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1. Calculus of Variations

1.1. Functionals
Function Functional 

Maps a value to a value a function to a value
Study of Extrema Calculus Calculus of Variations
Minimum

differential variation 

Extremum
derivative 

functional derivative

 is an (almost) arbitrary function (the details depend on ).

Examples of functionals:

• the length of a curve

• the entropy of a probability distribution

While calculus seeks values that extremize a function, calculus of variations seeks
functions that extremize a functional.

Notably, this can be done without limiting the search to a specific parametric
family of functions.
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Calculus of Variations

1.2. Example: Shortest Curve Between Two Points

See also Wikipedia
1
.

Problem:  Find the function  that connects two points  and 

that minimizes its arc length .

The integrand is Pythagoras on an infinitesimal triangle. Check the value of the
integral if you set, e.g.,  or .

 has a minimum at . Thus, with :

• The differentiation interchanges with the integral thanks to Leibnitz’ Rule
2
.

•  is an arbitrary differentiable function of  that vanishes at  and .

• The expression involving the highlighted term results from applying integration
by parts to the expression on its left.

The highlighted term equals zero because .

One obvious way to get the value of the remaining integral in this expression to

vanish is to set its integrand to zero; this implies  because  can

be anything. According to the Fundamental Lemma of Calculus of Variations,
this is actually the only way.

• Incidentally, this derivation is a special case of the more general and wide-

spread class of functionals  whose final

condition  is known as the Euler-Lagrange Equation.

Since the derivative is zero the function must be constant:

1
 https://en.wikipedia.org/wiki/Calculus_of_variations#Example2
 https://en.wikipedia.org/wiki/Leibniz_integral_rule
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Variational Inference

Since the derivative is constant the function must be linear – the shortest curve
connecting two points is a straight line!

2. Variational Inference

2.1. Typical Setting

Given:  a model  and observations 

Sought:  the posterior  and the evidence 

Examples are graphical models composed of latent and observed variables 
and , respectively. This includes HMM, but due to their tree structure these
allow exact inference. For more general graphical models we have to resort to
approximate inference.

Approach:  Approximate the intractable posterior  with  from a

tractable family.

Examples of tractable families include factored models, tree-structured models,
and multivariate normal distributions.

Method:  Use calculus of variations limited to the chosen family of probability
distributions.

2.2. Example Application: Image Denoising

True 
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Variational Inference

2.3. Approximating  by 

[Murphy 2012 Sec. 21.2 (Intro)]

•
Minimize ?

No, since evaluating  is intractable.

• Instead, minimize :

 is intractable to compute but constant (does not depend on  or ), so

maximizing  will force  to become close to .

Equivalently to minimizing  we can maximize the Evidence Lower Bound
(ELBO)

2.4. Mean-Field Approximation

[Murphy 2012 Sec. 21.3.1]

Approximation:   that factors into disjoint groups 

Note that we are not making any assumptions about the (parametric) form of the
.

Sought: 

Approach:  Coordinate descent, e.g.,

where  is the expectation of  over all variables in  except for .

When updating the  one at a time we only need to consider ’s

Markov blanket, i.e. those variables that share a factor with  in ; the

other factors are absorbed into the constant term of .

Note

The Mean-Field Approximation is a very general method that can be
used with a wide variety of parametric forms of the , discrete or

continous.
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Variational Inference

2.5. Rewriting the Mean-Field ELBO

In the following we are omitting the dependencies on  for brevity.

Single out the terms that involve  and treat all other terms as constants:

2.6. Mean-Field Update Equations

Disregarding the constant term:

This is maximized by , which – since we can

compute  – we can achieve by setting

where  can be computed because the  are designed to be

tractable.

These update equations give the method its name: It assigns means to (log) factors.

This procedure is closely related to the MCMC Gibbs sampling method that passes
samples rather than means. Passing means tends to be more efficient than passing
samples because many samples can be represented by a single mean. On the other
hand, samples can be sparse, potentially allowing Gibbs sampling to scale better.
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Mean Field for the Ising Model

3. Mean Field for the Ising Model

3.1. Ising Model

[Murphy 2012 Sec. 21.3.2]

The  are the hidden (pixel) values

(of a clean image), and the  are their perturbed

observations (in the noisy image).

;

 iff  and  are neighbors on the grid.

In an image denoising application,  is typically the matrix of ones, and

, the exponent of a Gaussian independent pixel noise

model. (Its normalization factor is dropped but this is inconsequential because it
will cancel later.)

Exercise:  Using Bayes’ Rule, show that the posterior has this form!

3.2. Mean Field Approximation of the Ising Model

Approximation:  Approximate  by a fully-factorized distribution

 paramterized by its means .

To derive the update rule for the variational parameter :

We neglect the normalization factor  for now and normalize the  at the end.

' :

Some shorthand notation for the next step:
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Mean Field for the Ising Model

3.3. Ising Update Rule For 

Now normalize to obtain the approxiate posterior probabilities:

Exercise:  Derive the solution for !

In practice, it is often better to use damped updates using a damping factor
:

This update rule is iterated to convergence.

3.4. Notes

• Recall that the  are the means of the distributions governing the states .

Thus, these are the values that are iteratively updated by this algorithm.

• Initialize the algorithm by setting  for all .

• The  must (and can easily) be recomputed at every iteration.

• The observation log likelihood functions  must be specified as model

parameters.

• The values  and  (and thus the term

) can be precomputed because there are only these two possible

states, and the observations  are fixed.

Note

After lots of math we arrived at a very simple, easily-implemented, and
effective algorithm!

3.5. Example: Image With Gaussian Noise

Noisy Clean

1 2 5 17
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Variational Autoencoders

3.6. Example: Image With Flipped Pixels

Noisy Clean

1 2 5 17

3.7. Example: ICM

Noisy Clean

1 2 3

4. Variational Autoencoders

Reading:

• Tutorial on Variational Autoencoders [Doersch 2021]

Provides a relatively gentle introduction and intuitive motivation. Start here;
read it through Section 2.3.

• An Introduction to Variational Autoencoders [Kingma and Welling 2019]

Gives more background on methods that VAE build upon, and gives more
details. Read it through Section 2.5 (Intro), plus Section 2.6.

These course notes largely follow the notation of Kingma and Welling (2019),
with some adaptations for continuity with the preceding sections. They refer back
to the general ELBO of variational inference, cutting out a sizable portion of the
math of both tutorials.
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Variational Autoencoders

4.1. Objective

[Figure adapted from Kingma and
Welling 2019]

Objectives:

1. Learn a generative model of 

that resembles  as much as
possible.

This allows us to generate new
instances  that are plausible w.r.t.
.

2. Learn a representation  for

.

This allows us to understand the
internal structure of .

Example Representation: 

The two key distributions are both very
simple; all the power lies in the decoder
neural network  parameterized

by .

Note

The VAE as presented here can be extended to the Conditional VAE.
While a VAE can be used to generate any data resembling  (such as
an image), a CVAE can be used to generate data resembling  that
additionally obeys certain conditions (e.g. for image inpainting).

9



Variational Autoencoders

4.2. Variational Approach

[Figure from Kingma and Welling
2019]

How to learn ?  To obtain

paired examples  we need 

to map  onto . Approximate it by

, maximizing the ELBO

Again, the probability distribution is
very simple; all the power lies in the
encoder neural network  that

transforms a data point  into a mean
and (typically) diagonal variance.

In classical variational inference only the encoder is learned; there is no explicit
decoder, and  is typically given as part of the model.

Exercise:  Show that
.

4.3. Classical vs. Variational Autoencoders
Classical Variational
Single neural network with bottleneck
layer 

Marriage of graphical models with neural
networks

Explicit objectives (dimensionality
reduction, sparsity, …) and
corresponding tunable parameters

–

Unknown distribution over Simple  known by design

Most  will not generate useful output All  will generate output  of utility

4.4. Variational Inference vs. Variational Autoencoders
Variational Inference Variational Autoencoder
ELBO formulation ELBO formulation

Approximates  by ;

 is known

Approximates  by 

while approximating  by

 is a parametric probability

distribution

 and  are parametric

probability distributions of random
variables transformed by neural networks
(encoder and decoder, respectively)

Note

The ELBO is identical in both cases; just the formulation is different.
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Variational Autoencoders

4.5. Gradients for Training a VAE

Objective:  Ascend the ELBO gradient 

• Unbiased stochastic gradient estimator over :

Here,  means that the right-hand side is an unbiased stochastic estimator of
the left-hand side using samples .

• An unbiased gradient estimator over the variational parameters  is harder to

obtain because the expectation is taken over  which is a function of

:

We can solve this conundrum be reparameterizing  to disentangle the

randomness and the gradient.

4.6. Reparameterizing 

Objective:  Split  into

• a deterministic function  through which we can backpropagate the gradient in

, and

• a random variable ##  not depending on  over which we can take the

expectation.

In the following,  is shorthand for , the argument

of the expectation in question.

!

[Figure adapted from Kingma and Welling 2019]
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Variational Autoencoders

4.7. Computing  as a function of 

Why is ; why do we have to divide by the determinant of

the Jacobian of ?

Consider a function  under a change of variables , which defines

a new function . Thus the infinitesimal interval 

corresponds to  where  and generally ,

which entails that the infinitesimal areas .

For example, if , then , which entails

.

Now consider a PDF  under a change of variables  where

the density w.r.t.  is . Here  and  contain

the same samples and thus the same probability mass, which entails that

, i.e.,  and .

The last equation is the one-dimensional case of our above situation with 

and .

[Bishop 2006 Sec. 1.2.1; solution
3
 to Ex. 1.4]

4.8. Training a VAE by Stochastic Gradient Ascent

Maximize the ELBO  jointly over all parameters  and 

by stochastic gradient ascent training of the encoder and decoder networks
simultaneously:

The gradient  is easily computed and used for minibatch stochastic

gradient ascent using modern neural-network toolkits.

3
 https://www.microsoft.com/en-us/research/wp-content/uploads/2016/05/prml-web-
sol-2009-09-08.pdf
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Variational Autoencoders

4.9. Example:  is a Factorized Gaussian

Cf. Variational Approach (Section 4.2)

The same end result holds if  is a full-covariance Gaussian.

4.10. Toy Example

[Figure adapted from Kingma and Welling 2019]

Kingma and Welling (2019) do not give much detail about this figure, but the
filenames suggest it is an XOR problem, so I suspect that the result for  is

a poor local optimum.
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4.11. Using a VAE

• To generate an instance :

See the Example Representation:

1. Draw .

2. Draw .

• To estimate the marginal likelihood of a given instance :

This procedure follows the principle of so-called importance sampling.

Note

With  this equals our ELBO estimator.

We could also use this with  for our ELBO estimator, improving
its approximation. However, importance sampling scales poorly to
high-dimensional spaces, diminishing its benefits.
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