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Abstract

In this paper we consider black-box optimization of objects’ grasp density functions relative
to a gripper’s orientation. For this, we introduce Monte-Carlo Tree Search on the unit quaternion
manifold. Our experimental evaluation shows that our method is feasible and allows finding
grasps of arbitrary quality with regard to a fixed budget of objective function evaluations.

1. Introduction
Optimization, either stochastic or numerical, plays a key role in robotics research and engineer-
ing. Usually, the objective function f is known, thus application of numerical methods, e.g.,
gradient search or newtonian methods to find the optimizer x∗, is feasible. The situation however
changes if the objective function is not known. In such a case of black-box function optimiza-
tion, numerical methods are not feasible anymore, hence motivating the application of stochastic
methods like sampling or stochastic search.

A typical case of black-box function optimization arises in searching for robotic precision
grasps by optimizing the unknown grasp density function f : X → R of an object,

x∗ = argmax
x∈X

f (x)

where x∗ denotes the optimal gripper pose and X the search space that contains all possible
gripper poses. Typically, this implies that X ⊂ R12 with x ∈ X describing both a 3D position in
Euclidean space R3 and a 3D rotation in SO(3) by a 9D column vector, resulting in a 12D column
vector. Obviously, optimization in 12 dimensions is not all that efficient.

For searching of robotic precision grasps the number of dimensions can be safely reduced
by (i) fixing the gripper’s position, and (ii) interpreting rotations in SO(3) as unit quaternions.
The latter is the result of mapping SO(3) onto the unit quaternion manifold MH, where MH
is the unit 4D hypersphere S3 embedded in R4. Thence the dimensionality of X finally can be
reduced to 3 dimensions. Consequently, rotations are treated as points on the unit hypersphere
S3 determined by their hyperspherical coordinates ϕ , ψ , and θ , with ϕ ranging over [0,2π),
and ψ and θ over [0,π]. Fixing the gripper’s position is motivated by the intuition that optimal
precision grasps usually can be found close to the rims of objects, which is where we fix the
gripper’s position.

In this paper we address stochastic black-box optimization of an unknown function on the 4D
unit hypersphere S3, i.e., f : S3 →R. We apply Monte-Carlo Tree Search (MCTS) to efficiently
search for the point x∗ ∈ X that maximizes the unknown objective function f . To succesfully
apply MCTS we introduce a hierarchical and equal decomposition of S3 along its axis-angles ϕ ,
ψ , and θ . We finally show how our method can be applied in optimizing robotic precision grasps
with the gripper position fixed to some point close to rim of an object.
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2. Monte-Carlo Tree Search
Monte-Carlo Tree Search (MCTS) is a recent stochastic optimization method for finding opti-
mal solutions in a given domain by iteratively sampling from the search space X (Browne et
al. 2012). During the search, MCTS builds an asymmetric k-ary search tree T that embodies a
hierarchical decomposition of the search space X . At each iteration, the most promising leave
ℓ ∈ T (a distinct subinterval of the search space X ) is selected and expanded, that is, ℓ is equally
decomposed into a set of leaves L whose elements are added to the search tree. Upon reach-
ing some computational budget (time, memory, or iteration constraint), MCTS returns with the
optimal solution x∗. Algorithm 1 shows the general MCTS algorithm.

Algorithm 1 General MCTS Algorithm
1: function MCTS(X )
2: create initial tree T0 representing the search space X
3: while within computational budget do
4: ℓ= argmax

ℓ∈Tn

f (ℓ)

5: decompose ℓ into L= {ℓh+1,k j+i}
6: evaluate the elements of L and add them to Tn
7: end while
8: return x∗ = argmax

x∈Tn

f (x)

9: end function

3. Black-box Rotation Optimization on the Unit Quaternion Manifold
Typically, in black-box function optimization, the objective function f can only be evaluated
pointwise. Consequently, it is crucial to choose good points x ∈ X during the optimization pro-
cess, as these points ultimately guide the search towards the optimizer x∗ ∈ X of f . A common
approach at this is to hierarchically decompose the search space X into partitions p of equal size,
i.e., X = {p1, . . . , pn : pi ∩ p j = /0, i ̸= j} to then sample a representative point xi ∈ pi, e.g., by
taking the mean of a partition pi, evaluate the objective function at this point and subsequently
decide where to continue the search for the optimizer x∗ relative to the outcome of f (xi).

A crucial requirement for that such a decomposition of X is feasible is that X and its partitions
are equipped with the notion of a “center point”. In the special case of SO(3), however, such a
notion of a “center point” does not exist. Consequently, in order to perform rotation optimization,
an alternative interpretation of a rotation is necessary.

We suggest to map SO(3) onto the unit quaternion manifold MH and treat it as the 4D unit
hypersphere S3 embedded in R4 to render rotation optimization feasible. By decomposing S3

into partitions of equal size, sampling of representative points xi that guide the search towards to
optimizer x∗ is viable.

3.1. Mapping SO(3) onto the Unit Quaternion Manifold MH

The unit quaternion manifold MH is defined as a Riemannian manifold where each point q ∈
MH describes a three-dimensional rotation around the origin of the Euclidean space R3. Thus,
there exists a natural mapping between rotations in SO(3) to quaternions q ∈MH,

ξ : SO(3)→MH
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with ξ defined as

qw =

√
1+ tr(R)

2

qx =
R2,1 −R1,2

4∗qw

qy =
R0,2 −R2,0

4∗qw

qz =
R1,0 −R0,1

4∗qw

where R is a 3×3 rotation matrix and tr(·) denotes the trace of a matrix. By applying ξ on any
R one finally arrives at a rotation in quaternion notation,

q = qw +qxi+qy j+qzk

where i, j, and k are the imaginary parts with the identity

i2 = j2 = k2 = i jk =−1.

As of the one-to-one correspondence between elements of SO(3) and MH, there also exist an
inverse mappings ξ−1 : MH → SO(3) with ξ−1 defined as1−2q2

y −2q2
z 2qxqy −2qzqw 2qxqz +2qyqw

2qxqy +2qzqw 1−2q2
x −2q2

z 2qyqz −2qxqw
2qxqz −2qyqw 2qyqz +2qxqw 1−2q2

x −2q2
y

 .

Thus, ξ defines an isomorphic map between SO(3) and MH.

3.2. Decomposition of MH by Hyperspherical Coordinates

By virtue of the equality of MH and the 4D unit hypersphere S3 embedded R4, quaternions
q ∈MH can either be specified by their real and imaginary parts qw, qx, qy and qz, or by using
their corresponding hyperspherical coordinates ϕ , ψ , and θ on the unit hypersphere S3. Thence,
there exists a transformation between these two coordinate systems,

ζ : S3 →MH

with ζ defined as

qw = cos(ϕ)
qx = sin(ϕ)cos(ψ)

qy = sin(ϕ)sin(ψ)cos(θ)
qz = sin(ϕ)sin(ψ)sin(θ).

The inverse transformation ζ−1 : MH →S3 also exists with ζ−1 defined as

ϕ =
qw√

q2
w +q2

x +q2
y +q2

z

ψ =
qx√

q2
x +q2

y +q2
z

θ =
qy√

q2
y +q2

z

.
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Hence, the search space X finally is reduced to the 3D space of hyperspherical coordinates ϕ ,
ψ , and θ of S3 which can be easily decomposed in a hierarchical manner into an 8-ary tree
by recursively splitting at each axis-angle interval’s mean. Thus, if X = {ϕ ,ψ,θ} with ϕ =
[0,2π),ψ = [0,π],θ = [0,π], after one decomposition of X , we arrive at

p1 = {[0,π), [0, π
2
], [0,

π
2
]}, p2 = {[0,π), [0, π

2
], [

π
2
,π]},

p3 = {[0,π), [π, π
2
], [0,

π
2
]}, p4 = {[0,π), [π, π

2
], [

π
2
,π]},

p5 = {[π,2π), [0,
π
2
], [0,

π
2
]}, p6 = {[π,2π), [0,

π
2
], [

π
2
,π]},

p7 = {[π,2π), [
π
2
,π], [0,

π
2
]}, p8 = {[π,2π), [

π
2
,π], [

π
2
,π]}.

4. Application for Robotic Grasping
In this section we apply black-box optimization on S3 for finding robotic precision grasps of
arbitrary quality, where the quality of a grasp ultimately depends on the budget of the MCTS
algorithm. As a variant of MCTS we use Bayesian Multi-Scale Optimistic Optimization (Wang
et al. 2014) which introduces prior knowledge to decide whether to consider a branch of the tree
for searching for the optimizer x∗ or not. We use the Grasp Wrench Space (GWS) measure as a
quality indicator for a grasp (Miller et al. 1999).

4.1. Bayesian Multi-Scale Optimistic Optimization

Bayesian Multi-Scale Optimistic Optimization (BaMSOO) is a quite recent MCTS algorithm
that uses prior knowledge, i.e., Dn−1 = {(x1, f (x1)), . . . ,(xn−1, f (xn−1))}, when evaluating the
children ℓh+1,k j+i of a selected leaf ℓ (Wang et al. 2014), where n denotes the iteration count,
h the tree height, and k j+ i the index of leaf ℓ at height h+ 1. For this purpose, Gaussian Pro-
cesses (GP) are applied to estimate an upper (UCB) as well as a lower confidence bound (LCB)
for the children of leaf ℓ, where UCB(ℓh+1,k j+i|Dn) = µ(ℓh+1,k j+i|Dn)+Bnσ(ℓh+1,k j+i|Dn) and
LCB(ℓh+1,k j+i|Dn)= µ(ℓh+1,k j+i|Dn)−Bnσ(ℓh+1,k j+i|Dn) with Bn =

√
2log(π2N2)/6η the con-

fidence, η ∈ (0,1), and N the leaf counter. µ(·) denotes the empirical mean, and σ(·) the standard
deviation of children ℓh+1,k j+i as resulting from the GP after applying the Sherman-Morrison-
Woodbury formula (Wang et al. 2014). Subsequently, a leaf ℓh+1,k j+i is only evaluated and con-
sidered in the next iteration if its UCB is greater or equal to the highest reward achieved so far.
BaMSOO returns the point x∗ which optimizes f .

For an in-depth discussion of BaMSOO the reader is referred to Wang et al. 2014.

4.2. Optimization of Robotic Grasps

We conducted a series of experiments to evaluate the proposed optimization scheme in robotic
grasping. All experiments were done on the same machine running with an Intel i7-4550U CPU
with 1.5 GHz per core and 8 GB of memory. Further, BaMSOO was implemented in Python. As a
simulation environment for executing a grasp and calculating the GWS we used RobWork (Ellek-
ilde et al. 2010). All grasps were executed with a Schunk SDH gripper. Figure 1 shows a screen
shot from RobWork when simulating a successful grasp with the Schunk SDH gripper applied to
a pan.

Figure 2 shows the results of our experiments where we applied the proposed black-box opti-
mization scheme to various objects. For each of these objects, we randomly selected five points
(to fix the gripper’s spatial location) close to the rims of the objects to find an applicable grasp
relative to the gripper’s orientation. As can be seen from Figure 2, for each of the chosen points,
feasible grasps were found within 300 iterations (the budget for the MCTS algorithm). Despite
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Figure 1: Screen shot from RobWork when simulating a successful grasp with a Schunk SDH
gripper applied to a pan.

Figure 2: Grasps that resulted from our experiments. Green indicates the spatial orientation of
the gripper in the xyz plane and red the orientation of the gripper relative to the wrist, where the
fingers’ span is along the red line (best viewed in color).

which point and object combination we consider, all found grasps seem intuitive from a human’s
point of view. Especially if we consider the grasps found at the sterns of the various goblets, their
orientation is quite reasonable in a sense that a human would grasp a goblet similarly at its stern.
Another interesting grasp worth mentioning was found for the third pan (bottom row in Figure 2)
at the contact point located on the handle close to the pan itself. From a human’s point of view,
grasping a pan there is quite intuitive.



Rotation Optimization on the Unit Quaternion Manifold and its Application for Robotic Grasping 6

One could argue, with respect to efficiency, that MCTS may not be optimized towards the
purpose of rotation optimization for robotic grasping and thus maybe surpassed by other, more
tailored algorithms. However, we clearly have to point out that the goal of this work was not to
invent another grasp optimization algorithm. In contrast, our intention was to show that the use of
a general-purpose optimization algorithm already allows us to achieve good results given proper
parameterization of the optimization algorithm.

We want to conclude our application case study with two final remarks. Firstly, for our ex-
periments we used a parallel jaw gripper with one actuated degree of freedom. Consequently,
our method smoothly transforms to different grippers, given that such grippers are actuated by
one degree of freedom. The use of grippers with more degrees of freedom however would raise
open questions regarding optimization of joint and torque values, which we do not address in this
paper. Secondly, we have only considered optimization of a gripper’s rotation in R3, but not its
position which is simply due to that positions and orientations lie in different groups (E(3) and
SO(3)) which are not trivially unifiable.

5. Related Work
In face of related work to our research as discussed in the following we focus on both, black-box
rotation optimization (Section 5.1), and optimization of robotic grasps (Section 5.2). However,
we will not focus on research that addresses grasp learning, as this clearly differs from our re-
search in that our work focuses on optimizing grasps but not learning them from scratch.

5.1. Black-box Rotation Optimization

Rotation optimization has been studied in many disciplines, however, most of existing work only
addresses the case where the analytic form of an objective function is given and thus numeri-
cal methods can be employed by exploiting its properties, e.g., convexity or local convexity. To
the best of our knowledge, rotation optimization in the face of black-box functions was rarely
touched. For general black-box function optimization, there exist several popular strategies, for
instance, tree-based search, response surface methods, evolutionary algorithms and simulation-
based search (Rios and Sahinidis 2013). However, applying these methods on rotation optimiza-
tion is not straightforward, as the feasible search space is constrained within a manifold. There-
fore, in this sense, our work is also related to constrained optimization (Gardner et al. 2014). Our
stochastic method, as a matter of fact, is a combination of tree-based search, response surface
methods and simulation-based search on the unit quaternion manifold.

A closely related work was presented by Papazov and Burschka (2011), where an optimal
rotation is searched for the purpose of point cloud registration. Their work however differs from
ours in several aspects. Firstly, the search space is SO(3) instead of the unit quaternion manifold.
Secondly, their decomposotion of SO(3) results in spherical boxes and thus requires uniform
sampling in these boxes. In contrast, our hierarchical partitioning based on the hyperspherical
coordinates of S3 is much easier. Thirdly, their method is a stochastic method that combines
simulated annealing with tree-based sampling while our approach utilizes more heuristics (the
principle of optimism in the face of uncertainty (Munos 2011) and Bayesian optimization) to
exploit the smoothness of the objective function to keep the iteration budget of MCTS low.

5.2. Robotic Grasp Optimization

Cordella et al. (2012) discuss a bio-inspired method for optimization of power grasps. Their
method is based on analyzing experimental evidence as a result from observation of human
behavior to subsequently define a suitable objective function relative to finger trajectories for
the optimization of a power grasp. Jameson and Leifer (1987) introduce a method for locating
stable grasps in accordance to a grasp goal function. Finding a most stable grasp subsequently is
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treated as an optimization problem, where the goal function incorporates physical constraints like
torque and motion limitations. Yu et al. (1998) investigate the optimization of power grasps. Their
method considers satisfying a required external force set, i.e., the set of external forces which the
power grasp must contain. The work of Yoshikawa et al. (2001) is in the same direction as in case
of Yu et al. (1998), however, Yoshikawa et al. (2001) consider grasping of multiple instead of a
single object. Again, the optimization objective is to find the optimal power grasps that satisfies
the set of required external forces. Youshen et al. (2004) consider grasping-force optimization as
a problem of minimizing and objective function subject to form-closure and balance constraints
of external forces. Their optimization procedure searches for a set of contact forces that allow
to hold an object stable and at the same time compensate external forces. For this, they use a
recurrent neural network with global convergent properties which finds optimal grasping forces
in real time. Yun-Hui (1999) also addresses the optimization of form-closure grasps, however, in
his work, the optimization problem is interpreted as linear programming problem. The underlying
intuition of his method is to query whether the wrench space lies within the convex hull of the
primitive contact wrenches. If so, an optimal grasp has been found.

It is worth mentioning that in our discussion of related work for robotic grasp optimization
existing work only deals with the problem of numeric optimization, that is, the objective func-
tion f is always known. Our work thus is innovative in the sense that it considers stochastic
optimization of grasps where the objective function f is unknown.

6. Conclusion
In this paper we have introduced MCTS on the unit quaternion manifold MH for black-box
rotation optimization in SO(3). We have established a hierarchical decomposition of a search
space X by the 4D unit hypersphere S3 embedded in R4. We further have successfully applied
our black-box optimization method in the context of optimizing robotic precision grasps. We
believe that the research presented in this paper offers an efficient method for black-box rotation
optimization in SO(3) that can be applied to different problems in robotics like camera pose
estimation, as well as pose estimation in general, but also in different fields of engineering where
one is faced with an unknown objective function to be optimized that can only be evaluated
point-wise.
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