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Abstract. We try to determine the progress made by convolutional
neural networks over the past 25 years in classifying images into abstract
classes. For this purpose we compare the performance of LeNet to that of
GoogLeNet at classifying randomly generated images which are differen-
tiated by an abstract property (e.g., one class contains two objects of the
same size, the other class two objects of different sizes). Our results show
that there is still work to do in order to solve vision problems humans
are able to solve without much difficulty.

Keywords: Convolutional neural networks · Abstract classes · Abstract
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1 Introduction

Deep learning methods have gained interest from the machine learning and com-
puter vision research communities over the past several years because these meth-
ods provide exceptional performance for a vast majority of classification tasks.
An important example of deep learning methods are Convolutional Neural Net-
works (CNNs) — first introduced in 1989 by LeCun et al. [1] — which have
become popular for object classification. CNNs were more widely used after the
deep CNN from Krizhevsky et al. [2] outperformed state-of-the-art methods by
a wide margin in the “ImageNet Large Scale Visual Recognition Competition”
of 2012.

Convolutional neural networks consist of multiple layers of nodes, also called
neurons. One important layer type is the convolutional layer, from which the
networks obtain their name. In a convolutional layer, the responses of the nodes
depend on the convolution of a region of the input image with a kernel. Addi-
tional layers introduce non-linearities, rectification, pooling, etc. The goal of
training a CNN lies in optimizing the network weights (including the kernels used
for convolution) using image-label pairs to best reconstruct the correct label,
given an image. During testing, the network is confronted with novel images
and expected to generate the correct label. The network is trained by gradient
descent which is calculated by backpropagation of labeling errors. The general
idea of CNNs is to automatically learn the features needed to distinguish classes
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and generate increasingly abstract features as the information is transferred to
higher layers.

Since CNNs are very popular at the moment and are being perceived —
in parts of the computer vision community — as achieving human-like perfor-
mance, we wanted to test their applicability on visual tasks slightly outside the
mainstream which are still trivially solved by humans.

2 Materials and Methods

2.1 The Dataset

We use the framework presented by Fleuret et al. [3] to generate our dataset con-
sisting of 23 different problems which are briefly summarized as follows: Each
problem consists of two classes of images. Images of the first class exhibit some
abstract property which is not present in images of the second class and vice
versa. Figure 1 shows examples of the two classes for problem one. Both classes
contain two random objects. In the first class the objects are different, while in
the second they are identical. The goal is to assign the correct class to previ-
ously unseen images. These problems are reminiscent of the Bongard problems
presented by Bongard [4] and further popularized by Hofstadter [5].

(a) Class 1 (b) Class 2

Fig. 1. Example images for Problem 1

For each class of each problem we generate 20000 training images. We also
generate an additional 10000 images per class and problem as a testing set. The
size of the generated images varies depending on the used CNN. We chose images
of 64 × 64 pixels for LeNet, and 224 × 224 pixels for GoogLeNet.

2.2 Learning Framework

For training the CNNs, we used Caffe by Jia et al. [6]. More specifically, we used
the implementations of LeNet and GoogLeNet provided with Caffe. Only slight
adaptations were made to some hyperparameters. See the appendix for concrete
values. In addition, we used ADAM by Kingma & Ba [7] as the solver method
instead of stochastic gradient descent and changed the last fully connected layer
to only contain two neurons representing our two classes.
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3 Experimental Evaluation

Since we want to know how much progress has been made between the first
CNNs and a state-of-the-art model, we compare the performance of LeNet by
LeCun et al. [1] from 1989 to GoogLeNet by Szegedy et al. [8] from 2014. We
chose GoogLeNet as the modern CNN since it is a very popular architecture and
it performed best in a number of categories in ILSVRC14. LeNet was chosen
since it is the oldest widely known CNN.

We train one instance of LeNet and GoogLeNet for each problem using 20000
training images per class. The trained networks are then evaluated on a testing
set containing 10000 previously unseen images per class for the same problem.
The reported accuracy of the network is the proportion of correctly classified
images to the number of all tested images. For three problems (3, 11, 13) from
Fleuret et al. [3] we could not generate images of the correct size. Since we do
not think it will influence the overall conclusion, we excluded those problems
from our evaluation.

4 Results

Table 1 gives an overview of the achieved accuracy of both tested network archi-
tectures, the method presented by Fleuret et al. [3], and human test subjects.
In addition, the table gives a short description of the properties which are used
to differentiate the two classes.

At first glance, CNNs do not seem to have made much progress over the last
25 years with the types of problems we tested, and even compare very unfavor-
ably to the boosting method presented by Fleuret et al. [3]. The average accuracy
of GoogLeNet even decreased slightly compared to LeNet.

Upon closer inspection, there seem to be two groups of problems: Ones which
require the comparison of shapes and ones that do not. If we only consider
problems which do not, the two CNNs perform very well. LeNet has an average
accuracy of 0.95 and GoogLeNet achieves practically perfect accuracy. Both also
compare very favorably to the method presented by Fleuret et al. [3] which
achieves a mean accuracy of 0.86 on this subset of problems. We will discuss
those two subsets of problems in the following sections in more detail.

4.1 Problems Not Involving Comparisons

Problems 2, 4, 9, 10, 12, 14, 18, and 23 can be differentiated by the relative
positioning or grouping of the shapes. The shapes themselves are not relevant
to the classification except for problems 9 and 12, where the size of some of the
shapes play a roll in the classification. Apparently, those problems can be solved
by detecting local and global features alone. Hence CNNs work well on those
problems.
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Table 1. Accuracy comparison of presented methods. The two groupings consist of
problems which either need shape comparison to be solved or not. Accuracy of LeNet
and GoogLeNet are experimentally determined in this paper. Fleuret are results from
the best performing system proposed by Fleuret et al. [3] (Boosting with feature
group 3). The human results are estimated accuracies of participants also tested by
Fleuret et al. [3] and reinterpreted for this paper.

Problem LeNet GoogLeNet Fleuret Human Difference between classes

1 0.57 0.50 0.98 0.98 Compare

5 0.54 0.50 0.87 0.90 Compare & grouping

6 0.76 0.86 0.76 0.70 Compare & grouping

7 0.53 0.50 0.76 0.90 Compare & grouping

8 0.94 0.91 0.90 1.00 Compare & relative position

15 0.52 0.50 1.00 0.95 Compare

16 0.98 0.50 1.00 0.78 Compare

17 0.75 0.95 0.67 0.78 Compare & relative position

19 0.51 0.50 0.61 0.98 Compare

20 0.55 0.50 0.70 0.98 Compare

21 0.51 0.51 0.50 0.83 Compare

22 0.59 0.50 0.97 1.00 Compare

2 1.00 1.00 0.98 1.00 Relative position

4 0.98 1.00 0.93 1.00 Relative position

9 0.93 1.00 0.68 0.93 Size & relative position

10 0.99 1.00 0.94 0.98 Relative position

12 0.97 1.00 0.84 0.95 Size & relative position

14 0.90 1.00 0.73 0.98 Alignment

18 0.99 0.99 0.99 0.93 Grouping

23 0.87 1.00 0.75 1.00 Relative position

Average 0.77 0.76 0.83 0.93

4.2 Problems Involving Comparisons

Problems 1, 5, 6, 7, 8, 15, 17, 19, 20, 21, and 22 involve comparing shapes in
one way or another. To solve these problems, an agent has to be able to decide
whether two shapes are similar or not at one stage of the classification process;
e.g., in problem 1 (Fig. 1) the two classes only differ by whether the two presented
shapes are identical or not. Except for problems 6, 8, 16, and 17, LeNet as well
as GoogLeNet do not achieve accuracies significantly above chance.

Problems 6, 8, and 17 seem to be solvable by the tested CNNs although they
in theory also require the comparison of shapes. Problem 6 (Fig. 2) presents
two pairs of identical shapes and the two classes are separated by whether the
distances between each pair is the same or not. Problem 8 (Fig. 3) presents two
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(a) Class 1 (b) Class 2

Fig. 2. Example images for Problem 6

(a) Class 1 (b) Class 2

Fig. 3. Example images for Problem 8

shapes of differing size. One class always contains a small shape inside a bigger
version of the same shape. The other class either has a smaller shape inside a
different, bigger shape or two identical shapes which are not nested. Problem 17
(Fig. 4) presents four shapes, of which three are identical. The two classes are
separated by whether the distance between the identical shapes are all the same
or not.

In theory, an agent has to be able to compare shapes to solve problems 6,
8, and 17; otherwise the additional information, like relative position, does not
matter. We had the suspicion that the generation process for these problems
imparts some unwanted pattern to the images which the CNNs can use to sep-
arate the classes thus avoiding the need to compare shapes. If this is the case,
we can expect the same accuracy even if images of both classes contain identical
shapes. Theoretically this should mean that those modified problems are not
solvable. Training and testing the CNNs with those modified problems gives us
similar results (Table 2) to the original problems, which indicates that the CNNs
are exploiting some unintended pattern in the data and comparing the shapes
does not contribute to the classification.

Problem 16 (Fig. 5) requires the agent to decide whether shapes on the right
side are identical copies of the shapes on the left, or whether they are verti-
cally mirrored. Surprisingly, LeNet solves this problem almost perfectly, with an

(a) Class 1 (b) Class 2

Fig. 4. Example images for Problem 17
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Table 2. Results for problems 6, 8, and 17 when all images only contain identical
shapes.

Problem LeNet GoogLeNet Difference between classes

6 0.75 0.85 Compare and grouping

8 0.95 0.90 Compare and relative position

17 0.77 0.93 Compare and relative position

(a) Class 1 (b) Class 2

Fig. 5. Example images for Problem 16

accuracy of 0.98, while GoogLeNet cannot solve it at all, with an accuracy of
0.5. We suspected this to be an artifact and that generating the images with a
relatively small size of 64 × 64 pixels for LeNet adds some unwanted pattern to
the images which the network can exploit. Since GoogLeNet uses images with
a size of 224 × 224 pixels it would not profit from this. To test this hypothesis,
we trained LeNet using images with a size of 128 × 128 pixels, and, as expected,
the accuracy dropped to 0.5.

4.3 Human Performance

Fleuret et al. [3] presented experiments to determine the performance of humans
on the same dataset we use for our experiments. Each participant was tested on
all problems. For each of the problems, an example which is randomly chosen
from one of the two classes is presented and the participant has to indicate
whether it is from class one or two. After choosing a class, the correct answer
is revealed and the next example is shown. All previously seen images are kept
on the screen with their correct class. What is recorded in the experiment is the
number of examples the person has to see until he or she consistently chooses
the correct class. It is also recorded if a test subject can not solve a problem
at all.

Unfortunately, the mode of testing is sufficiently different from the way
machine learning solutions are evaluated that a direct quantitative compari-
son is difficult. To get some accuracy values we can compare other methods to
we define accuracy of humans as follows. We assume a person which was able to
solve a problem to have an accuracy of 1.0 and one which was not of 0.5. We can
then calculate an expected accuracy of the whole group of test subjects with

a =
pa + pn

2

n
(1)
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where a is the accuracy, pa is the number of participants who were able to solve
this problem, pn being the number of participants who were not able to solve
the problem and n being the number of all participants. The accuracies reported
in Table 1 were calculated from the original data reported by Fleuret et al. [3]
using Eq. 1.

5 Discussion

Looking at the results of our experiments one can come to very different con-
clusions. Simply looking at the overall performance looks very disappointing.
The over 25 year old LeNet is better than the current GoogLeNet, although only
marginally. A closer inspection reveals that there is a problem class which nei-
ther of the CNNs is capable of solving at all; namely problems which require the
comparison of shapes. We showed that the few problems in this class which the
CNNs can learn are actually learned because of some unexpected side effects of
image generation. We conclude that CNNs have an inherent problem when it
comes to comparative features. It should be noted that neither humans nor the
boosting method employed by [3] show this big performance gap between the two
subsets. The mean accuracy of the boosting method is 0.81 for problems with
shape comparison versus 0.86 for problems without. The human test subjects
show a mean accuracy of 0.90 and 0.97 for the two subsets respectively.

If we accept that CNNs are generally not capable of solving problems con-
taining shape comparison, the results look a lot better. Not only do both net-
works perform very well on the other problems, but GoogLeNet achieves, for all
intents and purposes, perfect accuracy. It even outperforms the human test sub-
jects. Obviously, the CNNs need a much larger training set to achieve those
accuracies. Where human subjects usually need below 20 images and often
only require 2 images to correctly learn the class and achieve perfect accuracy,
GoogLeNet generally needs about 4000 images to achieve an accuracy ≥ 0.99
(problem 2: 400 images, problem 4: 4000, 9: 4000, 10: 4000, 12: 40000, 14: 40000,
18: 4000, 23: 4000). Of course, humans have a lot of prior knowledge, so the
results are hard to compare. An interesting difference between machine learn-
ing algorithms and humans is the fact that an algorithm can have an accuracy
of e.g. 80 % on these abstract problems, but human subjects generally either
understand what separates the two classes and achieve an accuracy of 100 %, or
do not understand it and have an accuracy close to pure chance. This suggests
that the underlying principles of classification are probably very different.

Further, our experiments show how difficult it can be to evaluate CNNs
on abstract problems. One has to be extremely careful to guarantee that the
network is actually solving the problem one wants to test and does not use some
additional superficial pattern. In our case it would have appeared as if CNNs
can in fact compare shapes because they were able to solve problems 6, 8, and
17 quite successfully. Only close scrutiny revealed that the networks were in fact
exploiting patterns which were a side effect of the dataset generation.

We think it will be useful to further investigate the performance of deep
learning methods on more abstract problems than are usually considered since
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it can reveal a lot about the shortcomings and strengths of specific methods and
might inform further advances of the methods. We further hypothesize that if
the shape comparison problem of CNNs can be solved they would presumably
also perform better on more common tasks.
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with the dataset used in this paper.

Appendix

– Parameters used for LeNet: iterations = 25000, base learning rate = 0.001,
weight decay = 0.00005, solver = ADAM, β1 = 0.9, β1 = 0.999, ε = 10−8.

– Parameters used for GoogLeNet: iterations = 25000, base learning
rate = 0.001, average loss = 100, weight decay = 0.002, solver = ADAM,
β1 = 0.9, β1 = 0.999, ε = 10−8.
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