within a category of devices. The latter should be addressed by using a visual
scheme in such a system. This means recognizing visually slightly different de-
vices of the same category (e.g. mobile phones) as well as generalizing the learned
knowledge to unknown devices, provided similar physical features are present.
In [46] we proposed a visual scheme to analyse computer hard drives (HDD)
and produce a representation that can be used to disassemble them. However, it
has some limitations: wires can not be detected; only the type of screws used in
HDDs is detected (e.g., Torx). In this work, we address two problems: extend-
ing the detection capabilities of the system and assessing its ability to generalize
to other devices (e.g., graphics processing units, GPUs). For the first problem,
we introduce two modules (wire detection & screw classification) as well as a
bookkeeping mechanism to better track the disassembly status and confirm re-
moved, moved or introduced parts. For the second problem, we evaluate the
performance of the system given various levels of retraining on new data. This
paper is organized as follows: Section 2 gives a review of the literature on visual
intelligence schemes, Section 3 presents our extended approach in detail, Section
5 presents the evaluation of the schemes capabilities on the unknown device.
Finally, section 6 discusses the impact of these results and concludes.

2 Related work

Computer vision methods have already been used to automate certain processes
in industrial applications in the past decades [2,29]. There is, however, a lack of
vision-guided automated recycling. To use robotic manipulation in this scenario
certain entities of the device (e.g., wire, screw, part) need to be identified with
high accuracy. Early works show that the uncertainty problem at the operational
level can be solved by an integrated sensory approach. Gil et al. [12] implemented
a multi-sensorial system that combines information from a tactile sensor and a
vision system in order to perform visual-servoing of the robot. The conceptual
test was conducted by removing a bolt from a straight slot. They also worked
on detecting partial occlusions of components using vision to simplify the disas-
sembly task [13]. The conceptual test for this system was the detection of circuit
boards.

In a 2006 survey [42], Weigl-Seitz et al. list a number of limitations found in
the literature: the lack of datasets for the required tasks, the inability of existing
schemes to account for more than certain number of devices and that algorithms
employed were mostly inspired by classical computer vision methods with no
online learning paradigm involved.

In the last decade, however, there have been plenty of works [2,39,1] focusing
on detecting certain types of parts, such as screws and bolts. Most of these works
either achieved only prohibitively low accuracy or they were only usable for a
very narrow set of entities (e.g., only one type/size of screw). There have also
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been model-based methods [9,43,39,30,38,37] that were solving the problem for
a specific model of screws or bolts found in/over a specific device model such as
an electric motor. However, as stated in our previous work [46], assuming models
of the parts to detect are available limits strongly the adaptability of the visual
scheme as the variety of brands and models per device increase exponential the
number of different models required. Finally, a visual scheme specifically trained
for a device or a part type is also limited as the recycling disassembly process
includes various type of devices. The most notable effort came in 2018 where
Jahanian et al. [20] showed the disassembly of mobile phones using state-of-
the-art segmentation networks. The prototype, however, was limited to work
with a very limited set of mobile phones from a limited set of manufacturers.
Our previous work [46] also partially suffer from this limitation as it is trained
only on HDD data. This reduces the general application of these works in real
recycling plants.

In addition, the original pipeline we proposed had three structural limita-
tions: first, its inability to classify the type of detected screws causes problems
on devices that contain more than one type of screw. Second, the pipeline has
no means of handling wires, which is major issue as parts connected via wire
can not be taken out of the device individually. Finally, the original pipeline
has no awareness of its disassembly state. Thus when a part grabbed by the
robot’s gripper is dropped back into the scene due to a manipulation problem,
the system does not know if it is the same part or not, preventing the rest of the
system to evaluate the effect of the manipulation. The system needs to know on
the next analysis step, that a part was moved, removed or re-introduced back
into the scene.

Thus, current methods lack generalization capabilities, device and environment-
independence, fault-tolerance to be used in robotic disassembly processes which
involve a great degree of variance in parts. We showed that Deep Convolutional
Neural Networks (DCNN) offer a powerful solution to analyze the inner struc-
ture of devices in the context of disassembly [47,46]. We further extend the
capabilities of the scheme by adding two new DCNN-powered modules. More-
over, we make the extended pipeline fault-tolerant against manipulation errors
to some degree. Last but not least, the proposed methods are CAD model-free,
making the scheme independent of specific devices and parts. Instead, DCNNs
learn to extract relevant features of the device entities (e.g., screws, wires), ab-
stracting from manufacturing details specific to the device. End-of-Life (EOL)
devices that belong to a family usually include similar entities (e.g., parts, wires,
screws). Focusing on features common to these entities by employing the deep
learning paradigm leads to reproducible and generalizable outputs that can be
used for other devices as well.

Thus, the problem of extending the original visual intelligence scheme can be
formulated as a problem where machine learning paradigms (e.g., segmentation,
classification) are used in order to detect and classify the present entities of the
target device, such as wires and screws, respectively. In contrast to the original
scheme, the extended scheme satisfies the following requirements:
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– Classification should be able to handle great variety screws types/sizes.
– Segmentation should not be affected by the great variety of physical features

(e.g., color, shape) among wires.
– Moving, removing or introducing a detected part in the scene must be reg-

istered by comparing the consecutive analyses.

As we also mentioned in our original publication, many recent works [23,5,27,11,24,8]
have addressed the semantic segmentation problem or pixel-wise classification
problem in various domains ranging from autonomous driving to biomedical im-
agery.

Aforementioned work in 2018 [20] and our original visual intelligence scheme [46]
are amongst the first works to utilize state-of-the-art deep learning methods, in
particular convolutional networks [22] in the context automated recycling of
E-Waste. Previously mentioned works preferred to use the family of R-CNN
networks [15,14,31] that have been evolving recently. One of the latest R-CNN
models by the time the works were published, is Mask-RCNN [16] which is based
on the Feature Pyramid Network (FPN) [25].

Although Mask-RCNN and its ensembled models were the state of the art
for instance segmentation for a while, they were outperformed by recently devel-
oped EfficientNets [36] models. These networks achieve much better accuracy
and efficiency than previous convolutional neural networks. In particular, the
EfficientNetB7, which forms the basis of our wire detection module, achieves
state-of-the-art 84.3% top-1 accuracy on ImageNet. According to the authors,
the networks are 8.4x smaller and inference is 6.1x faster than the best existing
convolutional neural networks. It has also been shown that they transfer well
and achieve state-of-the-art accuracy on CIFAR-100 (91.7%), Flowers (98.8%),
and 3 other transfer learning datasets. We therefore base our modules on this
family.

3 Methods

On request the extended visual scheme provides an analysis of the scene with the
predictions of 4 modules: a part detection module, a screw classification module,
a gap detection module and a wire detection module. The screw detection module
of the original pipeline has been extended to a screw classification module that
classifies the detected screws according to their type and size information. The
wire detection module is employed to recognize any kind of visible wires and
cables that can be found inside or around the device. Finally, a bookkeeping
mechanism is in place to register every change between to consecutive frames.
This is required to keep track of the disassembly sequence, as well as to gain a
certain degree of fault recovery. The pseudo code for the extended pipeline is
given in algorithm 1.

As mentioned earlier, the analysis of wires is a semantic segmentation prob-
lem. However, detecting the screw type and size a typical classification problem:
image based classification of type and size with a deep convolutional neural net-
work. Both problems are challenging. Wires can be any color and can occur in
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Algorithm 1 Extended Perception Pipeline
1: cp, bp,mp := [] . part centers, boundaries, masks
2: cs, bs,ms := [] . screw type/size, centers, boundaries, masks
3: cg, bg, vg := [] . gap centers, boundaries, volumes
4: cw, bw, vw := [] . wire centers, boundaries, masks
5: I, P := NULL . I: Input Monocular Image, P: Input Pointcloud
6: Cm, Cs := NULL . Cm: Monocular Calibration Info, Cs: Stereo Calibration Info
7: predicates= []
8: procedure Collect Predicates
9: if hddTable.State()= 0 then
10: hddTable.changeState(angle=θStereo)
11: P ← getPointcloud(P )
12: if P 6= NULL then
13: cg, bg, vg ← detectGaps(P )
14: hddTable.changeState(angle=θMonocular)
15: I ← getRGBImage(I)
16: if I 6= NULL & hddTable.State() = 0 then
17: cp, bp,mp ← segmentParts(I)
18: cw, bw,mw ← segmentWires(I)
19: cs, bs,ms ← detectAndClassifyScrews(I)
20: Cm, Cs ← getCalibrationInfo()
21: predicates ← mergeAllInfo( I, P, Cm, Cs, cp,
22: bp,mp, ts, cs, bs,ms, cg, bg, vg, cw, bw,mw)
23: bookkeep(I, predicates)
24: return predicates

many shapes, including tangled wires. On top of that, there is no fixed back-
ground for wires to be used. They can be found inside or at the backside of the
devices, over varying surfaces. Screws, on the other hand, are another challenge
due to the high similarity between same type screws varying only in size (e.g.,
Torx6 and Torx7, Philips1 and Philips2). The proposed modules account for
aforementioned difficulties, and execute their tasks with high accuracy.

3.1 Datasets

Datasets are at the core of any machine learning endeavour, as supervised or
unsupervised machine learning algorithms heavily depend on the data available.
This fact aside, even without any machine learning involved, ground truth data
is required for future evaluation of any employed algorithm. In order to train the
new modules of our extended pipeline, we collect and create datasets for screws
and wires.

Screws are common assembling entities in electronics EOL device. Their re-
moval is paramount to disassemble devices and access inner areas and hidden
parts. A non-detected screw may hinder the entire disassembly sequence as it
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creates constraints between parts. Not only should screws be correctly detected,
but their type must be classified so that the correct tool is selected to interacted
with them.

Since we base our screw classification module on a published work [48], we
use the same dataset. It was observed that most of the EOL devices considered
have a certain set of screws. 12 types of screws are therefore considered: Torx 6,
7, 8, 9, Allen 2.5, 2.75, 4, Slotted 4, 6.5, 10 and Phillips 1, 2. Note that the length
of the thread is irrelevant for the perception block, as they are always occluded.
Therefore, any vision routine only considers the head part of the screws. Figure 1
illustrates samples from every type and size considered. In order to address
detection and classification purposes, we found that 20000 positive images of
screw heads are sufficient.
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Fig. 1: Various screw types encountered during the disassembly of EOL devices,
Yildiz et al.[48].

Note that the screw classification dataset does not require any negative sam-
ples, since the original pipeline already has a screw detection module, which
operates to separate artefacts from screws. Therefore, it was sufficient to include
the positive samples to the screw detection dataset. It must be kept in mind
that in order to classify any screw, detection of that screw has to be done first.
Therefore, every positive sample in the screw classification dataset, exists in the
screw detection dataset as well.

All of the illustrated images were collected using the setup presented in the
original paper. However, in order to account for the great variance in the dataset,
the images were collected under slightly different light conditions. They were
collected by the screw classification module’s offline mode that was introduced
in the original paper.
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Wires unlike screws, do not have specific shapes (e.g., circular), making them
only suitable for pixel-wise segmentation schemes. They might only appear as
discontinuous segments due to occlusion in EOL devices and can be of any color.
It is safe to assume that wires are the most varying entity in this domain. This
makes it very difficult or even impossible to find a dedicated dataset for specific
visual tasks to detect wires. Hence, one is forced to deal with limited number of
annotated training samples.

3.2 Wire Segmentation

Wire detection is not a commonly studied problem in the literature. There are
few notable works: The work by Madaan et al.[28] grabbed our attention, and
was built on the work presented by Kasturi et al. [21], aiming to find wires in
aerial navigation. This work is interesting because it is the first work to use
convolutional neural networks in order to address the wire detection problem.
The authors render synthetic wires using a ray tracing engine, and overlay them
on 67K images from flight videos available on the internet. This synthetic dataset
is used for pre-training the models before fine-tuning on real data. The work
achieved 73% of precision, however, it suffers from the fact that the dataset
generation requires expert knowledge in ray tracing engines. Many times these
programs are not straightforward to use, making methods based on them less
desirable. Additionally, the dependency on specific software, might render the
data generation impossible as the required software may become unavailable in
the future. The work nevertheless investigates available network architectures
that could be used to detect wires, hence, it plays an important role in this
research field. The authors report that dilated convolutional layers [49] were
chosen since they provide a simple and effective way to gather context without
reducing feature map size.

User
DCNN-Based Wire Detector

Limited 
Annotated 

Data

Prediction

Fig. 2: We present a DCNN-Based wire detector scheme that requires limited
number of annotated data from the user and delivers accurate predictions for
robotic manipulation tasks.

After considering the literature, we decided to tackle the wire detection
problem with DCNNs to detect, recognize and localize the wire pixels, using
a paradigm called semantic segmentation. Due to the high number of available
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state-of-the-art networks, we train and evaluate a set of selected methods on
this semantic segmentation problem: EfficientNetB7 [36], InceptionV3 [34], In-
ceptionResnetV2 [33], Densenet201 [19]. These networks achieve over 93% top-5
accuracy [44] on the well-known Imagenet dataset [6]. There is one more criterion
that we took into account, that is the number of hyperparameters. Clearly, we do
not want to pick a good performing model that requires enormous amount of hy-
perparameters such as SENet [18]. Hence, we only evaluate the aforementioned
models.

It must be mentioned that that the required training data for any DCNN
should not exceed a certain amount of images, and the model should be able to
generalise for all kinds of wires found in the e-waste disassembly domain. As the
original visual intelligence already requires a certain amount of training data for
its other modules (e.g., screw detection & classification, part segmentation), it
is our intention to keep the requirement for annotated training data as low as
possible. Therefore, it was decided to train any model with only 130 raw images
where 100 of them would be reserved for training, 10 for validation and 20 for
testing. The basic idea of our approach is shown in Figure 2.

We propose a module for the existing setup where the monocular camera
faces the device’s surface perpendicularly. The proposed module has the main
blocks: data generation or Datagen, and model, as illustrated in Figure 3. The
Datagen block aims to greatly augment the limited number of user-annotated
raw images and generate massive amounts of augmented images along with their
annotations for the training the deep neural network model. The Model block,
on the other hand, aims to detect the learned features and build a segmentation
map out of the input RGB image received by the monocular camera.

Limited Amount of
Annotated Data

Datagen Model

> 20000

AugMix

CropMix

Recreation

Feature Extraction
(DCNN Backbone)

Up-sampling
(UNET)

X 130

Heavily Augmented
Dataset

Fig. 3: Wire detection module is composed of data generation block which gen-
erates a large number of augmented images using a limited number of annotated
images. An EfficientB7 [36] model trains on the massive number of generated
augmented images.

Data Generation It is usually very difficult or even impossible to find a ded-
icated dataset for specific visual tasks such as wire detection. This inevitably
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forces us to deal with limited number of annotated training data. In order to
succeed under this condition, one has to enrich the amount of limited annotated
images. To this end, we decided to use heavy augmentation routines and gener-
ate massive amounts of annotated training data, from our existing dataset which
contains only 130 annotated wire images.

For our data augmentation block, we have chosen a 3-step routine. Below,
we share the augmentation library used and the operations applied. The exact
parameters of the augmentation functions can be found in the published source
code.

We start off by Augmix [17], a popular augmentation library with many
options. We, however, in this step only apply shift scale rotation, blur, elastic
transform, and optical distortion. In the second step, we continue with Crop-
Mix [35] which allows manually cropped augmentations rather than automated
ones to ensure variety and mask precision based on regions. Here we go by 4-
segment crop (per image), rotation, flipping along with generation ratio as 0.001
and dataset occupancy ratio (training) as 0.488. In the final step we apply our
own augmentation routine. We create a new image using 4 images applying
rotation, mirroring and flipping along with dataset occupancy ratio (training)
as 0.416 and clustering as sample based. At the end the datagen block creates
approximately 20000 images for the training data.

Model In order to conduct our investigation, we picked a use case of wire
detection in digital entertainment devices such as DVD players, gaming consoles,
etc. To this end, we collected 100 top-down images of open DVD players from
online search engines and annotated the visible wires by hand. We then generated
approximately 20000 augmented, annotated images, which served as training
data for the models we investigated.

Throughout our study, we considered only two metrics to evaluate our scheme
with. The standard metrics for pixel to pixel segmentation are mainly the COCO [26]
average precision (AP) metrics: AP is average precision of multiple IoU’s (In-
tersection of prediction and ground truth over Union of prediction and ground
truth) values seen. The definition of IoU between a known segmentation of n
pixels, Y , and a similar set of predicted segmentation, Y ′ (in the binary case,
i.e. where Yi, Y ′i ∈ {0, 1},∀i ∈ [1, n] is as follows in Eq. 1:

IoU(Y, Y ′) =
Y ∩ Y ′

Y ∪ Y ′
=

∑n
i=1 min(Yi, Y

′
i )∑n

i=1 max(Yi, Y ′i )
(1)

However, we decided to not to only consider IoU alone, but also the SSIM
(Structural Similarity Index) [41] metric, known for measuring the objective im-
age quality. It is based on the computation of three terms, namely the luminance
term (l), the contrast term (c) and the structural term (s). The overall index is
a multiplicative combination of the three terms as it is seen in Eq. 2 as follows:

SSIM(x, y) = [l(x, y)]α · [c(x, y)]β · [s(x, y)]γ (2)
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Metric
SSIM IoU/F1

Model Max. Mean Min. Max. Mean Min.
EfficientNetB7 0.956 0.877 0.761 0.988 0.952 0.897
InceptionV3 0.944 0.863 0.758 0.977 0.947 0.894
InceptionResNetV2 0.941 0.859 0.743 0.983 0.943 0.886
DenseNet201 0.940 0.862 0.747 0.978 0.945 0.891
Table 1: Evaluation of the state-of-the-art models. Effi-
cientNetB7 is proven to be the most suitable model with
a high SSIM and IoU score.

where
l(x, y) =

(2µxµy + C1)

(µ2
x + µ2

y + C1)
(3)

c(x, y) =
(2σxσy + C2)

(σ2
x + σ2

y + C2)
(4)

s(x, y) =
σxy + C3

σxσy + C3
(5)

where µx, µy, σx, σy, and σxy are the local means, standard deviations, and
cross-covariance for images x, y. If α = β = γ = 1, and C3 = C2/2 (default
selection of C3) the index simplifies to Eq. 6 seen below.

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(6)

All of our experiments conducted were evaluated based one these two metrics.
Table 1 shows the evaluation of the state-of-the-art models based on the afore-

mentioned metrics. One can clearly notice that the model EfficientNetB7 [36]
scores slightly better in both metrics. The results clearly indicate that Efficient-
NetB7 is doing a better job at feature extraction from the given images (even
with low resolution, low-feature conditions).

Having noticed the slightly better accuracy provided by the EfficientNetB7,
we made inferences on the images of a different device, such as the XBox One
gaming console. The model, although trained on DVD player wires, was able
to make good predictions on the gaming console wires, marking their locations
for a possible robotic manipulation action. Figure 4 illustrates this use case. We
used the state-of-the-art UNET [32] model as our up-sampling backbone for all
our feature extractor models.

3.3 Screw Classification

We base this module on the pipeline we inherit from a previous work [48]. As
stated in that work, the module enables the user to collect training data by
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Wire
Annotations

Images (DVD Players)

Model

Gaming Console

Training

User

Prediction

Fig. 4: We investigated the state-of-the-art models’ capabilities with limited
amount of data. After training the models wires of DVD players, we infer on
XBox One gaming console wires. Both devices belong to the same family of
devices, despite of having different inner layouts.

cropping circular candidates from the scene. The cropped circular candidates
are then to be divided into their respective classes (e.g., artifact, Torx8, Ph2,
Slotted6.5, Allen2.75, etc.) by a human.

First, the screw detector model is trained to classify screws from artefacts
(circular non-screws structures), as explained in the work [47]. As the original
paper for classification [48] instructed, the new screw data consisting of 12 dif-
ferent types of screws is included. This corresponds over 20000 samples, which
are split into training and validation sets with the ratio of 2:1, as instructed
in the original paper we base our approach on [48]. We refer the reader to his
publication for the details of the training process.

The screw classification module employed marks and returns the type/size
information and locations of the screws seen in the image, as illustrated in Fig-
ure 6.

The classifier accuracy reported in Table 2 is directly taken from the work [48]
published. The table summarizes the experimental results with regards to accu-
racy of each classifier against the validation set, clearly showing that EfficientNet-
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Input Image: RGB

Preprocessing

Candidate
Generation

Candidates
(Screws/Artifacts)

ONLINE

Detection
Model

Classification
Model

Screw

Type/Size

Candidate

ScrewsArtifacts

User

Detection Training Data
Training

Classification Training Data

Torx6 Ph1 Allen2.5

Torx7

Torx8

Torx9

Ph2 Allen2.75

Allen4

Slotted4

Slotted6.5

Slotted10

OFFLINE

Training

Fig. 5: Screw classification pipeline inherited from Yildiz et al. 2020 [48].

B2 re-trained on the Noisy-Student dataset with the given parameters is proven
to be the best choice.

Moreover, we underline the fact that augmentation strategy plays a pivotal
role in the classifier accuracy. In case of circular objects, rotation operation
guarantees that the training data accounts for screws that are rotated for each
angle, as reported in the original publication [48]. The Albumentations [4] library
was used to apply a rotation of 360 degrees, horizontal and vertical flips, as well
as brightness and contrast changes.
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Fig. 6: Classified screw heads by the screw classification
method taken from Yildiz et al. 2020 [48]

.

Table 2: Accuracy of the state-of-the-art models with huge variation of hyper-
parameters. Highlighted one is the top performing one [48].

Model Grayscale Size Loss Acc. Min. Acc. F1 Transfer Learning
EfficientNetB2A No 256 0.1187 0.968 0.79 0.97 Noisy Student
EfficientNetB2A No 64 0.2144 0.936 0.78 0.93 ImageNet
EfficientNetB2A No 128 0.1871 0.951 0.85 0.95 ImageNet
EfficientNetB2A Yes 128 0.2199 0.948 0.67 0.94 ImageNet
EfficientNetB3A Yes 64 0.2072 0.937 0.75 0.93 ImageNet
EfficientNetB3A No 64 0.2051 0.939 0.74 0.94 ImageNet
DenseNet121 No 128 0.1415 0.961 0.81 0.96 ImageNet
DenseNet121 Yes 128 0.1489 0.957 0.74 0.95 ImageNet
DenseNet121 No 64 0.1896 0.937 0.72 0.93 ImageNet
DenseNet121 No 64 0.2306 0.934 0.71 0.93 ImageNet
DenseNet201 No 256 0.1170 0.966 0.79 0.96 ImageNet
ResNet34 No 128 0.1538 0.955 0.80 0.95 ImageNet
ResNet34 Yes 128 0.2026 0.951 0.69 0.95 ImageNet

ResNet50v2 No 256 0.1732 0.942 0.73 0.94 ImageNet

4 Bookkeeping

In the context of disassembly, a bookkeeping mechanism aims to register the
status of every recognized part in the scene. This is carried out by analysing
the predicted pixel-level changes between part boundaries found by the part
segmentation module exists in the original scheme. The mechanism accounts for
multiple situations that are explained below. It also allows user to specify the
sensitivity of the change it should consider before registering. This is a required
feature since, every change is detected by conducting pixel-wise comparison of
part boundaries and regions in consecutive frames, meaning that a larger device
(and components) may require a less sensitive analysis of changes, as a few pixels
of change in large part’s boundaries may not exactly mean a misplacement or
failed action. If the EOL device is large, then a little touch on its part is not
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worth registration. On the other hand, if the EOL device is a small one (as in
the case of hard drives), then a few pixels may mean more, given some parts
such as a spindle hub are relatively small, meaning that every pixel should count
towards the change threshold.

– Difference in List of Parts: When the lists of parts are different between
consecutive frames, introduction or removal of those parts are registered.

– Difference in Locations of Parts: When the parts appear to be in dif-
ferent locations (if their center points moved more than the user-specified
margin) between consecutive frames, this change is registered.

The bookkeeping mechanism has a timer, additionally allowing the system
to not consider a frame that is acquired beyond the user-specified time interval.
This is a needed feature as well, since the registration should not occur between
a frame from a previous system run. This user-specified parameter is set to 5
minutes by default, considering a frame as consecutive if and only if the frame
is acquired within this time. If not, it registers the frame as the primary frame,
and starts the timer for another 5 minutes, as explained in algorithm above.

By employing the described mechanism, the extended scheme gains a certain
degree of fault-tolerance and guarantees the continuation of disassembly process
despite of manipulation errors.

5 Experimental Evaluation

As the original visual scheme requires two inputs (a top-down RGB image and
a top-down point-cloud), we use the same setup from the original paper with a
Basler acA4600-7gc monocular camera which provides images with 4608 × 3288
resolution and 3.5 FPS and a Nerian Karmin2 stereo camera with a depth error
of 0.06cm from the minimum range of 35cm.

We then let the extended visual scheme prove its capabilities given scenes
of computer hard drives (HDDs) with wires and screws. We quantify these re-
sults and additionally conduct a study to assess the generalization ability of the
extended scheme.

5.1 Evaluation method

There are two new modules in the extended scheme and each of these modules
has to be evaluated differently, as the paradigms running behind are different.

Wire Detection Since we have investigated the state-of-the-art models and
found out that EfficientNetB7 performing the best, we decided to use a dedicated
wire dataset and train the model from the scratch. To this end, approximately
130 images of wires were collected manually, using the same setup introduced
in the original paper. The strategy was to use any type of wires (including
connectors) and manually create occlusions with arbitrary EOL components.

https://www.baslerweb.com/en/products/cameras/area-scan-cameras/ace/aca4600-7gc/
https://nerian.com/products/karmin2-3d-stereo-camera/
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Model Metric Min. Max. Mean
EfficientNetB7 SSIM 0.80 0.98 0.91
EfficientNetB7 IoU/F1 0.89 0.99 0.97

Table 3: Evaluation of our trained EfficientNetB7 model on the test data, using
SSMI and IoU metrics.

As backgrounds, mostly PCBs were used, as wires are mostly found on PCBs
in EOL devices. Figure 7 shows a few samples from the wire dataset acquired.
Wires were later annotated with the VIA tool [7].

Fig. 7: Sample raw images from the wire dataset.

After choosing the model, we collected a new dataset of high (4K) resolu-
tion top-down images of wires that could be found in disassembly environments.
Those are various wires taken out of devices as well as wires that connect de-
vices to data or power supplies. As background, we chose the most commonly
encountered ones such as PCBs, device lids and bays, as well as the work sta-
tion surface. Having collected 130 various wires images, we split 100 of them for
training, 10 for validation and 20 for testing. Below we also provide the details
of the experimental evaluation and present our final model.

We use the Google provided TPU v2 for training our model via Colabora-
tory [3] environment which has 64 GB High Bandwidth Memory (HBM) and
provides 180 TFlops computing power. The validation set was taken to be 1/10
of training dataset and training was done with early stopping enabled callbacks
so that the model does not overfit. We trained our model with 4 generations
of data each time taking one forth of the total data. (i.e- the augmentations
are tuned in a way every time about 50 percent of training data is completely
new). No transfer learning was used and the model was trained from scratch.
For the final model, however, the best of these 4 weights were taken to train
on the whole training dataset. As the MSE loss graph shows in Figure 8, the
model reaches stable losses very quickly and converges to a final point where
a plateau stage can be encountered before stopping. We summarize the experi-
mental results with regards to performance of each classifier against the testing
set in Table 1.

From the collected results in Table 3, we conclude that EfficientNetB7 out-
performs any other state of the art models that are capable of semantic segmen-
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tation on this task. The model outputs show high similarity and reach a good
IoU score as well.

We noticed that the resolution of the images inferred must also be of the same
resolution of training data, because lowering the resolution creates completely
different feature maps compared to what the model was trained on. Figure 9
illustrates some of the detections on the test set by our detector. Our scheme
can handle delicate cases such as wires with tangles, and partial occlusions,
which are frequently encountered cases during the disassembly of an electronic
device. Our model proves to be robust, handling such delicate situations with
maintaining high accuracy. We report minimum SSIM and IoU of 0.80 and 0.89,
respectively.

Fig. 8: Loss in MSE of our model.

Last but not least, we tested our trained model on devices that the network
has never seen before, such as thermostats. Figure 9 illustrates the found wires
in these devices. The results prove that our model can be used in disassembly
environments where the target device was not seen before, which is usually the
case.

Screw Classification Although the classifier accuracy is quite high, due to the
fact that Hough circle finder method misses out finding the circles in the first
place, our final average precision was found to be 80%. As the classifier expects
images that are directly suggested by the Hough circle finder, any circle that is
missed, is also not considered by the classifier. In other words, the classifier’s
ability is limited by the Hough circle finder. Therefore, the AP remains at 80%.
We refer the reader to the Figure 1 to illustrate a few detection samples during
the HDD disassembly sequences.
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Fig. 9: Our model has a clear generalization ability since it is able to detect wires
found in devices that it has not seen before. We tested it on the back side of
heat allocators as well as both sides of hard drives with arbitrarily added wires
on them.

As the pipeline is composed of two main blocks, namely the Hough circle de-
tector and our classifier, EfficientNetB2, it is required to assess the detection as
well as the classification abilities of it. To this end, the following strategy was pur-
sued: First, the test images were annotated, each having only one hard drive with
top-down view. These images contain drives with or without screws, by which
the Hough circle finder could be assessed. These scene images were annotated by
marking screws with squares, which would form the ground truth for assessing
the Hough circle finder’s accuracy. The standard VOC evaluation [10] was pre-
ferred and it was found out that the Hough circle detector actually works with
0.783 mean IoU (Intersection over Union) with the optimal parameters found
for the IMAGINE setup. IoU here refers to what amount of screw region is cor-
rectly detected by the Hough circle finder. If the detected region for a screw
is below 70%, it is bound to result in bad prediction for both detection and
classification. It must be also noted that the pipeline is limited by the accuracy
of Hough Transform and the screw detection previously introduced. Although
the accuracy of Hough circle detection can vary depending on the parameters of
the function such as min/max radius, min/max threshold, final accuracy of the
pipeline is found 0.75, and calculated as follows:

Acc_P = Acc_CD ∗Acc_SD ∗Acc_SC



18 E. Yildiz et al.

where AccP stands for the accuracy of pipeline, AccCD stands for the accu-
racy of the circle detector, AccSD stands for the accuracy of the screw detector,
and AccSC stands for the accuracy of the screw classifier.

5.2 Generalization

Ideally, the scheme should also be evaluated on a second EOL product, so that
its capabilities are proven to be robust and generalizing enough for an industrial
use. For this purpose, another computer piece – GPU – was chosen. In total, 8
GPUs from various brands and models were collected. We evaluate the perfor-
mance of the detection and classification of the system both on HDDs (which
the visual intelligence is trained for) and GPUs (which the visual intelligence has
never seen). In order to understand how fast the system can adapt, we define
three experiments (E1-E3) with incremental retraining on the new device. This
retraining is done with a limited training dataset of user-annotated GPUs data
(see Table 4).

Module\Data RGB Images
Existing Data (E.D.)

RGB Images
Collected Data (C.D.)

Component Segmentation 600 100
Screw Detection 20000 2000

Screw Classification 20000 2000
Wire Detection 130 100

Table 4: Existing data consists of RGB images of HDD images, whereas col-
lected data consists of RGB images of GPU images. Since the modules were
already trained optimally with the existing data, the collected data used was
intentionally kept limited.

Experiment Data Re-training Test Device
E1 E.D. No HDD, GPU
E2 E.D. + 50% C.D. Yes HDD, GPU
E3 E.D. + 100% C.D. Yes HDD, GPU

Table 5: Evaluation scheme to be used through the experiments.

Experiment E1 corresponds to the evaluation of the system trained on HDD
data and without retraining on the GPU data (no annotated training data e.g.,
GPU screws, GPU components, GPU wires). Between the two classes of device,
the most common component is the PCB (which is also the biggest entity on
the GPU). Components such as bay, fan, sockets, screws and optionally wires
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exist in various colors and types. For instance, PCBs found in GPUs vary in
colors of black, blue and green, whereas for HDDs they are green by a very large
margin. Nevertheless, by conducting E1 we expect to evaluate how our approach
is able to generalize to other electronic devices, i.e. whether the initial training
on HDD is representative enough of commonly found parts in E-waste in general
(wires, screws, PCB, etc.). Experiment E2 and E3 on the other hand, evaluate
the scheme’s capabilities after retraining it with 50% and 100% training data,
respectively. By conducting E2 and E3, the question of "How does retraining
with limited data affect the performance of the scheme on the second device?"
is answered. Note that the gap detector was not evaluated on GPUs in any
experiment, since there are no gaps significant to the disassembly of the device.

Table 4 shows the experimental data in numbers. For every module, the data
was split into training, validation and test sets in ratios of 70%, 20% and 10%,
respectively. Evaluation scheme is illustrated in Table 5. None of the training
strategies is subject to change (e.g., early stopping). Weights were reset between
E1, E2 and E3 experiments to prevent learning of repetitive features and intro-
ducing bias.

Experiment S.D.A. S.C.A. C.S.A. W.D.A.
E1 (no retraining) 0.91 0.94 0.71 (0.89, 0.88)
E2 (retraining with 50% GPU data) 0.99 1.0 0.78 (0.91, 0.93)
E3 (retraining with 100% GPU data) 0.99 1.0 0.84 (0.92, 0.93)

– S.D.A.: Screw Detection Accuracy
– S.C.A.: Screw Classification Accuracy
– C.S.A.: Component Segmentation Accuracy
– W.D.A.: Wire Detection Accuracy

Table 6: Accuracy of each module through experiments E1, E2, and E3.

Experiment E1 Experiment E1 is conducted on each module, testing each
one’s capabilities on performing visual tasks on raw HDD and GPU images
without re-training. For screws, the description of the entity is largely the same
(e.g., circular shape, feature in the center) therefore there is no drastic significant
drop in accuracy of screw detection network, scoring 0.91. There is an insignif-
icant drop from the original accuracy 0.99 [47] due to the fact that GPUs have
black and dark gray screws which the network misses from time to time.

As for the screw classifier, the weighted average was found to be 0.94. Here
as well, an insignificant drop was observed due to the aforementioned reason.
Nevertheless, it was able to find what it was trained on when the learned color
was present. Figure 10 illustrates such an example. The image above contains
screws that have the ordinary silver-metallic color. Note that the screws in/on
HDDs were of this color. Thus, the network has the learned features from the
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images of these HDDs. On the image below, however, it is noticeable that the
detection network misses more. Since all the screws found on that particular GPU
were of dark gray or black color, the accuracy is naturally lower. However, even in
this case, the classifier nevertheless correctly identified the found screws as "ph1"
and "torx6 as illustrated. It must be remembered that the classifier only classifies
once the detector detects an instance. If there were only two classifications, it is
due to the fact that there were only two screws detected.

Fig. 10: Correctly detected and classified screws when the learned color is present
(left), missed and incorrectly classified screws when the learned color is different
(right).

Component segmentation requires specific user annotation and identification
of the components of the device, which was only done for HDDs so far. E1
evaluated the segmentation module therefore, on an unseen device of GPU, and
found out that the segmentation module reports 0.71 Mean-F score, which a bit
lower than 0.78 (the Mean-F score calculated for the original network). Figure 11
illustrates a case where metallic bay partially occludes the PCB, thus the network
is misidentifying PCB as bay as well. This is due to fact that the PCBs that
were in the HDD image dataset had nothing on them, contrary to the GPU,
where it is very likely to be a metallic bay and/or cooling unit over the PCB,
and making PCB features less dominant. Similarly, in the same figure, the lower
image shows a correctly identified and segmented PCB. Since most of the PCB
was visible. The network was able to associate it with the learned PCB features.

The wire detection network was found to be the critical one here. Although
it performs remarkably well on the GPU wires (see Table 6, line 1), features
that resemble wires are also detected as wires. Since the context information is
not there, the wire detector considers non-wire pixels as wires, as illustrated in
Figure 12, where cooling pipes of the GPU are considered as wires.
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Fig. 11: Predicted mask by the component segmentation performed on a GPU.
Left image depicts an incorrectly identified component, whereas the right image
depicts a correctly identified one. Portion of PCB pixels play a pivotal role in
segmentation of the PCB.

Fig. 12: Predicted mask by the wire detection, incorrectly marking wire-like ob-
jects as wires. Metallic pipes are one example of such objects.

Experiment E2 Experiment E2 aims to assess the capabilities of each mod-
ule by performing visual tasks on raw HDD and GPU images with re-training
involved. The training data used is set to 50% of the entire GPU training data
(in addition to the existing HDD data). Table 6, line 2 reports the accuracy per
module.

For screws, 50 new cropped images of screw heads belonging to GPUs were
included in the dataset. The screw detector and screw classifier scores peaked,
ensuring an accurate detection and classification. Therefore, it is concluded that
50 new images for screw detection and screw classification networks are sufficient
for the GPU. There is a different case for the component segmentation network.
This one started to predict meaningful masks for the PCB, as it was trained
with extra 50 images of annotated GPU components (bay, PCB). Figure 13a
shows a sample output where correctly identified PCB borders are following the
correct edges of the PCB component. Note that the network is trying to avoid
predicting on the irrelevant or unexpected pixels that correspond to the white
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plastic attachment found on the PCB. The module reports 0.78 Mean-F score,
which is equal to the original 0.78 but higher than the E1 score of it, 0.71. Note
that the original network was trained on 600 HDD images. Therefore, newly
introduced 50 GPU images do make a difference in terms of generalizing.

(a) Predicted mask by the component
segmentation performed on a GPU. The
model has been trained with 50% of
GPU training data.

(b) Predicted mask by the component
segmentation performed on a GPU. The
model has been trained with 100% of
GPU training data.

Fig. 13: Results of the component segmentation in E3: the model is evaluated on
GPU images with partial or complete retraining on the GPU data.

Additionally, it was observed that the wire detection network accuracy changes
positively on insignificant levels.

Experiment E3 Experiment E3 differs from the previous experiment (E2)
on the amount of new data for re-training. The training data used is set to
100% of the entire training data (in addition to the existing HDD data): 100
new annotated GPU images, plus 1000 screw images (cropped from these GPU
images). Table 6, line 3 reports the accuracy per module. After re-training the
networks, it was noted that there is a substantial improvement for the component
segmentation module, where the network was observably learning the features
encountered in GPUs and showing the ability to generalize. Figure 13b depicts
an example where the entire PCB was correctly identified (with a prediction
score of 0.846) and segmented accordingly.

Similarly to E2, highly accurate screw detection and classification abilities
were observed. Features that were learnt enough for the network to capture the
screws. It must be remembered that the mentioned data augmentation functions
in the screw classification module generates synthetic data out of limited images
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and fills in the gaps in data. Therefore, it is observed that re-training the screw
detection and classification networks with a small number of images is quite
possible.

Wire detection network accuracy was almost the same with the previous
experiment’s, no change observed in behaviors either. This is due to the fact
that not all GPU models had wires and thus, the newly introduced GPU images
had either no wires, or wires that were very easy to detect as illustrated in
Figure 14.

After conducting series of experiments to assess the generalization capability
of the scheme, it can be concluded that the scheme generalises the learnt knowl-
edge to an unseen device by acceptable margins. It was found out that visual
commonalities (similar features) play a big role in generalization. Experiment
E1 proved that PCB components in both GPU and HDD were mostly identi-
fied and segmented correctly, and drew the aforementioned conclusion. Some of
the incorrect identifications and segments were there due to the fact that the
PCBs were occluded by bays. Experiment E2 proved that introducing training
data by 50% (on top of the existing data) definitely increases the accuracy of
segmentation on PCBs, as illustrated in Figure 13a. Screw related capabilities
were remarkably improved even in E2, with less data. Experiment E3 showed
that the component segmentation is the module that reacts to the training data
most. This was associated with the fact that other modules have plenty of train-
ing images, whereas the original image dataset for the component segmentation
consisted of around 600 annotated images. Therefore, introducing 100 new im-
ages does make a difference for the retraining. The fine prediction of the edge
features were noted as shown in Figure 13b, as well as more correct identification
of components.

Fig. 14: Wire Detection output during the experiment E3. All wires were cor-
rectly identified.

It is acknowledged that the improvement could only be observed for each
module as shown in Table 6. Wire detection proved itself to be extremely robust,
scoring high in E1, and obviously in E2 and E3. Gap detection had to be skipped
for the experiments involving GPUs as there is no gap entity in this EOL device.
It must be also noted that not all collected images were able to contain the
entire view of the GPU, since the camera lens and the setup height were initially



24 E. Yildiz et al.

chosen for operating with HDDs. Therefore, the acquired results are the reported
predictions on images that partially contain GPUs in their view, as illustrated
in the referred figures. While this is not an issue, the optimal scheme would have
to operate with a view that contains the chosen EOL device from a reasonable
height, proportional to the dimensions of the device.

6 Discussion and Conclusion

In this paper, we presented an extended visual intelligence scheme to analyze
a disassembly scene and extract the composition of parts inside a device. We
proposed new wire detection and inherited a screw classification method pub-
lished [48], and, additionally a bookkeeping mechanism that compares the analy-
sis results of consecutive scenes to find out the abnormalities that may be caused
by manipulation errors (e.g, end-effector dropping the grasped PCB back into
the scene).

We pointed out that the wire detection problem itself is a challenging one,
since wires have variable physical properties such as geometry, color, thickness
and not every electronic device has the same type of wires. We mentioned that
these were the challenging features because of which the previously developed
methods were not useful as a general solution to this problem. We proposed
a model, which is based on the heavy augmentation and deep convolutional
neural networks. The proposed model easily lets the user use the system for
any device of his/her choice, as long as the user manages to collect a limited
number of hand-annotated images, which we found out to be approximately
130 for accurate detection. We conducted an investigation with the-state-of-
the-art models and picked EfficientNetB7 based on the results of a use case we
selected for the evaluation of these models. After picking the model, we collected
a limited amount of dedicated data using real wire backgrounds that can be
found in disassembly environments. We generated a massive amount of data
via our datagen block and trained the model from the scratch (e.g., no transfer
learning), we could demonstrate that the model achieves high accuracy on scenes
with random wires on the GPUs which were not seen by the network before. Our
evaluation was quantified with testing images of disassembly scenes, containing
different models and sizes of wires. Additionally, we pointed out that wire-looking
parts such as pipes are also detected by the wire detector we propose, which we
note as a limitation. Increasing the amount of annotated training data with
scenes including pipes could potentially help the model.

The screw classification inherited has the default shortcomings mentioned
in its original paper [48]. Replacing the initial circle detection method (Hough
circle detector) with a more robust circle detector would help. Although using
another DCNN is an option for circle detection, increasing the amount of required
training data is not always preferable. Therefore, replacing the Hough circle
detector with another method based on classical computer vision is advised.
Additionally, through our experiment we discovered that color plays a pivotal
role in screw classification.
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The part recognition is found to be the least directly generalizing component
and requires collection, annotation and retraining for other class of devices. This
is a foreseeable result as it is the component that learns about the specific com-
ponents in a device. However, the HDD use case offers a wide range of parts that
can also be found in other devices (e.g., PCB, lid, bay), even if they have differ-
ent appearances. We evaluated the performance of each module of the extended
visual scheme on a second device -GPU- and quantified the results, proving that
the extended scheme indeed generalizes even without any new training data. We
showed the impact of the additional training data and quantified the results by
conducting experiments, accordingly. The dataset as well as the implementation
are going to be published to facilitate further research.

In conclusion, the extended scheme is designed to complete the required ob-
jectives. To our knowledge, it is the first visual intelligence scheme that has
the demonstrated capabilities for automated disassembly. Therefore, the novel
contribution of this work is promising for recycling plants that are likely to use
robotic systems. As of this writing, there is a prototype developed and demon-
strated 3 as one of the milestones of the IMAGINE project 4.
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