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1. Sequential Models

1.1. Markov Chain

The second equation is an instance of the Markov property (probabilistic
dependencies confined to finite neighborhoods) and here follows from d-
separation.

To model a stationary sequence, use a homogeneous Markov chain where
 is the same for all .

Due to their strong conditional-independence assumptions, such sequential models
are severely limited in their expressive power.

We can also define higher-order Markov chains. For example, in a second-order
Markov chain, .

The number of parameters of an th-order Markov chain is exponential in .

1.2. State-Space Models

To add expressive power while retaining computational tractability, introduce
latent variables:

The latent (never observed) variables  exhibit the Markov property, but – as long
as none of the latents is observed –  depends on its entire

history of observations.
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Problem 1: Probability of an Observation Sequence

1.3. Hidden Markov Model

A Hidden Markov Model is a state-space model of the above structure with
discrete latent (state) variables  and (discrete or continuous) observation variables
.

Applications:

All kinds of sequential (e.g., temporal) data, e.g.:

• speech recognition

sub-words, words, syntax; possibly combined in stacked HMMs [Rabiner 1989
Sec. VIII]

• handwritten character recognition

sequences of strokes at different orientations [Bishop 2006 Sec. 13.2]

• genetics

Where large amounts of training data are available, HMMs have mostly fallen
out of fashion in favor of neural nets. However, the underlying principle of state-
space models is still extremely popular, in neural networks as well as in purely-
probabilistic models.

Rabiner [Rabiner 1989] defines three basic problems for HMM:

1. Compute the probability  of an observation sequence 

(given the model parameters ).

2. Given an observation sequence  (and ), compute the state sequence that
maximizes .

3. Given one or more observation sequences , compute the model parameters
that maximize .

2. Problem 1: Probability of an Observation Sequence

2.1. The Forward-Backward Algorithm

• In principle, we need to marginalize  over all possible state

sequences, whose number is exponential in .

• The Forward-Backward algorihm for HMM solves this in time proportional in
.

• It is equivalent to the Sum-Product algorithm in that , which is the

normalization constant that turns message products into marginal probabilities.

This is shown in the following sections.
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Problem 1: Probability of an Observation Sequence

2.2. First Time Slice, Without Observation

The (element-wise) product of the incoming (vector) messages at  yields

the marginal probability distribution , with a normalization factor

.

2.3. First Time Slice, With Observation

The message product at  yields a vector whose elements are the joint

probabilities  for all values  that  can take. To recover

 this vector has to be normalized by dividing it by , the sum

of its elements (as prescribed by the Sum-Product algorithm). Here, this sum is
a marginalization of  over  such that  equals the marginal

probability of the observation:
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Problem 2: Compute a MAP State Sequence

2.4. Second Time Slice, With Observations

For the first emphasized equality see its derivation.

The second emphasized equality holds since .

To recover  from the message product

, this probability vector has to be divided by its

marginalization  over , i.e.,  equals the joint probability of the observation:

2.5. 

The third equation holds because .

2.6. Remark

For the purpose of solving Problem 1, the backward pass is not required. Once 

has received its messages,  is available.

3. Problem 2: Compute a MAP State Sequence

3.1. The Viterbi Algorithm

• The Max-Sum algorithm finds a most probable state sequence given an
observation sequence.

• Its formulation for HMM is known as the Viterbi algorithm.
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Problem 3: Compute Model Parameters From Observation Sequences

4. Problem 3: Compute Model Parameters From
Observation Sequences

4.1. The Baum-Welch Algorithm

Chicken-and-egg problem:

• If we know the model parameters , we can determine the marginal posterior
distributions  that maximize .

• If we know the , we can determine the parameters  that maximize .

Unfortunately we have neither.

Solution:  an Expectation-Maximization (EM) algorithm

1. Initialize  suitably.

2. Iterate until convergence:

a. E Step

Run the Forward-Backward algorithm to determine posterior probabilities.

b. M Step

Maximize  over .

Over such a sequence of E and M steps the data likelihood will never decrease.
While this guarantees convergence, it does not guarantee convergence to a global
maximum.

4.2. Notation

4.3. E Step

Compute using the Forward-Backward algorithm and :

• The so-called forward variable  and backward variable  are introduced here

in keeping with notational conventions of the Forward-Backward algorithm.

• The calculation of  arises from the Sum-Product message product followed by

the product rule of probability; see also Exercise 7.

• For  see Exercise 8.
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Exercises

4.4. M Step

These hold for homogeneous HMM with discrete observation probabilities:

The left-hand sides we collectively called  above.

The second and third equations compute, respectively, the desired conditional by
dividing the joint by the marginal.

5. Exercises

5.1. Markov Models and Parameters

Determine the number of parameters of

1.  i.i.d. variables

2. a length-  Markov chain

3. a length- , th-order Markov chain

4. a length-  HMM

5. a fully-connected model with  variables

where all random variables take  distinct values.

6. Show that any higher-order Markov model can be converted into a first-order
Markov model.
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5.2. Baum-Welch

7. In the E step of the Baum-Welch algorithm, verify the result for , without

referring to the Sum-Product message product.

8. Ibidem, verify the result for .

The numerator of  equals .

9. Show that  (used at the E step). Proceed

similarly to our derivation for the forward pass.

10. We defined the Baum-Welch algorithm for training a HMM on a single
observation sequence. Think about how to extend it for training on multiple
observation sequences. (See Ex. 13.12 [Bishop 2006] for more information.)
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