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Abstract— Human ability of both versatile grasping of given
objects and grasping of novel (as of yet unseen) objects is
truly remarkable. This probably arises from the experience
infants gather by actively playing around with diverse objects.
Moreover, knowledge acquired during this process is reused
during learning of how to grasp novel objects. We conjecture
that this combined process of active and transfer learning boils
down to a random search around an object, suitably biased by
prior experience, to identify promising grasps. In this paper
we present an active learning method for learning of grasps
for given objects, and a transfer learning method for learning
of grasps for novel objects. Our learning methods apply a
kernel adaptive Metropolis-Hastings sampler that learns an
approximation of the grasps’ probability density of an object
while drawing grasp proposals from it. The sampler employs
simulated annealing to search for globally-optimal grasps. Our
empirical results show promising applicability of our proposed
learning schemes.

I. INTRODUCTION

Establishing efficient strategies for learning precision
grasps is one of the key challenges in robotics research.
Currently, a substantial amount of work in this area relies on
an object’s shape or shape-related information (e.g., surface
normals or image gradients) reconstructed from vision [1]
to analytically compute object specific contact points [2],
[3]. A complementary idea though is to neglect an object’s
shape and instead utilize its pose to learn feasible grasps
by sampling gripper poses relative to an object’s pose. This
results in grasp learning methods that require very little
additional object specific knowledge (given its pose) to guide
the search for feasible grasps (cf. Detry et al. [4] who utilized
3D edge information).

Such a postural interpretation of a grasp by a gripper’s
pose relative to an object’s pose possesses two key advan-
tages compared to shape-based grasp learning. First, learned
grasps can be readily applied to known objects by just
aligning a gripper’s pose relative to an object’s pose. This
requires no knowledge other than an object’s pose. Secondly,
the postural interpretation allows seamless transfer of grasps
between similar (e.g., in shape and size) objects by just
sampling a new gripper pose suitably biased by an already
known gripper pose. Conversely, a shape-based approach in
both cases requires reconstructing an object’s shape which
may easily fail due to clutter or improper segmentation.
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Metropolis-Hastings (MH) [5] is a popular Markov-
Chain Monte Carlo (MCMC) algorithm that constructs a
Markov chain on a state space X (e.g., the grasp parameter
space) where the stationary distribution of possible states
is the target probability density π(x). By drawing samples
x0, x1, x2, . . . from a proposal distribution q(x|y) one can
iteratively approximate π(x). We propose the application of
kernel adaptive MCMC (Section III) for active learning of
grasps for given objects (Section IV) and transfer learning for
acquiring grasps for novel objects (Section V) by learning,
via approximation, an object’s unknown grasp density.

In this paper we first introduce active learning of grasps
for given objects by MCMC Kameleon (Section IV). This
relies on a rough sketch1 of the shape of the grasps’
probability density π of a specific object. Given this rough
sketch, MCMC Kameleon then learns an approximation to π
during its burn-in phase for subsequent sampling of grasps.
Secondly, we present transfer learning to learn grasps for
novel objects similar in shape and size to objects already
learned (Section V). This capitalizes on MCMC Kameleon’s
learning behavior during its burn-in phase which allows
learning grasps for different objects of the same type (e.g.,
plates or soup plates) using a rough sketch of the shape and
size of a similar object.

A common problem in applying MCMC is deteriora-
tion of the sampler, i.e., the repeated sampling of rejected
proposals. In our case, this amounts to repeated sampling
of gripper poses yielding infeasible grasps and thus zero
success probability. To tackle this problem, we utilize the
object’s rim computed from its point cloud to define a
meaningful probability measure for infeasible grasps. This
allows us to heuristically nudge the sampler towards nonzero
regions of the grasp success probability function. As we only
focus on precision grasps, attracting grasps towards rims (in
the absence of any graspability information) is an effective
heuristic, since rims are very likely to allow precision grasps.
This is the only shape information required by our method.

The key contributions of this paper are:

• A heuristic for calculating a pseudo measure for infeasi-
ble grasps to overcome the obstacle of applying MCMC
for sampling gripper poses from a grasp density function
where for infeasible grasps no quality measure can be
calculated.

• The application of kernel adaptive MCMC for learning
of precision grasps by active sampling.

1Observe that Sejdinovic et al. characterize such a rough sketch as just a
scheme with good exploratory properties of the target; there is no need for
it to result from a converged or even valid Markov chain.
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• A transfer learning scheme for learning of precision
grasps for novel objects by using suitable prior infor-
mation by known gripper poses for similar objects, thus
facilitating generalization of grasps.

We evaluate our proposed learning methods by a series of
carefully designed experiments as presented in Section VI.
We conclude our work in Section VII.

II. RELATED WORK

Traditionally, grasp learning methods rely on vision for
both (i) finding graspable parts of the object and (ii) evalu-
ating the learned grasps. Detry et al. [4] learn grasp affor-
dance densities by (i) establishing a grasp affordance model
for an object, and (ii) training this model by autonomous
exploration, e.g., sampling, where grasp affordance densities
are modeled by Kernel Density Estimation. Based on early
visual cues an initial density is created which is then trained
and finally yields the empirical density of the object’s grasps.
Detry et al. [6] study transfer learning of grasping strategies.
Their method is based on learning object shape prototypes
to generalize grasping strategies among different objects.
Kopicki et al. [7] propose to learn grasps by computing a
gripper’s shape as to a specific grasp relative to an object’s
shape. Their method allows transfer of grasps by matching
the gripper’s shape to shapes of novel objects. Fischinger et
al. [8] investigate grasping objects from cluttered scenes on
the grounds of a point cloud of the scene. Using Symmetry
Height Accumulated Features their system is trained by
Support Vector Machines yielding grasp classifiers which
subsequently allow a robot to decide on an optimal 6D
gripper pose relative to its environment. The work of Kroe-
mer et al. [9] combines the two notions of active learning
and reactive control into a grasp learning framework. Their
system implements a hybrid architecture, where, on the
high-level side, a reinforcement learner (the active learner)
determines grasps and, on the low level, a reactive controller
is responsible for action execution. Further, vision is used
to incorporate geographic scene information for optimal
grasp learning. Recently, Lenz et al. [10] applied deep
learning for learning grasps from an RGB-D view of a
scene. Their method ultimately implements rectangle-based
grasp detection [11] using two neural networks, i.e., (i) for
detecting potential candidate rectangles on the object, and (ii)
to extract top rectangles from these candidate rectangles. The
top rectangles then represent optimal grasps with respect to a
gripper’s pose. Rodriguez et al. [12] suggest early abort and
retry to reduce the time to learn a grasp. In their work, grasp
signatures are used to establish probabilistic models to track
the instantaneous probability of a grasp to succeed. Given
that the model suggests that a grasp may not succeed, it is
aborted early and retried using slightly modified parameters.
Abort and retry are modeled as a Markov chain which subse-
quently can be used to minimize the time for learning grasps.
Saxena et al. [13] introduce a vision-based grasping system
which learns grasping points for images of cluttered scenes.
By supervised learning, their system learns visual features
for identifying a 3-D point and an orientation at which to

grasp the object. Given this information, a path planner then
calculates the optimal trajectory to reach the object and apply
a grasp. Stulp et al. [14] investigate learning grasps with a
special emphasis on uncertainty. Their key idea in learning
optimal grasp poses is to sample actual object poses from a
distribution that represents the state estimation uncertainty.
Dynamic movement primitives necessary to reach the object
are learned by reinforcement learning.

Our learning methods mainly differ in that they require
only weak information from object models (such as point
clouds). Except for Detry et al. [6] and Kopicki et al.[7],
most other research does not address transfer learning. Our
approach to transfer learning differs in that we do not rely on
precise shape information to generalize grasping strategies
but instead only on object poses. The sole purpose of the
object’s rim points is to keep the sampler from deterioration.
Our method would still find grasps without them, but it would
take longer, as the sampler would degenerate to a purely
random walk. In terms of heuristic search strategies, the work
of Stulp et al. [14] is related to ours. Yet, contrary to our
grasp learning method, Stulp et al. rely on an initial, feasible
grasp and preshape posture for their method to work. As
Table II shows, our grasp learning method, in contrast, also
learns feasible grasps from random initialization.

III. KERNEL-ADAPTIVE MCMC

MCMC Kameleon as proposed by Sejdinovic et al. [15]
is an adaptive MH sampler approximating highly non-linear
target densities π. During its burn-in phase, at each iteration
it obtains a subsample z = {zi}ni=1 of the chain history
{xi}t−1i=0 for updating the proposal distribution qz(· | x) by
applying kernel PCA on z, resulting in a low-rank covariance
operator Cz. Using ν2Cz as a covariance (where ν is a
scaling parameter), a Gaussian measure with mean k(·, y),
i.e., N (f ; k(·, y), ν2Cz), is defined. Samples f from this
measure are subsequently used to obtain target proposals x∗.

MCMC Kameleon computes pre-images x∗ ∈ X of f by
considering the non-convex optimization problem

arg min
x∈X

g(x), (1)

where

g(x) = ‖k (·, x)− f‖2Hk
(2)

= k(x, x)− 2k(x, y)− 2

n∑
i=1

βi [k(x, zi)− µz(x)] ,

µz = 1
n

∑n
i=1 k(·, zi), the empirical measure on z, and y ∈

X . Then, by taking a single gradient descent step along the
cost function g(x) a new target proposal x∗ is given by

x∗ = y − η∇xg(x)|x=y + ξ (3)

where β is a vector of coefficients, η the gradient step size,
and ξ ∼ N (0, γ2I) an additional isotropic exploration term
after the gradient. The complete MCMC Kameleon algorithm
then is
• at iteration t+ 1



1) obtain a subsample z = {zi}ni=1 of the chain
history {xi}t−1i=0 ,

2) sample x∗ ∼ qz(· | xt) = N (xt, γ
2I +

ν2Mz,xt
HMT

z,xt
),

3) accept x∗ with MH acceptance probability
α(x, y) = min

{
1, π(y)q(x|y)π(x)q(y|x)

}
,

where Mz,y = 2η [∇xk(x, z1)|x=y, . . . ,∇xk(x, zn)|x=y] is
the kernel gradient matrix obtained from the gradient of (??)
at y, γ is a noise parameter, and H is an n × n centering
matrix.

IV. ACTIVE GRASP LEARNING

We represent a grasp g as a 7D vector, i.e., g =
(x, y, z, qw, qx, qy, qz)

T , where x, y, z denote the cartesian
coordinates of a gripper and qw, qx, qy , qz its orientation
in quaternion notation relative to an object. To each grasp g
is associated a measure µGWS based on the Grasp Wrench
Space (GWS) [16], indicating its quality. This measurability
then allows us to define a target density π(g), g ∈ X .

A. Metropolis Criteria

The GWS is only defined for a feasible grasp g; i.e., if
a grasp g cannot be applied to an object, µGWS cannot
be calculated. Therefore, a heuristic is needed to calculate
approximate measures for samples g that do not represent a
feasible grasp. This stems from MCMC’s need for continu-
ous probability densities to efficiently converge to the global
optimum by the MH acceptance criterion.

1) Feasible Grasps: In the case of a feasible grasp g,
the probability measure is calculated in terms of the GWS.
Thus, π(g) ∝ µGWS , and the acceptance probability of
the proposed sample g is calculated by the MH acceptance
criterion. The likelihood of a new proposal g∗ conditioned
by g is given by the proposal distribution q’s density for g∗,
conditioned by g, i.e., q(g∗ | g). Conversely, the likelihood
of g conditioned on g∗ is given by q(g | g∗).

2) Infeasible Grasps: In the case of an infeasible grasp g,
µGWS is zero, implying that the MH acceptance probability
would always be zero. This eventually robs the algorithm of
any clue whether the current search direction is promising
or not. To overcome this problem, we apply a heuristic to
learn whether an infeasible proposal g∗ points into a direction
where a feasible grasp could be found or not. Figure 1
illustrates how we calculate this heuristic quality measure
µ′GWS .

The idea underlying the heuristic quality measure µ′GWS is
based (i) on the angle θg between the gripper’s pose and the
vector between the gripper direction and a closest rim point
as shown in Figure 1 by the vector ~ag , and (ii) the distance
of the gripper position and a closest rim point indicated by
dg . Setting the constant min GWS to 0.01, i.e., the lowest
tolerable quality measure for a grasp g, and using µ′GWS

as defined in Figure 1, we move the search for grasps g∗

towards the rims of an object.
To detect rim points of objects by their point clouds, first,

for each point o, we construct a spherical neighborhood N
around o. Next, we connect o to each of its neighboring

π(g) ≡ µ′GWS

g

~bg

~ag

dg

θg
π(g∗) ≡ µ′GWS

g∗

~bg∗

~ag∗

dg∗

θg∗

µ′GWS = min GWS
1+(d∗(π−θ))

π(g∗) ≡ µ′GWS

π(g∗) ≥ π(g)

Fig. 1: Illustration of our heuristic used to calculate µ′GWS .
Here, π denotes the mathematical constant and π(·) a prob-
ability density.

points i ∈ N to obtain vectors ~pi. Then, if o is a non-rim
point and N is flat,

∥∥∑
i∈N ~pi

∥∥2 ≈ 0. However, if o is a rim
point, then

∥∥∑
i∈N ~pi

∥∥2 > ζ, where ζ is a threshold that is
tuned based on the density and noise of the point clouds. For
all other non-rim points, 0 <

∥∥∑
i∈N ~pi

∥∥2 ≤ ζ. Figures 2
and 3 show the results of the rim detection applied to the
objects used in our experiments (Section VI).

Observe that both quality measures, i.e., µGWS and
µ′GWS , are valid density functions in that (i) their values are
always greater or equal zero and (ii) by introducing some
normalization constant Z, i.e., Z =

∑n
i=1 µ

i
GWS (where

n is the number of known, feasible grasps for an object),
applied to µGWS , i.e., 1

ZµGWS , we have that
∫
π(g)dg = 1

(similarly, this also holds for µ′GWS).

B. Simulated Annealing

Using a plain Metropolis-Hastings (MH) acceptance cri-
terion α(g∗, g) = min

{
1, π(g

∗)q(g∗|g)
π(g)q(g|g∗)

}
, MCMC Kameleon

considers the whole search space X , i.e., the Markov chain
will likely visit bad samples as well as good ones. In learning
to grasp objects, however, we are only interested in good
samples, i.e., feasible grasps. To tackle this problem we
apply simulated annealing (SA) [17]. The idea is to equip the
sampler with an initial temperature T > 0 which decreases
over the sampling process with the effect of gradually
decreasing the probability of accepting poor samples while
exploring the state space X . Consequently, while traversing
the Markov chain the sampler more likely moves in regions
most likely containing the global optima. We thus extend the
plain MH acceptance criterion by raising it to the power of
T , where T is the current system temperature, i.e.,

α(x, y) = min
{

1, π(g
∗)q(g|g∗)

π(g)q(g∗|g)

}T
(4)

T = max
{
TN ,

TN

T0

j
N

}
(5)



where T0 is the initial temperature, TN the final temperature,
N the number of iterations, and j the current iteration.
Using (4) we slowly decrease the acceptance probability of
bad, i.e., of low quality, grasp proposals g∗. Equation (4)
slowly decreases the temperature T over time.

C. Complete Learning Method

We use a Gaussian proposal for both position and ori-
entation to capture the relation between gripper position
and orientation relative to an object. Further, as a kernel k
for MCMC Kameleon we use a Gaussian kernel. Although
Gaussian proposals and kernels are not rigorously applicable
in quaternion space, this choice allows us to easily model
the dependencies between gripper positions and orientations,
which is crucial for our method to perform well.

Our complete learning algorithm then is

• at iteration t+ 1

1) obtain a subsample z = {zi}ni=1 of the chain
history {gi}t−1i=0 ,

2) sample g∗ ∼ qz(· | gt) = N (gt, γ
2I +

ν2Mz,gtHM
T
z,gt),

3) calculate π(g∗) using either µGWS in the case of
a feasible grasp or µ′GWS otherwise

4) accept g∗ with MH acceptance probability (4).
The chain history {gi}t−1i=0 is initialized by samples as re-
trieved2 from a random walk (RW) MCMC sampler using a
Gaussian proposal for the position and a von Mises-Fisher
proposal for the orientation, i.e.,

g∗pos = N (gtpos,Σ)

g∗ori = C4(κ) exp(κgt >ori x),

where κ is the concentration parameter and x a p-
dimensional unit direction vector. We use the same prob-
ability measures as defined for MCMC Kameleon.

V. TRANSFER LEARNING

Humans apply transfer learning on a daily basis by reusing
acquired knowledge and applying it to solve a problem
similar to the one the knowledge originally was learned
for. Similarly, here we can reuse a chain history {gi}t−1i=0

that was learned for some object as a rough sketch from
which to learn grasps g for similar objects by properly
biasing, i.e., initializing, MCMC Kameleon with such a
chain history. This is feasible thanks to the burn-in phase
of MCMC Kameleon where it learns an approximation of
the target density π. Given that two objects a and b are of
similar shape and size (e.g., a plate and a soup plate), the
algorithm from Section IV-C can be used for transfer learning
of grasping a novel object b given a chain history for object
a. Since producing an initial chain history for a novel object
is expensive, transfer learning by avoiding the burn-in phase
can result in substantial savings.

2These samples amount to the “rough sketch” (Sec. I) of the shape of the
grasps’ success probability.

Fig. 2: Object set used for grasp learning with object rims
depicted in red (best viewed in color).

TABLE I: Parameters for MCMC Kameleon used during our
experiments.

Iterations (N) γ Subsample size ν Burn-in T0 TN

5000 0.0001 200 2.38√
6

1000
2000

1.0 0.05

VI. EXPERIMENTS

In the following, we discuss (i) our results on learning
grasps for a given object (Section VI-A), and (ii) our results
on transfer learning of learning grasps for previously unseen
objects (Section VI-B). Both our learning algorithms were
implemented in Python. As a simulation environment for
executing a sampled grasp g and subsequently calculating
the GWS we used RobWork [18]. Inside RobWork, all grasps
were executed with a Schunk SDH gripper.

A. Grasp Learning

Figure 2 depicts the object set we used for learning grasps
of given objects. The experiments were done in two steps:
First, we ran a RW MCMC sampler for 5000 iterations
to produce initial chain histories {gi}t−1i=0 . Secondly, we
used these chain histories (as “rough sketches”) to initial-
ize MCMC Kameleon for learning an approximation of
the target density π during burn-in and subsequent grasp
sampling (after burn-in). Apart from the simulations just
mentioned, we further did a series of experiments where
MCMC Kameleon was initialized with a randomly generated
chain, without using prior knowledge.

Table I shows our parametrization of MCMC Kameleon
used during our experiments3. Apart from the value of
the scaling parameter ν which was chosen following the
suggestion by Sejdinovic et al. [15], the parameters were
tuned by a series of preliminary experiments.

For each of the objects from Figure 2 we thus conducted
one initial random walk for establishing a chain history
{gi}t−1i=0 , and then four runs using MCMC Kameleon for
learning grasps with either a randomly initialized chain
(no prior information), or using chain histories from the
random walks (using prior information), and differing burn-
in durations (Table I). Table II shows our results. Figure 4
(top row) shows sampled gripper poses for the objects from
Figure 2.

As is evident from Table II, the complexity of an object’s
shape clearly drives the success of learning. Generally, the
algorithms we used (RW MCMC and MCMC Kameleon)

3Our RW MCMC sampler offers two parameters, viz. κ and Σ which
were set to 5 and 0.01I3 for all experiments.



TABLE II: Experimental results: number of sampled gripper
poses yielding feasible grasps during grasp learning. The
numbers in square brackets in the leftmost column denote
the burn-in duration and the use of prior information (p) or
not (np).

Pitcher Pan Plate
RW MCMC 12 3 20
MCMC Kameleon [1000,np] 12 10 35
MCMC Kameleon [1000,p] 2 34 20
MCMC Kameleon [2000,np] 16 54 95
MCMC Kameleon [2000,p] 14 115 81

learned more gripper poses yielding feasible grasps for the
pan and the plate than for the pitcher (except for the RW
MCMC and one run of MCMC Kameleon). This is due to
the geometry of the pitcher, which is more complex than
the pan or the plate. Table II also shows that using prior
information generally fosters learning of grasps. MCMC
Kameleon generally outperformed RW MCMC thanks to
burn-in where it learns an approximation of π(g).

Another interesting aspect of MCMC Kameleon that is
evident from Table II is the choice of the burn-in duration.
Using a longer burn-in results in better learning fo π, which
generally results in a substantially larger number of grasps
found. Here, we kept the total number of iterations fixed
to 5000: If the burn-in duration lasted for 1000 iterations,
then MCMC Kameleon had a budget of 4000 iterations for
sampling grasps; if the burn-in lasted for 2000 iterations, it
had a budget of 3000 iterations.

B. Transfer Learning

For learning of grasps for novel (as of yet unseen) objects
we consider two methods for biasing MCMC Kameleon
with prior information (representing a rough sketch of the
target grasp density π(g)). First, we reuse complete chain
histories {gi}t−1i=0 as generated by MCMC Kameleon for
similar objects. Secondly, we investigate using subsamples
z as computed by MCMC Kameleon at the last iteration
of the burn-in when sampling for a similar object. In the
latter case we skip the burn-in. This amounts to a precast
covariance operator Cz, preventing MCMC Kameleon from
learn a better approximation of π(g), limiting it to just using
what it is provided with. Figure 3 shows our object set for
this purpose.

We ran MCMC Kameleon with the same parameters as
discussed in Section VI-A (Table I), except for the number
of iterations. In the case of using a subsample z for transfer
learning we reduced the default number of 5000 iterations,
i.e., the number of iterations was set to 3000 and 4000 re-
spectively, depending on the burn-in duration of the run that
produced z. Both chain histories and subsamples for transfer
learning are a result of the experiments from Section VI-A.

Hence, for each object from Figure 3 we did (i) two
runs with MCMC Kameleon initialized by a chain history as
established during an earlier burn-in phase and a randomly
selected starting point from that chain, and (ii) two runs

Fig. 3: Object set used for transfer learning with object rims
depicted in red (best viewed in color).

TABLE III: Experimental results: number of sampled gripper
poses yielding feasible grasps, for transfer learning of grasps.
The second and fourth row correspond to runs with 4000
iterations, the sixth and eighth to runs with 3000 iterations.
The arrangement of results corresponds to Figure 3. The
numbers in square brackets in the leftmost column denote the
burn-in duration and the usage of a chain (c) or a subsample
(z) to initialize MCMC Kameleon.

Pitcher Pan Plate
MCMC Kameleon [1000,c] 3 53 117
MCMC Kameleon [ 0,z] 0 0 0
MCMC Kameleon [2000,c] 2 19 7
MCMC Kameleon [ 0,z] 4 68 0
MCMC Kameleon [1000,c] 3 29 45
MCMC Kameleon [ 0,z] 0 0 0
MCMC Kameleon [2000,c] 1 6 62
MCMC Kameleon [ 0,z] 0 41 0

with MCMC Kameleon initialized with a kernel K where
the starting point is chosen to be the last element of the
kernel K. Observe that in the case of transfer learning, the
objects from Figure 3 first were aligned to a canonical pose
to be in line with the objects from Figure 2. This is necessary
as chain histories and kernels K are established relative to
an object’s orientation and size. Table III shows our results.
Figure 4 (middle and bottom rows) shows sampled gripper
poses for the objects from Figure 3.

What first leaps to the eye in Table III are the rather poor
results we achieved for the pitcher from Figure 3. It turns
out that this is due to object misalignment, i.e., the pitchers
from Figure 3 were not properly aligned with the pitcher
from Figure 2. Apart from that, the similarity in dimensions
also plays a key role for transfer learning. Clearly, the two
pitchers from Figure 3 are taller than the one from Figure 2,
rendering learning with MCMC Kameleon difficult as the
initial rough sketch of the shape of the object’s grasp density
does not fit well. Obviously, misalignment of objects further
exacerbates this mismatch.

Our results from Table III show that if MCMC Kameleon
is initialized with a subsample z of an earlier run it may



Fig. 4: Results for learning grasps for the objects from
Figure 2 (top row) and for transfer learning of grasps for
corresponding objects from Figure 3 (middle and bottom
rows) with a burn-in duration of 1000. Red pointers indicate
optimal grasps (best viewed in color). Observe that grasps
are rather unevenly distributed; this results from both running
MCMC Kameleon for only 5000 iterations and the use of SA
which at some point locks the sampler to a mode of π.

drastically fail. We conclude that this is because a subsample
z is already too specific a sketch of an object’s grasp density,
i.e., it does not provide the necessary diversity to “recog-
nize” similar objects. Clearly, by again permitting MCMC
Kameleon to employ a burn-in phase, such a subsample z
could be adapted to an object. In contrast, our results in
Table III demonstrate that initializing MCMC Kameleon by
reusing a chain history {gi}t−1i=0 is very effective. We thus
conjecture that reusing a chain history, i.e., prior experience,
together with a burn-in phase for transfer learning results
in a good number of feasible grasps for previously unseen
objects. Moreover, reusing such chain histories for transfer
learning successfully eradicates the need for performing
random walks to obtain a rough sketch of the object, thus
reducing the computational burden incurred by our learning
methods.

To sum up, we can state that the learning methods intro-
duced in this paper have proven successful both in learning
of grasps for given objects (Section IV) and in learning of
grasps for previously unseen objects, i.e., applying transfer
learning for learning of grasps (Section V).

VII. CONCLUSION

In this paper we have introduced (i) active learning of
grasps for given objects and (ii) transfer learning for learning
grasps for novel objects. Both our learning methods build
upon MCMC Kameleon, an adaptive MH sampler that learns
an approximation of a target density π during its burn-in
phase.

The experimental evaluation shows that the application
of an adaptive MH sampler, e.g., MCMC Kameleon, is

promising for grasp learning tasks as discussed in this paper.
Our results show that our learning methods allow learning
grasps from no knowledge at all, as Table II shows, when
MCMC Kameleon is initialized with a random chain, i.e.,
it uses no prior information. Table II however also shows
that our learning methods can be easily boosted if MCMC
Kameleon is initialized with suitable prior experience, i.e., a
rough sketch of the shape of the grasps’ probability density
associated with an object. We successfully exploit this aspect
of biased initialization in transfer learning (Table III) of
grasps for novel objects.
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