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Abstract

This tutorial attempts to provide a gentle introduction to EM by way of simple
examples involving maximum-likelihood estimation of mixture-model parameters.
Readers familiar with ML paramter estimation and clustering may want to skip
directly to Sections 5.2 and 5.3.
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1 Review: ML Parameter Estimation

Suppose we have a set of M example vectors S = {Xm} that are drawn independently
from an unknown probability distribution. We now want to fit a parametric model pθ(x)
to these data. To do this, we identify the most probable parameter vector θ̂ given the
data S :

θ̂ = argmax
θ

p(θ | S )

= argmax
θ

p(S | θ)p(θ)
p(S )

= argmax
θ

p(S | θ) = argmax
θ

M∏
m=1

p(Xm | θ)

= argmax
θ

log p(S | θ) = argmax
θ

M∑
m=1

log p(Xm | θ)

= argmax
θ

`(θ)

(1)

This holds if the prior probabilities over the values of θ are uniform. This maximization
can often be solved by finding roots of the gradient of the log-likelihood function. θ̂ is a
vector that satisfies

∇θ`(θ) =

M∑
m=1

∇θ log p(Xm | θ) =

M∑
m=1

1
p(Xm | θ)

∇θp(Xm | θ) = 0 (2)

Consider, for example, a univariate Gaussian model:

p(Xm | µ, σ) =
1

√
2πσ2

e−
(Xm−µ)2

2σ2

log p(Xm | µ, σ) = −
1
2

log(2πσ2) −
(Xm − µ)2

2σ2

∇µ,σ log p(Xm | µ, σ) =

 Xm−µ

σ2

− 1
σ

+
(Xm−µ)2

σ3


Closed-form solution for µ̂:

M∑
m=1

Xm − µ̂

σ2 = 0 ⇒
M∑

m=1

Xm = Mµ̂ ⇒ µ̂ =
1
M

M∑
m=1

Xm (3)

Closed-form solution for σ̂:

M∑
m=1

(
−

1
σ̂

+
(Xm − µ̂)2

σ̂3

)
= 0

⇒
M
σ̂

=
1
σ̂3

M∑
m=1

(Xm − µ̂)2 ⇒ σ̂2 =
1
M

M∑
m=1

(Xm − µ̂)2 (4)
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2 Mixture Models

Suppose now that we have a set of M example vectors S = {Xm} that were drawn from
K independent, unknown probability distributions. Now, the probability of a data point
given a model parameterization is

pmix(Xm | θ1, . . . , θK) =

K∑
k=1

pk(Xm | θk)P(k) (5)

where P(k) denotes the prior probability that a data point is generated by mixture com-
ponent k, with

∑K
k=1 P(k) = 1. Analogously to Eqn. 1, the log-likelihood function to be

maximized over all the θk is

`(θ1, . . . , θK) =

M∑
m=1

log pmix(Xm | θ1, . . . , θK) (6)

This is a multi-dimensional optimization problem with
∑K

k=1 Vk + K − 1 free parameters:
For each of the K mixture components, a Vk-dimensional parameter vector is to be
determined. The K mixture proportions P(k) give rise to only K − 1 free parameters,
since they add up to one.

If the parametric models pk are differentiable, this maximization problem can in prin-
ciple be solved by finding roots of the gradient, computed with respect to all scalar
parameters of all mixture components k, and for P(k), k = 1, . . . ,K − 1:

∇θk`(θ1, . . . , θK) =

M∑
m=1

P(k)
pmix(Xm | θ1, . . . , θK)

∇θk pk(Xm | θk) = 0 (7)

These are the partial derivatives with respect to the P(k), for k = 1, . . . ,K − 1:

∂

∂P(k)
`(θ1, . . . , θK)

=
∂

∂P(k)

M∑
m=1

log

K−1∑
k=1

pk(Xm | θk)P(k) + pK(Xm | θK)

1 − K−1∑
k=1

P(k)


=

M∑
m=1

pk(Xm | θk) − pK(Xm | θK)
pmix(Xm | θ1, . . . , θK)

(8)

Equations 7 and 8 define a system of
∑K

k=1 Vk + K − 1 simultaneous equations. Due
to the presence of the mixture probability (5), this system is non-linear in all practical
cases, and closed-form solutions usually do not exist. Therefore, one needs to resort to
numerical optimization problems, using appropriate constraints on the θk and the P(k).
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3 The K-Means Problem and an EM solution

Often, an elegant way to estimate the parameters of a mixture model is Expectation-
Maximization (EM) [1]. To illustrate this, we will begin with a simplified version of the
above problem, known as K-Means.

Suppose we are given M data points S that we want to fit using a mixture of K univari-
ate Gaussian distributions with identical and known variance σ2, and non-informative
component priors P(k). If we knew which distribution generated which data point, this
problem would be easy to solve. For this purpose, let us represent the data points Xm

as (K + 1)-tuples 〈Ym,wm1, . . . ,wmK〉, where wmk = 1 if Ym was generated by compo-
nent distribution k, otherwise 0. Then, from Eqn. 3, the maximum-likelihood solution
is simply given by

µk =
1

Mk

M∑
m=1

wmkYm (9)

where Mk =
∑M

m=1 wmk, and k = 1, . . . ,K.

However, the values of the wmk are not known. On the other hand, if we knew the K
means µk, we could easily compute maximum-likelihood estimates of the wmk, i.e., those
that maximize p(S | µk,wmk), the likelihood of the data, for all k and all m:

wmk = argmax
k

p(Ym | µk)P(k) (10)

Unfortunately, we have neither the wmk nor the µk.

The idea of the EM algorithm is to estimate both simultaneously by iterating between
the above two calculations. We start by initializing our µk to arbitrary initial values, and
then iterate the following two steps:

Expectation (E) Calculate the expected value of the wmk based on the current estimates
of the µk.

Maximization (M) Calculate the new maximum-likelihood estimate for the µk based
on the current expected values of the wmk.

At the E step, the expected value of wmk is simply the probability that Ym was generated
by component k, which we compute using Bayes’ Rule:

E[wmk] = p(k | Ym) =
p(Ym | k)P(k)

p(Ym)
=

p(Ym | µk)P(k)∑K
j=1 p(Ym | µ j)P( j)

=
e−

(Ym−µk )2

2σ2

K∑
j=1

e−
(Ym−µ j)

2

2σ2

(11)

The P(k) cancel out with the P( j) since, as stated above, we are assuming equal compo-
nent priors.

4



At the M step, we need to find the parameters µk that maximize the likelihood function

p(S | µk,wmk for k = 1, . . . ,K and m = 1, . . . ,M)

=

M∏
m=1

K∑
k=1

wmk
√

2πσ2
e−

(Ym−µk )2

2σ2 (12)

=

M∏
m=1

1
√

2πσ2
e−

1
2σ2

∑K
k=1 wmk(Ym−µk)2

(13)

where the second equality holds because in reality, each data point has been generated
by exactly one random process, i.e., all wmk are either zero or one.1

Equivalently, we can minimize the negative log-likelihood, here simplified by dropping
irrelevant terms:

`(µk,wmk for k = 1, . . . ,K and m = 1, . . . ,M) =

M∑
m=1

K∑
k=1

wmk(Ym − µk)2 (15)

Since `(·) is a random variable governed by the distribution that generates S , or, equiva-
lently, by the distribution governing the unobserved variables wmk, we must consider its
expected value E[`(·)]. Since `(·) is linear in the wmk, we have

E[`(·)] = E

 M∑
m=1

K∑
k=1

wmk(Ym − µk)2

 =

M∑
m=1

K∑
k=1

E[wmk](Ym − µk)2 (16)

For a closed-form solution, we set the derivatives with respect to the µk to zero:

∂

∂µk
E[`(·)] = −2

M∑
m=1

E[wmk](Ym − µk)

0 =

M∑
m=1

E[wmk](Ym − µk)

µk =

∑M
m=1 E[wmk]Ym∑M

m=1 E[wmk]
(17)

Thus, Equations 11 and 17 define the EM algorithm for the K-Means problem.

1A different way to use this fact is to replace Eqn. 12 by

p(S | ·) =

M∏
m=1

K∏
k=1

(
1

√
2πσ2

e−
(Ym−µk )2

2σ2

)wmk

, (14)

from which Eqn. 13 follows directly.
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4 The EM Algorithm

The EM algorithm is a general method for solving the following class of problems:

Given: A set Y = {Ym}, m = 1, . . . ,M, of observation vectors.

Assumption: The Y are the observable part of data points X = {Xm} from a higher-
dimensional space. In other words, Y = Y(X) via a many-to-one mapping. The
complete data X follow a parametric probability density function p(X | θ) (or, for
discrete X, a probability mass function P(X | θ)).

Wanted: An explanation of the observed data Y in terms of a parametric description of
the full data X. Formally, we seek a maximum-likelihood estimate of the paramter
vector θ:

θ̂ = argmax
θ

log pY(Y | θ) (18)

The incomplete-data specification pY is related to the complete-data specification p –
for which we have a parametric model – by

pY(Y | θ) =

∫
X(Y)

p(X | θ) dX (19)

where X(Y) denotes all values of X for which Y(X) = Y . Since we do not have the
full data X to compute the solution (19) directly, we maximize instead its expectation
E[log p(X | θ)]. This expectation is taken over the probability distribution governing
X, which is determined by the known values Y and the probability density function
describing the unobserved portion of X.

Unfortunately, we do not have the parameter vector θ that defines the probability dis-
tribution governing X (this vector is exactly what we set out to find in the first place).
Therefore, we use an estimate of it, that we iteratively improve. Let us define a function
Q that expresses the sought expectation of the likelihood as a function of the parameters
θ that we are trying to estimate, given the observed data Y and a current estimate θ̂ of
the parameters:

Q(θ | θ̂) = E[log p(X | θ) | Y, θ̂] (20)

This Q function will allow us to compute the expected log-likelihood of the complete
data X for any parameterization θ, while the expectations are computed using a fixed
probability distribution defined by the observed data Y and a given parameterization θ̂.
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The general EM algorithm specifies an iterative procedure for improving the estimate θ̂:

1. Choose an initialization for θ̂.

2. (E) Construct a computable representation for Eqn. 20, using the current θ̂.

3. (M) Find a new parameterization θ̂ that maximizes the current Q function:

θ̂ ← argmax
θ

Q(θ | θ̂) (21)

4. If θ̂ has barely changed, stop. Otherwise, continue at Step 2.

This algorithm will improve the estimate θ̂, increasing the value of Q at every M step
until it reaches a local maximum.

In practice, the E step involves the computation of some parameters defining Q. Al-
though the EM algorithm is conceptually simple, both E and M steps may be quite
difficult to compute. However, in many practical cases there exist closed-form solutions
for both E and M steps.

5 Examples

5.1 The K-Means Problem Revisited

In the case of the K-Means problem, we have Xm = Ym ∪ Zm, where the Zm = {wmk} are
the hidden variables, and θ = [µ1, . . . , µK]. The Q function (20) is (cf. Eqn. 13)

Q(θ | θ̂) = E

log
M∏

m=1

1
√

2πσ2
e−

1
2σ2

∑K
k=1 wmk(Ym−µk)2

∣∣∣∣∣∣∣ Y, θ̂


=

M∑
m=1

log
1

√
2πσ2

−
1

2σ2

K∑
k=1

E[wmk | Ym, θ̂](Ym − µk)2

 (22)

Thus, at the E step, specifying the Q function amounts to computing the expected values
of the unknown variables Zm = {wmk} as shown in Eqn. 11, using the current parameter
estimates θ̂ = {µ̂k}.

At the M step, the Q function is maximized as shown in Eqns. 16–17 after dropping
constant terms.
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5.2 Mixture Models

A typical application of EM is the estimation of the parameters of a mixture model

pmix(Ym | Θ) =

K∑
k=1

p(Ym | θk) P(k) (23)

to fit an observed set of data points {Ym}. The mixing proportions P(k) and the com-
ponents km that generated each data point Ym are unknown. The objective is to find the
parameter vector θk describing each component density p(Y | θk).

For distributions of the exponential family whose logarithms are linear in the wmk, the
Expectation step essentially computes, as shown in Eqn. 22 above, the expected values
of the indicators wmk that each data point Ym was generated by component k, given the
current parameter estimates θk and P(k), using Bayes’ Rule:

E[wmk] =
p(Ym | θk) P(k)∑K

j=1 p(Ym | θ j) P( j)
=

p(Ym | θk) P(k)
pmix(Ym | Θ)

(24)

At the Maximization step, a new set of parameters θk, k = 1, . . . ,K, is computed to
maximize the log-likelihood of the observed data:

`(Θ) =

M∑
m=1

log pmix(Ym | Θ) (25)

At the maximum, the partial derivatives with respect to all parameters vanish:

0 = ∇θk`(Θ) =

M∑
m=1

P(k)
pmix(Ym | Θ)

∇θk p(Ym | θk)

=

M∑
m=1

wmk

p(Ym | θk)
∇θk p(Ym | θk) (26)

where the second line (26) follows from substituting Eqn. 24. The Maximization is then
computed by solving this system (26) for all θk. Moreover, the estimates of the com-
ponent priors are updated by averaging the data-conditional component probabilities
computed at the Expectation step:

P(k) =
1
M

M∑
m=1

wmk (27)
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5.3 Gaussian Mixture Models

The one-dimensional K-Means problem arguably constitutes the simplest special case of
Gaussian mixture fitting. We will now derive an EM algorithm for the similar problem
of a one-dimensional Gaussian mixture, where we do not know the variances σ2

k or the
mixture proportions P(k) either. The parameter vector for mixture component k is thus
θk = [µk, σk]T :

pk(y | µk, σk) =
1√

2πσ2
k

e
(y−µk )2

2σ2
k (28)

The Expectation step is easily defined by plugging Eqn. 28 into Eqn. 24.

For the Maximization, we plug Eqn. 28 into Eqn. 26:

0 =
∂

∂µk
`(Θ) =

M∑
m=1

wmk

pk(ym | µk, σk)
−2(ym − µk)

2σ2
k

pk(ym | µk, σk)

=

M∑
m=1

wmk(ym − µk)

µk =

∑M
m=1 wmkym∑M

m=1 wmk

0 =
∂

∂σk
`(Θ) =

M∑
m=1

wmk

pk(ym | µk, σk)

(
−1
σk

+
−2(ym − µk)2

2σ3
k

)
pk(ym | µk, σk)

=

M∑
m=1

wmk

(
σ2

k + (ym − µk)2
)

σ2
k =

∑M
m=1 wmk(ym − µk)2∑M

m=1 wmk

Finally, we recompute the mixture proportions using Eqn. 27.
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5.4 ET Image Reconstruction

In emission tomography (ET), body tissues are stimulated to emit photons, that are
detected by D detectors surrounding the tissue. The body is modeled as a block of B
equally-sized boxes. Given the number y(d) of photons detected by each detector d,
we want to know the number n(b) of photons emitted at each box b. The emission of
photons from box b is modeled as a Poisson process with mean λ(b):

p(n(b) | λ(b)) = e−λ(b)λ(b)n

n!
(29)

The λ = {λ(b), b = 1, . . . , B} are thus the unknown parameters we need to estimate,
using the measurements y = {y(d), d = 1, . . . ,D}.

A photon emitted from box b is detected by detector d with probability p(b, d), and we
assume that all photons are detected by exactly one detector:

D∑
d=1

p(b, d) = 1 (30)

The p(b, d) are known, as they can be determined from the geometry of the detectors.
The number y(d) of photons detected by detector d is Poisson distributed

p(y | λ(d)) = e−λ(d)λ(d)y

y!
(31)

and it is intuitive and provable that

λ(d) = E[y(d)] =

B∑
b=1

λ(b)p(b, d). (32)

Let x(b, d) be the number of photons emitted from box b detected by detector d. Thus,
x = {x(b, d), b = 1, . . . , B, d = 1, . . . ,D} constitute the complete data. Each x(b, d) is
Poisson distributed with mean

λ(b, d) = λ(b)p(b, d). (33)

Assuming independce between all boxes and between all detectors, the likelihood func-
tion of the complete data is

p(x | λ) =
∏

b=1,...,B
d=1,...,D

e−λ(b,d)λ(b, d)x(b,d)

x(b, d)!
(34)

and, using Eqn. 33, the log-likelihood is

log p(x | λ) =∑
b=1,...,B
d=1,...,D

(
− λ(b)p(b, d) + x(b, d) log λ(b) + x(b, d) log p(b, d) − log x(b, d)!

)
(35)
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For the E step, we set up the function

Q(λ | λ̂) = E[log p(x | λ) | y, λ̂]. (36)

Since the Poisson distribution belongs to the exponential family, this once more boils
down to estimating

E[x(b, d) | y, λ̂] = E[x(b, d) | y(d), λ̂] (37)

where the simplifying equality comes from the fact that all boxes are independent.

At the M step, we maximize Eqn. 35 by setting ∇λ(b) log p(x | λ) = 0. The remaining
details are omitted here.

6 Bibliographical Remarks

The K-Means problem and its EM solution are borrowed from Mitchell’s excellent text-
book [2]. The ET image reconstruction example is from Moon [3], where the full solu-
tion is given. He also explains the general EM procedure quite clearly, and gives other
examples as well.
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