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1. Sequential Models
1.1. Markov Chain

pO1,...,0x) = p(O1) [[P(On]0n1)

n=2

p(On | Op-1,...,01) = p(Oy | Op-1)

The second equation is an instance of the Markov property (probabilistic
dependencies confined to finite neighborhoods) and here follows from d-
separation.

To model a stationary sequence, use a homogeneous Markov chain where
p(Oy, | Op—1) is the same for all 7.

Due to their strong conditional-independence assumptions, such sequential models
are severely limited in their expressive power.

We can also define higher-order Markov chains. For example, in a second-order
Markov chain, p(O, | Oy-1, ..., 01) = p(Oy, | Op-1, On—2).

The number of parameters of an Mth-order Markov chain is exponential in M.

1.2. State-Space Models

To add expressive power while retaining computational tractability, introduce
latent variables:

Sl S2 53 >
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n=2
P | Sn-1,-.-,81) = p(Sn | Sp-1)
p(on | On—ls reey 01) ?é P(On | On—l)
The latent (never observed) variables S exhibit the Markov property, but — as long

as none of the latents is observed — p(Oy, | Op-1, ..., O1) depends on its entire
history of observations.

P(Ol,---,ON,Sl,---,SN)




Problem 1: Probability of an Observation Sequence

1.3. Hidden Markov Model
Sl SQ 53 >

A Hidden Markov Model is a state-space model of the above structure with
discrete latent (state) variables S and (discrete or continuous) observation variables

0.

Applications:

All kinds of sequential (e.g., temporal) data, e.g.:

* speech recognition

sub-words, words, syntax; possibly combined in stacked HMMs [Rabiner 1989
Sec. VIII]

* handwritten character recognition

sequences of strokes at different orientations [Bishop 2006 Sec. 13.2]
* genetics

Where large amounts of training data are available, HMMs have mostly fallen
out of fashion in favor of neural nets. However, the underlying principle of state-
space models is still extremely popular, in neural networks as well as in purely-
probabilistic models.

Rabiner [Rabiner 1989] defines three basic problems for HMM:

1. Compute the probability p(0) of an observation sequence 0 = 01, ... , 0y
(given the model parameters ).

2. Given an observation sequence 0 (and 6), compute the state sequence that
maximizes p(si,...,Sn | 0).

3. Given one or more observation sequences 0, compute the model parameters
that maximize p(o | 6).

2. Problem 1: Probability of an Observation Sequence

2.1. The Forward-Backward Algorithm

* In principle, we need to marginalize p(0 | Si, ..., Sy) over all possible state
sequences, whose number is exponential in N.

» The Forward-Backward algorihm for HMM solves this in time proportional in

N.

* It is equivalent to the Sum-Product algorithm in that p(0) = Z, which is the
normalization constant that turns message products into marginal probabilities.

This is shown in the following sections.
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2.2. First Time Slice, Without Observation
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p(01 | $1)
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The (element-wise) product of the incoming (vector) messages at S7 yields
the marginal probability distribution p(S;), with a normalization factor

Z= ) Wi ~51H5,0,-51 = 1.

2.3. First Time Slice, With Observation
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vector whose element at 0; = 1 and 0 everywhere else
Y. P01 =0|S)fo, = pO1 =01 |5)
o

p(O1 = o01,81)
p(0O1 =o01)

The message product at S yields a vector whose elements are the joint
probabilities p(O; = 03,81 = ) for all values s that S can take. To recover
p(S1 | O1 = 01) this vector has to be normalized by dividing it by Z, the sum
of its elements (as prescribed by the Sum-Product algorithm). Here, this sum is
a marginalization of p(0Q1 = 01,S1) over Sy such that Z equals the marginal
probability of the observation:

p(S1 | 01 =o01)

p(S1,01 = 01)
p(0O1 =o01)




Problem 2: Compute a MAP State Sequence

2.4. Second Time Slice, With Observations
fs, fs,5,

S2

f5101 ngOg
fol f02
fas, = p(S2|81)
Mis,o5 = P01 =01,5 =9)p(S2 | S =5) = p($,01 =o01)
5
Hfsy0,282 = P02 =03 | 82)
Hfs 5,2 Hf50,»8 = P(O2 =02 | $2)p(01 = 01 | $2)p(S2)

p(01 = 01,0, =03 | $2)p(S2)
p(O1 = 01,072 =072,57)
Z = p(01=01,0, =07)

For the first emphasized equality see its derivation.
The second emphasized equality holds since O1 1L Oy | S5.

To recover p(Sy | O1 = 01, O3 = 03) from the message product
p(01 = 01,03 = 03,8,), this probability vector has to be divided by its
marginalization Z over S, i.e., Z equals the joint probability of the observation:

p(S2,01 = 01,0, = 07)
p(O1 = 01,0, =03)

p(S2 | 01 =01,0, =07)

2.5. Hfs 5,5

Hfgs,~8 = ZP(OI =01,51 =5)p(S2 | $1 =)
s

Y p(01 =01 | $1 = 5)p(S1 = p(S2 | S1 = 5)

N

Y p(01 = 01,5, | $i = S)p(S; =)
s

ZP(SI =5,5,01 =01)
S

p(S$2,01 =01)
The third equation holds because Sy IL O; | S;.

2.6. Remark

For the purpose of solving Problem 1, the backward pass is not required. Once Sy
has received its messages, Z is available.

3. Problem 2: Compute a MAP State Sequence

3.1. The Viterbi Algorithm

e The Max-Sum algorithm finds a most probable state sequence given an
observation sequence.

* Its formulation for HMM is known as the Viterbi algorithm.




Problem 3: Compute Model Parameters From Observation Sequences

4. Problem 3: Compute Model Parameters From
Observation Sequences

4.1. The Baum-Welch Algorithm
Chicken-and-egg problem:

* If we know the model parameters 8, we can determine the marginal posterior
distributions p(S,) that maximize p(0).

* If we know the p(S,), we can determine the parameters @ that maximize p(0).

Unfortunately we have neither.

Solution:  an Expectation-Maximization (EM) algorithm
1. Initialize @ suitably.
2. Iterate until convergence:

a. E Step

Run the Forward-Backward algorithm to determine posterior probabilities.

b. M Step
Maximize p(0) over 6.
Over such a sequence of E and M steps the data likelihood will never decrease.

While this guarantees convergence, it does not guarantee convergence to a global
maximum.

4.2. Notation

Y(Sn) = p(Sn | o, eold)
ESn-1,8) = pP(Sn-1,8n | 0,651a)
4.3. E Step

Compute using the Forward-Backward algorithm and Gg4:

p(o)
a(Sy) D015+ ,0n,80) = Hfg g —SuMs,0,~5n

B(Sn) = p(ont1,....0n | Sp) = ”fsnsn+l_)s"

a(Sn)B(Sn)
s, = ——
¥(Sn) )

S8, = PSrPOn | S0P | S1)PSn)

p(o)

* The so-called forward variable & and backward variable f3 are introduced here
in keeping with notational conventions of the Forward-Backward algorithm.

* The calculation of ¥ arises from the Sum-Product message product followed by
the product rule of probability; see also Exercise 7.

* For & see Exercise 8.




Exercises

4.4. M Step

These hold for homogeneous HMM with discrete observation probabilities:

p(S1) 7(S1)

N
Y ESu1 =58, =1)
n=2

N

DD 1 =58, =1)

t n=2
N

Y. 7(Sn = 910,20

n=1

N
Y 7(Sn=19)
n=1

pSp =181 =95 =

P(On =08, =5)

The left-hand sides we collectively called 6 above.

The second and third equations compute, respectively, the desired conditional by
dividing the joint by the marginal.

5. Exercises

5.1. Markov Models and Parameters

Determine the number of parameters of

. N i.i.d. variables

. a length-N Markov chain

. a length-N, Mth-order Markov chain

. a length-N HMM

. a fully-connected model with N variables

DN A W N =

where all random variables take K distinct values.

6. Show that any higher-order Markov model can be converted into a first-order
Markov model.
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5.2. Baum-Welch

7. In the E step of the Baum-Welch algorithm, verify the result for y, without
referring to the Sum-Product message product.

8. Ibidem, verify the result for €.
The numerator of & equals p(Sy—1,S5, 0).

p(0<n, Sn—l)p(on | Sn)p(sn |S —l)p(0>n |Sn)
= P(0<ns Sn-1)P(0n, 055 | Su)P(Sn | Sn-1) On 1L Osp | Sy
P(0<ns Sn-1)P(0n, 055 | Sns Sn-1)P(Sn | Sn-1)  Ony O>p L Syq | Sn
p(0<n9 Sn—l)p(om 051, 5, |S —1)
P0<n | Sn—1)P(0n; 0515 Sn | Sn—1)p(Sp-1)
p(°<n90n9o>nsSn |S —1)P(S —1) 0<n L Ona 0>mSn | S, -1
DP(Sn—158n50<n, Ons 0>p)

9. Show that py, o5 = P(0n+1, ... ,0n | Sp) (used at the E step). Proceed
non+

similarly to our derivation for the forward pass.

10. We defined the Baum-Welch algorithm for training a HMM on a single
observation sequence. Think about how to extend it for training on multiple
observation sequences. (See Ex. 13.12 [Bishop 2006] for more information.)
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