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Abstract

We derive a general Convex Linearly Con-
strained Program (CLCP) parameterized by
a matrix G, constructed from the informa-
tion given by the input-output pairs. The
CLCP then chooses a set of regularization
and loss functions in order to impose con-
straints for the learning task. We show that
several algorithms, including the SVM, LP-
Boost, Ridge Regression etc., can be solved
using the same optimization framework when
the appropriate choice of G, regularization
and loss function are made. Due to this uni-
fication we show that if G is constructed
from more complex input-output paired in-
formation then we can solve more difficult
problems such as structured output learn-
ing, with the same complexity as a regres-
sion/classification problem. We discuss var-
ious different forms of G and then show on
some real world enzyme prediction tasks, re-
quiring structured outputs, that our method
performs as well as the state-of-the-art.

1 INTRODUCTION

In this paper we show that many optimization based
algorithms in machine learning are connected and can
be solved using the same Convex Linearly Constrained
Program (CLCP).1 The main difference between these
algorithms is characterized by a matrix G, which con-
tains information specific to each learning task, such as
for example Support Vector Machines (SVM) [Vapnik,
1998], Linear Program Boosting (LPBoost) [Demiriz
et al., 2001] or Ridge Regression [Duda et al., 2001].
The main change required in the CLCP to solve one

1sometimes we relax the objective to be Linear, giving
us a Linear Program (LP).

of these alternative algorithms is a redefinition of the
matrix G.

One may ask the question, if all the algorithms exist
then why bother with this generalization? Our aim is
to show that if we would like to solve a more complex
(or different) problem then a redefinition of matrix G
and the use of the correct regularization and loss func-
tion is all that is required. This gives us a standard
algorithm for which we would only need to evaluate
these quantities each time a different learning prob-
lem was presented. This may be far easier and effi-
cient than constructing a different optimization prob-
lem each time a new machine learning problem is en-
countered. We show that indeed with the same frame-
work we can solve arbitrary output learning problems
such as structured learning with the same ease and
efficiency as classification/regression problems, simply
by redefining G.

We proceed by walking the reader through an exam-
ple of an CLCP (or Linear Program (LP)) using game
theory and then follow this up with the closely re-
lated Linear Program Boosting formulation. Next we
delve into a more complex scenario by mapping out-
puts into higher dimensional spaces called the label
space and use this abstraction to present a more gen-
eral definition of G in terms of input-output mappings
into higher dimensional spaces, allowing us to tackle
structural learning scenarios. In section 3 we set out
our general optimization framework and describe ex-
amples using SVMs, learning when distances are given,
and a table characterizing several different learning al-
gorithms before finishing with experiments on a real
world enzyme prediction task. All notations and defi-
nitions will be given as and when they appear.

2 MOTIVATION: TWO-PLAYER
ZERO-SUM GAME

The two-player zero-sum game is one of the most ele-
mentary problems in game theory, and can be solved



using the minimax strategy. In this type of game, two
players P1 and P2, and a pay-off matrix G ∈ Rm×n
are given where G = Gij , i = 1, . . . ,m, j = 1, . . . , n.
The following rules are applied in the game:

• Player P1 chooses one row of G, indexed by i;

• Player P2 chooses one column of G, indexed by
j;

• Player P1 loses the amount of Gij ;

• Player P2 gains the amount of Gij .

Assume that both players know the elements of the
pay-off matrix, but their decisions are independent.
The game is called a zero-sum game because the sum
of the loss of P1 together with the gain of P2 equates
to zero.

The game can be repeated and each player can change
their strategy on the rows and columns. To model
their varying strategies one can introduce mixed strate-
gies, where both players choose rows and columns with
a certain probability; P1 chooses row i with proba-
bility αi and P2 chooses column j with probability
βj . Expressing these strategies in a more linear alge-
braic form, we have two vectors of nonnegative weights
α = (αi), i = 1, . . . ,m and β = (βj), j = 1, . . . , n sat-
isfying the property

∑m
i αi = 1 and

∑n
j βj = 1. We

refer to α and β as strategies of the corresponding
players. The aim of both players is to find optimal
strategies in the minimax sense:

• Player P1 would like to minimise the loss given
by strategy β of player P2:

min
α

m,n∑
i,j

αiGijβj ,

• Player P2 would like to maximise the gain given
by strategy α of P1:

max
β

m,n∑
i,j

αiGijβj .

Since the strategies are chosen independently the ex-
pression

∑m,n
i,j αiGijβj can be interpreted as the ex-

pected value of the loss and gain respectively.

The game above can be formulated as the following
optimisation problem:

maxβ minα

∑m,n
i,j αiGijβj

s.t.
∑m
i αi = 1,∑n
j βj = 1,

αi ≥ 0, i = 1, . . . ,m
βj ≥ 0, j = 1, . . . , n.

(1)

This optimization problem can be reformulated and in-
terpreted as a conditional Lagrangian functional (i.e.,
see Chvatal [1983] for details) of the following primal
and dual linear programming problems (expressed in
matrix form):

Primal Dual
max λ
w.r.t. β, λ
s.t. Gβ ≥ λ1,

1′β = 1,
β ≥ 0,

min γ
w.r.t. α, γ
s.t. G′α ≤ γ1,

1′α = 1,
α ≥ 0,

(2)

where λ, γ > 0, 1 is the all-one vector, 0 the all-zero
vector and prime ′ denotes the transpose of a vector (or
matrix). The primal expresses the strategy of player
P2 and the dual corresponds to the strategy of player
P1.

The primal and dual formulations that will form the
basis of our work follow the formulations of the work
of Demiriz et al. [2001]. We state them here without
further elaboration.

Primal Dual
min 1′w
w.r.t. w,
s.t. Gw ≥ 1,

w ≥ 0.

max 1′α
w.r.t. α,
s.t. G′α ≤ 1,

α ≥ 0.

(3)

The key step in the reformulation from LP (2) to LP
(3) is the substitution w = β/λ, where λ > 0 is as-
sumed to be true.

2.1 BEYOND THE TWO-PLAYER
ZERO-SUM GAME: LEARNING AS A
GAME

We start by working through an example of a learning
algorithm, Linear Program Boosting (LPB), to help
demonstrate the connections between game theory and
machine learning [Schapire, 2002, Demiriz et al., 2001].
In a machine learning context player P2 is assumed
to be the “Learner” and player P1 plays on behalf of
“Nature”.

Given a set of observations (sample) S = {(yi, xi)},
i = 1, . . . ,m, yi ∈ Y, xi ∈ X where Y is the output
space and X is the input space, where the first com-
ponents {yi} are outputs and the second components
{xi} are inputs, the Learner tries to find the “best”
prediction function f : X → Y with respect to a given
loss functional L from a given set of functions F . The
loss function is real-valued and measures the quality of
the prediction, defined on the set of functions f ∈ F
considered during learning and on the set of possible
samples S.



In the boosting approach [Schapire, 2002] we look
for a prediction function f given by a convex combi-
nation of other known functions F0 = {f1, . . . , fn}.
More precisely the prediction function is f(x) =∑n
j=1 βjfj(x),

∑n
j=1 βj = 1, βj ≥ 0, j = 1, . . . , n

for all x ∈ X . These subscripted functions in F0 are
known as weak learners.

In this section we deal with problems where the set of
outputs represent a binary classification task, namely
Y = {−1,+1}. The function f of the learner out-
puts some positive or negative value and the predic-
tion is equal to the sign of f(x). Now we define the
two-player zero-sum game for this learning task. Re-
call that player P1 has a strategy α,

∑m
i=1 αi = 1

which can be considered as probabilities of the sam-
ples. Player P1 or Nature wants to find the most
“tricky” distribution against the Learner (player P2)
who has the ability to choose the best convex combi-
nation of weak learners. The elements of the pay-off
matrix G are given by,

Gij = yifj(xi) , i, j ∈ 1, . . . ,m, (4)

where they are positive when the prediction is correct
and negative when it is wrong. Therefore this matrix
provides a real pay-off with respect to the Learner.

As stated earlier to guarantee a positive gain for the
Learner, we require λ > 0. We can extend the pay-off
matrix and the strategy of P2 like so (for details see
Demiriz et al. [2001]):

Primal Dual
min 1′w + C1′ξ
w.r.t. w ∈ Rn, ξ ∈ Rm
s.t. Gw + ξ ≥ 1,

w ≥ 0, ξ ≥ 0,

max 1′α
w.r.t. α ∈ Rm,
s.t. G′α ≤ 1,

C1 ≥ α ≥ 0,

(5)

where C > 0 is a penalty parameter. This modification
consists of a concatenation of the pay-off matrix with
the identity matrix I, i.e. G = [G, I], and the exten-
sion of the Learners strategy into [w, ξ], together with
a penalty term reducing the possible range of the ex-
tended strategy. What does this mean? The Learner,
Player P2, can choose a component of ξ corresponding
to the identity part of the new pay-off matrix which
turns out to be given by any choice of player P1’s non-
negative outcomes. It may not be an optimal strategy
but guarantees a lower bound on the yield of player
P2. A machine learning interpretation of this modi-
fication is that it allows the inclusion of misclassifica-
tions within the original model given by (3).

We can conclude that in the game based interpretation
of the LPB the relationship between the data points
and the input and output views can be embedded into
the pay-off matrix G defined by Equation (4). The

optimization problem then follows a solution schema
for deriving the best strategies for the Learner (and
in turn for the Nature) as well as conditions expressed
by the constraints imposed on these strategies. We
now move onto a more abstract definition of G that
includes classification, regression, structured output
learning etc., as special cases.

2.2 BEYOND BINARY CLASSIFICATION:
LEARNING ARBITRARY OUTPUTS

In the description of the LPB the outputs were taken
from the binary space labeled by {−1,+1}. We show
that this restriction can be eliminated without chang-
ing the base form of the optimization problem and
consequently the complexity of the underlying opti-
mization task. The idea stems from the interpretation
of the pay-off matrix G. First recall the definition of
the elements of the pay-off matrix for LPB given by
Equation (4). Looking at the primal and dual formula-
tions of the optimization problem (5) we can conclude
that:

• the relationship between the inputs {x} and out-
puts {y} are completely captured by the pay-off
matrix G,

• the remaining parts of the optimization problem
(i.e., w, ξ in the primal and α in the dual) are
independent of the sample data, they are only re-
quired for the constraints on the players strate-
gies.

Before extending the capability of the Learner we make
the following assumptions:

• the input objects (examples) are mapped by the
function φ into a linear vector space Lφ,

• the output space Y is an arbitrary set, and there is
a function ψ that maps every output into a linear
vector space Lψ,

• also, there is a vector valued function Γ : Lφ ×
Lψ → H mapping the images of the input and
outputs into a Hilbert space H assumed to be of
finite dimension.

We call the image space of φ the feature space and
the image space of ψ the label space. If the inputs
and (or) outputs are originally given as vectors of a
Hilbert space H then φ and (or) ψ might be identity
mappings. Using this new representation we can define
the elements of a similarity pay-off matrix G by

Gij =
(
Γ(ψ(yi), φ(xi))

)
j
, (6)



where the notation Γ(ψ(y), φ(x)) denotes a “similar-
ity” between the image of a label ψ(y) and the image
of an example φ(x) e.g., an inner product in an inner
product space. Furthermore

(
Γ(·, ·)

)
j

denotes the jth

component of this similarity. We will often refer to
this abstract description of G in the remainder of the
paper.

After choosing the pay-off matrix G we can solve the
corresponding learning problem. For example in the
primal of LPB we would solve for w to find the optimal
w∗ and make predictions. The prediction can be made
with w∗ and is based on the following conjecture.

Conjecture 1. If the relationship among the data ob-
jects is expressed as a monotonically increasing func-
tion of similarity measures then the best candidate of
the output space is the one that maximizes the margin.

The prediction f(x) is then expressible (in general) for
an arbitrary x ∈ X by

f(x) = arg max∀u∈Ỹ〈w
∗,Γ(ψ(u), φ(x))〉

where 〈·, ·〉 denotes an inner product (for instance)

and Ỹ ⊆ Y is a properly chosen subset of the out-
put space, e.g., in binary classification u takes values
{−1,+1} = Ỹ. Essentially, the prediction function
means that we choose a set of outputs and compute
〈w∗,Γ(ψ(u), φ(x))〉 for each possible output u ∈ Ỹ and
choose the label that maximizes the margin. This fol-
lows an argument closely related to the approach of
Tsochantaridis et al. [2005]. The following list gives a
set of outputs we would use for classification, regres-
sion and structured output.

• Classification: u ∈ Ỹ = {1, . . . , k} when we have
k classes.

• Regression: u ∈ Ỹ = [a, b], when we have a lower
bound a ∈ R and upper bound b ∈ R.

• Structured output: u ∈ Ỹ where u can take on
all possible output structures such as particular
types of trees, graphs, objects, etc.

Now we give an example of the similarity function Γ.
Let the components of Γ be expressed as:

Γ(ψ(yi), φ(xi))j = 〈ψ(yi), ψ(yj)〉〈φ(xi), φ(xj)〉, (7)

i, j = 1, . . . ,m.

The components of Γ (ψ(yi), φ(xi)) are the products
of the coordinates of the vector represented input and
output points, 〈ψ(yi), ψ(yj)〉 and 〈φ(xi), φ(xj)〉, with
respect to the vector system spanned by the vector
representation of the sample. Splitting the constraint

Gw of the primal LP (5) row-wise we obtain for each
sample,

m∑
j=1

〈ψ(yi), ψ(yj)〉〈φ(xi), φ(xj)〉wj ≥ 1− ξi, (8)

i = 1, . . . ,m,

where wj is an element of w and ξi is an element of ξ.
Furthermore the product 〈ψ(yi), ψ(yj)〉〈φ(xi), φ(xj)〉
can be rewritten as inner products of the outer prod-
ucts of the input-output pairs giving us 〈ψ(yi) ⊗
φ(xi), ψ(yj)⊗φ(xj)〉 where⊗ denotes an outer product.
Let us introduce a new matrix W =

∑m
j=1 wjψ(yj)⊗

φ(xj), then the lhs of Equation (8) is expressible in
the form

〈W, φ(xi)⊗ ψ(yi)〉,
which becomes

〈ψ(yi),Wφ(xi)〉. (9)

Hence, W is a matrix with the dimensionality of the
label space by the feature space.

For example, if ψ : Y → {−1,+1} is the mapping of
the output space into −1 and +1 then W collapses
into a row vector, and the functions fj taken from the
LPB subsume (φ(xi))j = fj(xi). Therefore the LPB
becomes a special case of this new abstract pay-off
representation described by Equation (6).

We are now in a position to describe our general CLCP
optimization problem.

3 GENERAL CONVEX LINEARLY
CONSTRAINED OPTIMIZATION
PROBLEM

Let there be two functions R and L where R plays the
role of regularization and L expresses the loss. The
regularization R tries to reduce the range of strate-
gies for P2 the Learner and assumed to be a convex,
monotonically increasing function of a given norm, de-
pending on P2’s strategy vector. The loss function L
measures a learning method specific approximation er-
ror, and is a convex, monotonically increasing function
in the absolute value of all components of the approx-
imation error vector.

Given these two functions we can now present our gen-
eral optimization framework that can be parameter-
ized by a matrix G:

Definition 1 (Main optimization problem).

min R(w) + CL (ξ)
w.r.t. w ∈ Rn, ξ ∈ Rm
s.t. Gw = g − ξ

w ∈ W,

(10)



where C > 0 is a penalty parameter balancing between
regularization and loss, g is a constant vector and W
expresses general constraints independent of G on w,
e.g. nonnegativity. One may interpret this problem as
regression, where the vector g is approximated based
on the known matrix G, and the possible error ex-
pressed by ξ.

Take Linear Program Boosting (LPB) as an example,
in which case we have an L1 regularization on w giving
us R(w) = ‖w‖1, an L1 norm constraint on the posi-
tive elements of the loss vector giving L (ξ) = ‖ξ+‖1,
a g vector equal to 1, and a pay-off matrix G defined
as Gij = yifj(xi). In this way, by simply redefining G,
R(w), L (ξ) and g we can arrive at different learning
algorithms. We move onto an example using SVMs
and structured output learning before presenting a ta-
ble of different algorithms under the same optimization
framework. Before proceeding we would like to make
the following definitions. Let ξ+ = max(0, ξ) be the
positive elements of ξ, and similarly ξ− = max(0,−ξ)
the negative elements of ξ. Therefore, ξ = ξ+ − ξ−
and ‖ξ‖1 = ‖ξ+ + ξ−‖ = 1′(ξ+ + ξ−).

3.1 ANOTHER BINARY
CLASSIFICATION EXAMPLE:
SUPPORT VECTOR MACHINES

The learning algorithm of Support Vector Machines
(SVMs) is similar to the case of LPB except that it
applies quadratic regularization as opposed to linear.
Assume we have a binary classification problem. Fur-
thermore given a function φ : X → Hφ that embeds
the inputs into a Hilbert space HX (similar to the em-
bedding given in sub-section 2.2), the primal form of
the SVM reads:

min 1
2‖w‖

2
2 + C1′ξ

w.r.t. w ∈ H∗φ, ξ ∈ Rm
s.t. yiφ(xi)

′w ≥ 1− ξ,
ξ ≥ 0,

(11)

where H∗X is the dual space of the Hilbert space
HX . Placing this optimization problem in the form
of our general linearly constrained optimization prob-
lem (10) we have regularization R(w) = 1

2‖w‖
2
2 and

loss L (ξ) = ‖ξ‖1. The simplest pay-off G for this
schema is Gij = yi(φ(xi))j . We can reconstruct the
constraint yiφ(xi)

′w into the general form of G we
gave in sub-section 2.2 by embedding the outputs into
the label space using the same idea behind Equation
(8) and (9):

yiφ(xi)
′w⇒ Γ(ψ(yi),Wφ(xi)).

Applying the inner product based representation of Γ
from Equation (7) we can derive a “vector” learning

version of SVMs, called Maximum Margin Regression
(MMR), see in [Szedmak et al., 2005] and [Astikainen
et al., 2008]. By vector learning we mean the outputs
are vectors as opposed to individual scalar values. This
vector learning CLCP is given by:

min 1
2‖W‖

2
Frob + C1′ξ

w.r.t. W : Hφ → Hψ, linear operator,
ξ ∈ Rm

s.t. 〈ψ(yi),Wφ(xi)〉 ≥ 1− ξ,
ξ ≥ 0,

(12)

where ‖·‖Frob denotes the Frobenius norm of a matrix.
We call this MMRbase and will use this CLCP in our
experiments.

3.2 EXCHANGING THE ROLES OF
LEARNER AND NATURE:
LEARNING VIA DISTANCES

The linear programming primal and dual of the two-
player zero-sum game (section 2) gives us a straight-
forward way of learning when the relationship between
the input and the output objects are given by distances
(dissimilarities) [Pekalska and Duin, 2005]. Looking
at the next pair of primal and dual problems, a sim-
ple case of exchanging the roles of the Learner P2 to
the primal, and Nature P1 to the dual retrieves the
following “distance” learning scenario.

Learning similarity
G is gain

↙ ↘
Learner Nature
↓ ↓

Primal Dual
min 1′w + C1′ξ
w.r.t. w ∈ Rn, ξ ∈ Rm,
s.t. Gw + ξ ≥ 1,

w ≥ 0, ξ ≥ 0

max 1′α
w.r.t. α ∈ Rm
s.t. G′α ≤ 1,

C1 ≥ α ≥ 0,
↑ ↑

Nature Learner
↖ ↗

G is loss
Learning dissimilarity

Reading of these primal and dual problems can be done
like so: from top to bottom we are learning similarity
and G is the payoff of the Learner P2. This is the
scenario we have used throughout the paper (see sec-
tion 2.1). Furthermore, we define reference sets X̂ and
Ŷ that may be contained in or equal to X and Y, re-
spectively, such that there exists a pair of real valued
functions sx : X × X̂ → R and sy : Y × Ŷ → R ex-
pressing similarity measures between the objects and
there references, giving us the following G:



Gij = sψ (ψ(yi), ψ(yj)) sφ (φ(xi), φ(xj)) .

However, reading from bottom to top the role of the
Learner is switched and solves the dual problem, with
the pay-off G in this case changed to loss and the learn-
ing scenario being of a dissimilarity (distance) mea-
sure. This simple procedure of switching gives us a
new learning algorithm in the framework of the MMR
algorithm which we call MMRdissimilarity. For example,
in the dissimilarity case we can define G like so:

Gij = dψ (ψ(yi), ψ(yj)) dφ (φ(xi), φ(xj)) ,

where dψ is a distance measure e.g., Euclidean, in the
label space and dφ is some distance measure in the
feature space.

For MMRdissimilarity we can predict the output f(x) of
an arbitrary x ∈ X by assuming that α∗ is an opti-
mum solution of the dual problem and reversing the
maximum margin approach suggested by Conjecture 1
into a minimum one:

f(x) = arg min
∀u∈Ỹ

m∑
j=1

α∗jdψ (ψ(y), ψ(yj)) dφ (φ(xj), φ(x)) .

where, as before, u takes all possible output values
from a properly chosen subset Ỹ ⊆ Y (see section 2.2
for examples).

A list of other learning algorithms that can be posed
under our framework have been described in Table 1.
We give examples for classification, regression and
structural learning. As mentioned earlier the pay-off
matrices G all have the same dimensionality irrespec-
tive of the type of problem to be learnt.

4 EXPERIMENTS

The task of enzyme function prediction is a complex
hierarchical learning problem where both the inputs
and the outputs are structured objects; the inputs are
proteins expressed via amino-acid sequences, and the
outputs are paths in a directed acyclic graph – see
a detailed description and the biological relevance of
the problem in Astikainen et al. [2008]. The following
real-world data sets were used:

• EC dataset is a sample of 5934 enzymes from
the KEGG LIGAND database [Goto et al., 2002].
The EC hierarchy to be predicted has four levels
plus root and is of size 1634 (1376 leaves, 258 in-
ternal nodes). In this version of the data, only a
single function per enzyme is reported.

• Gold Standard dataset contains 3090 proteins
which are classified into superfamily and family

classes by their function [Brown et al., 2006]. The
hierarchy to be predicted has two levels plus root
and is of size 493 (487 families, 5 super-families).

Throughout this paper we have delayed the introduc-
tion of kernels [Schölkopf and Smola, 2002, Shawe-
Taylor and Cristianini, 2004] as our work has primarily
been based on feature representations and similarity
measures. Similarity measures do not require certain
restrictive properties such as positive semi-definiteness
etc, as is the case with kernels. However, kernels can
of course be applied in our framework and are an ex-
cellent choice for similarity due to the large depth of
literature available on kernels for structured feature
representations such as graphs, trees, texts, etc,. They
also help avoid the need to explicitly compute the fea-
ture and label space representations. We now briefly
describe the kernels we used for the input and output
space.

Input feature representation: substring spec-
trum kernels (STR) [Lodhi et al., 2002], gap or
mismatch kernels (GAP) [Leslie et al., 2003] and
the so-called Alignment Trace Graph (GTG) ker-
nels [Heger et al., 2007, 2003].

Output feature representation: The output is
given by a rooted directed acyclic graph, where
the leaves are related to types of chemical reac-
tions catalyzed by the enzyme. The non-leave
nodes represent hierarchical classes of the chemi-
cal reactions. All of the nodes can be identified by
the shortest path, assuming equal edge weights,
connecting them to the root node. The output
labels are the indicators of the paths in the set of
all nodes, so they can be given by a subset of the
nodes. In this way the prediction provides a set of
indicators of a possible path, these indicators are
called microlabels in the sequel. The label vectors
are given by

ψv(y) = γd−1Jnode v in the path to node yK,

where γ > 1 and d denotes the depth of the node.

In our experiments we use this embedding with γ = 10.

We use two measures to characterize the performance
of the learning approaches. The first is the usual 0/1
loss. The second measure is the microlabel F1 score
which is defined like so:

F1 =
2Prec

Prec+Rec

where Prec = TP
TP+FP is Precision and Rec = TP

TP+FN
is Recall where TP , FP and FN denote the True Posi-
tive, False Positive and False Negative prediction rate.



Type of Learning
Learning Algorithm R L G g W
Classification SVM 1

2‖w‖
2
2 ‖ξ+‖1 Gij = yi(φ(xi))j gi = 1

Least-square SVM 1
2‖w‖

2
2 ‖ξ‖22 Gij = yi(φ(xi))j gi = 1

LPBoost ‖w‖1 ‖ξ+‖1 Gij = yifj(xi) gi = 1 w ≥ 0
LP Machine ‖w‖1 ‖ξ+‖1 Gij = yi(φ(xi))j gi = 1

Regression Ridge Regression 1
2‖w‖

2
2 ‖ξ‖22 Gij = (xi)j gi = yi

Lasso ‖w‖1 ‖ξ‖22 Gij = (xi)j gi = yi

Structured MMRbase
1
2‖w‖

2
2 ‖ξ+‖1 Gij = (φ(xi)⊗ ψ(yi))j gi = 1

MMRsimilarity
1
2‖w‖

2
2 ‖ξ+‖1 Gij = sy(ψ(yi), ψ(yj))sx(φ(xi), φ(xj)) gi = 1

MMRdissimilarity −‖w‖1 ‖ξ−‖1 Gij = dy(ψ(yi), ψ(yj))dx(φ(xi), φ(xj)) gi = 1

Table 1: Several different algorithms that can be described under our framework.

The data sets we test against have been formed using a
Nearest Neighbor approach and hence Nearest Neigh-
bor forms a good baseline. Furthermore we also com-
pare against a recently proposed algorithm for struc-
tural learning problems of this sort called the Hierar-
chical Max-Margin Markov algorithm (HM3) [Rousu
et al., 2006] which is closely related to the work of
Taskar et al. [2003] and Tsochantaridis et al. [2005].

Table 2 presents the results using the MMRbase al-
gorithm we presented earlier, Nearest Neighbor and
HM3. As we can see the MMRbase always works as well
as or better than the Nearest Neighbor and HM3 meth-
ods. We should point out that MMRbase took minutes
to train whereas HM3 took from several hours to days.
This is because the complexity of the HM3 algorithm,
measured in terms of the number of constraints, grows
exponentially with the number of nodes in the hierar-
chies. However, due to the formulation we gave with
the pay-off matrix G, we can achieve results in a time
equivalent to solving a simple classification/regression
problem.

5 EXTENSIONS AND DISCUSSION

We derived a general Convex Linearly Constrained
Program (CLCP) and showed that several machine
learning algorithms fit into this optimization frame-
work parameterized by a matrix G containing all the
information from the input-output paired samples. All
other information required for the optimization prob-
lem is independent of the sample and can in some sense
be viewed as our prior belief of the best way of tack-
ling the learning problem. We showed that classifica-
tion and regression algorithms could be placed under
these frameworks, and furthermore gave detailed ex-
amples of structured output learning algorithms using
this CLCP. By exchanging the role of the Learner and
Nature we showed that we could learn using dissim-

ilarity in the structured learning framework – hope-
fully convincing the reader that many different forms
of learning algorithm could be created by changing
the definition of matrix G. We used the MMRbase

formulation to help demonstrate the benefits of our
new framework and gave experimental results on a real
world enzyme prediction task – showing that we can
achieve excellent results with an optimization prob-
lem utilizing the equivalent complexity of a classifica-
tion/regression problem.

An open source implementation for the cases of the
linear and quadratic regularization is available on the
web.

Also, the structured learning algorithms of the MMR
seem to work well and so we would like to bound the
generalization error of these algorithms to prove their
learnability under any distribution and hopefully show
that the algorithms minimize such bounds.
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