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Abstract

We study a structured output learning setting where
both the sample size and dimensions of the fea-
ture vectors of both the input and output are very
large (possibly infinite in the latter case), but the
input and output feature representations are non-
negative and very sparse (i.e. the number of non-
zero components is finite and their proportion to
the dimension is close to zero). Such situations are
encountered in real-world problems such as statis-
tical machine translation.

We show that in this setting structured output learn-
ing can be efficiently implemented. The solution
relies on maximum margin learning of the linear
relations between the inputs and outputs in an L1

norm space. This learning problem can be formu-
lated by imposing L∞ norm regularisation on the
linear transformation expressing the relations.

1 Introduction
The machine learning researchers have devoted relatively small
effort in discovering how the margin based learning methods
behave in L1 space. Several papers investigate the case when
the L1 norm is applied in the regularisation - e.g. Linear Pro-
gramming Boosting [DBST01], or under the name “lasso”
[Tib96], - or(and) in measuring the loss, e.g the SVM with
soft margin, see for example in [CST00]. This paper focuses
on the applications where instead of the L1 regularisation,
the margin is measured in an L1 sense. It will be shown that
this kind of learning displays characteristic properties allow-
ing very large scale problems to be solved with moderate
computational effort.

Like in machine learning, also in approximation theory
surprisingly little attention to the L1 norm space has been
given. A book [Pin89] summaries some results to be good
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starting points for further research activities. Another valu-
able source could be [DG85] which deals with density esti-
mation in L1 space. The authors of the latter book empha-
sise an important fact that measuring the distance between
two density functions using the L1 norm is invariant under
monotone transformation of the coordinate axes: in other
words if only the order of the coordinates are preserved but
the scales are changing then the L1 normed base distances of
vectors normalised to 1 in the same norm remains the same.
This allows us to use a nonparametric approach when the
underlying distributions might be irregular, e.g. they have no
expected value. Human language is an example application
field showing the symptoms of irregularity which has moti-
vated us in formulating the presented approach.

In the following we first formulate the supervised learn-
ing problem for structured outputs, then secondly present the
optimisation framework. We then show that the base prob-
lem can be solved in a very simple way which leads us to
an online algorithm. Using a perceptron type interpretation
we are able to state Novikoff-style bounds for the new algo-
rithm.

2 General Setting
We are given a sample of pairs of input and output objects
{xi, yi}, i = 1, . . . ,m, taken from the sets X and Y inde-
pendently with respect to an unknown distribution defined
on X × Y .

Furthermore, there exist two functions φ and ψ which
map the input and output objects into linear vector spaces,
namely

φ : X ⇒ Lφ,
ψ : Y ⇒ Lψ,

where Lφ and Lφ are linear vector spaces whose elements
represent the input and output objects.

The task is to find a linear transformation W which gives
a good predictor of the outputs represented in the correspond-
ing linear vector space by the feature vector of the inputs

ψ(y)⇐Wφ(x)
One concrete example of this style of problem is a ma-

chine translation task where both the input and output objects



are sentences taken from natural languages, e.g. English and
French, and are represented occurrences of phrases: ngrams,
substrings of words with a special structure, etc. Thus, the
input and output feature vectors φ(xi) and ψ(yi) have very
high dimensions but they are very sparse. Many other appli-
cations studied in the structured prediction literature [TGK03,
TLJJ06, TJHA05, RSSST06] however also fit naturally into
this framework.

3 Optimisation problem
We are going to express the relations between the input and
the output via a linear transformation projecting the input
feature vectors into the space of the output feature vectors
which could be an optimum solution of the following maxi-
mum margin problem:

min r(W)
w.r.t W : Lφ ⇒ Lψ, Linear operator
s.t. 〈ψ(yi),Wφ(xi)〉Lψ ≥ b, i = 1, . . . ,m,

b > 0 given constant.

The objective function r() is assumed to be a regularisation
function and its concrete definition is derived later. The con-
straints force the inner products between the output feature
vectors and the images of the input feature vectors with re-
spect to the linear operator W to be sufficiently and uni-
formly large.

We use the inner product in a rather algebraic sense 〈u,v〉 =∑n
k=1 ukvk, u, v ∈ Rn instead of the geometric one which

assumes a Hilbert space in the background.
The constraints can be rewritten expressing, instead of

a regression task, a one-class classification task in the joint
feature space for inputs and outputs, namely〈

ψ(yi),Wφ(xi)
〉
Lψ

= tr
(
ψ(yi)TWφ(xi)

)
= tr

(
Wφ(xi)ψ(yi)T

)
=
〈
W,

[
ψ(yi)⊗ φ(xi)

]〉
Lψ⊗Lφ

,

(1)

where tr() denotes the trace of the matrix in the argument,
and operator⊗marks the tensor product between its operands.

Since the tensor product of two linear vector spaces is a
linear vector space too, so we can interpret zi = φ(xi) ⊗
ψ(yi) as vectors and the linear operator W becomes a lin-
ear functional, thus a vector in the dual space of the space
spanned by the vectors {zi}, i = 1, . . . ,m, hence we can
use vector notation w as well.

Based on (1) we arrive at a problem coinciding in form
with the standard one-class SVM classification problem:

min r(w)
w.r.t w
s.t. zi

′w ≥ b, i = 1, . . . ,m,
b > 0 given constant,
zi ∈ Rnz .

(2)

The well-known approaches to the regularisation apply L2

norm [Vap98], e.g. Support Vector Machine, or L1 norm,
e.g. Linear Programming Boosting [DBST01]. The use of
’structured outputs’ or feature spaces in the output space has

recently been studied using the standard L2 norm based reg-
ularisation, see e.g. [SSTPH05] and [AHP+08]. However in-
vestigating the case when the maximum margin is measured
in L1 norm have rarely been investigated.

We are going to focus on the regularisation function r()
which maximises the L1 norm based distance between the
separating hyperplane and the origin in the one-class prob-
lem. To this end a subproblem can be formulated comput-
ing this distance measured between the origin and the closest
point of the hyperplane for which we have

min ‖u‖1
w.r.t u
s.t. w′u = b,

(3)

saying that a vector u sitting on the hyperplane is looked for
with the minimum L1 norm.

The entire problem which maximises the minimum dis-
tance takes the following form

max f(w, b) =

[ min ‖u‖1
w.r.t u
s.t. w′u = b

]
w.r.t w
s.t. zi

′w ≥ b, i = 1, . . . ,m
b > 0 given constant.

(4)

In the sequel we are going to deal with the subcase of (4)
when the non-negativity conditions zi ≥ 0, i = 1, . . . ,m
hold.

4 Optimum solution
Let us solve first the subproblem given by (3) for a fixed w.
Via a simple argument one can show that the optimum value
of (3) can be given in a closed form.

Proposition 1 The optimum value to the problem (3) is equal
to

‖u∗‖1 =
b

maxj |wj |
=

b

‖w‖∞
. (5)

Proof: First for sake of simplicity, we divide both sides of
the equality constraint by b, due to it being strictly positive
no effect on the problem is caused. Let us denote

w
b

with
wb. We can assume at least one component of wb differs
from 0 otherwise no feasible solution exists.

Now we unfold the norm in the objective by applying the
substitution u = u+ − u−, u+ ≥ 0, u− ≥ 0 and write up
the dual problem as well.

min 1′
(
u+ + u−

)
w.r.t u+,u−
s.t. w′b

(
u+ − u−

)
= 1,

u+ ≥ 0, u− ≥ 0,

max γ
w.r.t γ
s.t. γwb ≤ 1,

−γwb ≤ 1.
(6)

For any strictly positive components of wb we have

γwb ≤ 1⇒ γ ≤ min
j

1
(wb)j

, (wb)j > 0, (7)

and for any strictly negative components of the same vector
the following holds

−γwb ≤ 1⇒ γ ≤ min
j

1
−(wb)j

, (wb)j < 0, (8)



therefore

γ ≤ min
j

1
|(wb)j |

=
1

maxj |(wb)j |
=

1
‖wb‖∞

. (9)

Since the primal objective has an lower bound, i.e. 0, thus
the dual has a feasible bounded optimal solution and the opti-
mum dual value is equal to the optimum primal value, there-
fore, γ = ‖u∗‖1 which is the statement of the proposition.

Based on Proposition 1 we have

max f(w, b) =
b

‖w‖∞
w.r.t w
s.t. zi

′w ≥ b, i = 1, . . . ,m
b > 0 given constant,

and after reformulation it as a minimisation problem we ob-
tain

min
‖w‖∞
b

w.r.t w
s.t. zi

′w ≥ b, i = 1, . . . ,m
b > 0 given constant.

(10)

Proposition 2 If zi ≥ 0 for all i = 1, . . . ,m then the opti-
mum solution for the Linear Programming Problem given by
(10) is equal to

w∗ =
b

‖zi∗‖1
1, where i∗ = arg min

i
‖zi‖1. (11)

Proof: First both side of the equality constraints are divided
by b. Let us use the notation wb for

w
b

. So we can obtain

min ‖wb‖∞
w.r.t wb

s.t. zi
′wb ≥ 1, i = 1, . . . ,m,

b > 0 given constant,
zi ≥ 0, i = 1, . . . ,m.

(12)

We can recognise that w∗ =
1

‖zi∗‖1
1 is a feasible solution,

since

z′iw
∗ =

1
‖zi∗‖1

z′i1 =
‖zi‖1
‖zi∗‖1

=
‖zi‖1

mini ‖zi‖1
≥ 1. (13)

Now we need to prove that w∗ is also an optimum solution.
If it is not true then we can find a ŵ which is feasible and

‖ŵ‖∞ < ‖w∗‖∞.

This means that there is a constant β such that ŵj ≤ β <
1

‖zi∗‖1
for any j = 1, . . . , nz . From zi ≥ 0, i = 1, . . . ,m

it follows that β > 0 otherwise the feasibility assumption is
immediately violated.

Let us check the feasibility of ŵ

(zi∗)′ŵ ≤ β(zi∗)′1 = β‖zi∗‖1 < 1, (14)

hence, ŵ violates the constraint belonging to zi∗ , with the
smallest L1 norm. Thus w∗ is an optimum solution for (10).

With a constant, completely flat optimum solution, the
predictor to a new φ(x) ≥ 0 can be written as

(ψ̂(y))j = (Wφ(x))j = b
‖φ(x)‖1

zi∗
,

which might not seem interesting at first sight, however let
us now consider the sparse case in the next subsection.

4.1 Sparse case
First we define what we understand on sparseness in the
problem given by (10). Sparseness means that there is at
least an index j ∈ {1, . . . , nz} such that for all (zi)j = 0
holds. A consequence of this kind of sparseness is that the
corresponding components of w has no influence on the fea-
sibility, thus, this component is not determined except for
the upper and lower bound imposed by the objective func-
tion, namely min ‖w‖∞. Hence, the optimum solution to
(10) becomes a set containing the elements obeying the form

(w∗)j =
{
d if ∃i = 1, . . . ,m, (zi)j > 0,[
− d, d

]
otherwise,

where d =
b

mini ‖zi‖1
(15)

Because zi = ψ(yi)⊗φ(xi) then (zi)j is equal to 0 in each
of the components where the corresponding components of
either ψ(yi), or φ(xi) or both, are equal to 0, which has
high probability if both terms in the tensor product have lots
of zero elements.

In the sparse case we can impose a further optimisation
on our base problem, (10), which minimises the number of
non-zero components of w:

min ‖w‖0
w.r.t. w,
s.t. w ∈ W,

where W =


arg min

‖w‖∞
b

w.r.t w
s.t. zi

′w ≥ b, i = 1, . . . ,m
b > 0 given constant,

(16)
where the norm ‖w‖0 means the number of non-zero com-
ponents of the vector in the argument.

This extension gives us the following optimum solution

(w∗)j =
{
d if ∃i = 1, . . . ,m, (zi)j > 0,
0 otherwise. (17)

where d is defined as before.

4.2 Scale independency
If the prediction ψ(ỹ) = Wφ(x) depends on the “shape”
not on the scale we can employ a particular normalised solu-
tion

(w∗)j =
{

1 if ∃i = 1, . . . ,m, (zi)j > 0,
0 otherwise. (18)

instead of the original one given by (15).



5 Kernelization
In L1 norm we can not apply the same kernelization that is
straightforwardly implemented in the L2 norm case via the
dual form of the optimisation problem. A simple approach to
this problem is presented here. Let us consider the following
embedding Φ : Z ⇒ Rm where the components of Φ(zi)
are defined by

(Φ(zi))k = 〈zk, zi〉
= 〈φ(xk)⊗ψ(yk),φ(xi)⊗ψ(yi)〉
= 〈φ(xk),φ(xi)〉︸ ︷︷ ︸

κφ(xk,xi)

〈ψ(yk),ψ(yi)〉︸ ︷︷ ︸
κψ(yk,yi)

, (19)

where κφ and κψ are the kernel functions. Changing the
margin constraints in (4) from

s.t. zi
′w ≥ b, i = 1, . . . ,m, (20)

into
s.t. Φ(zi)′wΦ ≥ b, i = 1, . . . ,m, (21)

we received the same structure, thus, the solution to the mod-
ified problem follows the same pattern. One can recognise
that all we did is nothing more than expressing the linear op-
erator projecting the input into the output space by

W =
∑m
k=1(wΦ)kψ(yk)⊗ φ(xk). (22)

A similar kernelization is applied in for example [Man00] to
the binary Support Vector Machine.

6 Prediction
The prediction to an arbitrary x can be given by

y = ψ−1(Wφ(x)),

but to give substance and some interpretation to this formula
we need to make some additional remarks. The prediction
of Wφ(x) gives a score vector to every input vector, but
this score vector lives in the linear vector space representing
the output and not the output object itself. For the complete
solution we need to find an inverse image, which is not al-
ways straightforward. The inversion can be carried out if we
know the structure of the output space and how it is repre-
sented. The first step the computation of the scores to ψ(y)
is demonstrated in Figure 1.

The prediction can be derived by taking the optimum so-
lution of (18). To find the optimal output y to an input x we
need to establish a model First, to invert the function ψ the
next optimisation schema can be applied:

ŷ = arg max
〈
W,

[
ψ(y)⊗ φ(x)

]〉
Lψ⊗Lφ

w.r.t. y

s.t. y ∈ Ŷ,
(23)

where Ŷ is the set of possible outputs. The next element
of our inversion model is the assumption such that the vec-
tors of ψ(y), y ∈ Ŷ are indicator vectors of the possible
patterns should appear in the output, so that we are look-
ing for a vector with a relatively small number of non zeros
pointing to the patterns and all other components ought to

be set to 0 (i.e. this is explicit in the machine translation ex-
ample mentioned earlier; vectors are indexed by the entire
set of possible phrases/features in a language, but elements
are only non-zero for those that actually occur in any given
sentence). Our solution approach can exploit the fact that the
objective function of (23) is linear in ψ(y) and can be writ-
ten as d′ψ(y), where d = Wφ(x). However, the maximum
of a linear function can be finite only if the components of
the vector ψ(y) are bounded components-wise or(and) in a
norm. To this end let us consider the following problem

max d′u
w.r.t. u,
s.t. 1′u = 1,

0 ≤ u ≤ C,
(24)

which has a simple optimum solution. To derive that first we
need to sort the components of vector d into a decreasing
order

(d1, . . . , dnd)⇒ (di1 ≥, di2 , . . . ,≥ dind ), (25)

and let N the smallest integer greater than
1
C

, then an opti-
mum is given by

uik =

{
C if k < K,
1− C(K − 1) if k = K,
0 otherwise

(26)

Now the task can be stated as finding an optimal bound C
which can approximate the number of nonzero items in the
indicator which we look for.

Let us consider the following general two level problem,
where the inner part follows (24)

max
t=1,2,...,


max

d′ut
g(t)

w.r.t ut
s.t. 1′ut = 1,

0 ≤ ut ≤ g(t)

 , (27)

where t is running on the positive integers and g a real valued
monotone increasing function.

What is expressed here is that if t = 1 we chose the
component of d with the highest value then the two highest
ones and so on.We might stop at the first local minimum of
the outer problem. The function g relates to the speed of the
decay of decreasingly ordered components of the vector d,
thus, in this way it is problem dependent. Possible choices
are g(t) = log(t) or g(t) =

√
t. The linear case g(t) = t

is obviously wrong, since in case of a decreasing sequence
it gives surely the optimum when t = 1. Further research
activity is needed to estimate a good candidate.

The prediction is then derived of the optimum solution
u∗t∗ of (27) interpreting it as an indicator vector. We need
to mention the number of non-zero components in this op-
timum solution will be proportional to the non-zero compo-
nents of the input but this connection is not a direct one.

7 An online framework, a set based
perceptron learner

The motivation of the online approach stems of the structure
of the solution to the sparse case which, in turn, can be inter-
preted as a learning method of the possible co-existences of
the parts of input and output vectors via an indicator vector.



ψ̂(y) =
Wφ(x)⇒



φ(x)
output
scores ⇓ ⇓ ⇓ . . .
⇓ p P1 p P2 p P3. . .
0 . . .

3 ← 1 ← 1 ← 1 . . .
0 . . .

2 ← 1 ← 1 . . .
0 . . .

2 ← 1 ← 1 . . .
0 . . .
...

...
...

...
...

...
...

. . .



column(row)
vectors

are indicators
of candidates
⇐W

Figure 1: The prediction schema

First we outline the problem that we are going to solve.
Let us assume that the input and output objects are repre-
sented by the following way:

• Given two, supposed to be finite, sets Ωx and Ωy the
collections of the possible pattern characterising the ob-
jects x and y.

• Every observed x and y are described by function µx :
Ωx → R+ and µy : Ωy → R+, where R+ denotes the
nonnegative real numbers. They may be measures of
the importance of the patterns.

• Assume that
∑
ωx∈Ωx

µx(ωx) = 1 and
∑
ωy∈Ωy

µy(ωy) =
1, the measures are normalised in L1 norm. Thus, µx
and µy might be interpreted as probabilities.

• Let φ(x) = (µx(ωx)) and ψ(y) = (µy(ωy)) the vectors
of the weights of the patterns.

From these conditions we can derive ΩZ = Ωx × Ωy , and
z = φ(x) ⊗ ψ(y) a tensor product which as a consequence
is normalised to 1 as well.

Based on the model stated we can formulate the next
learning task which is to find w a linear functional of the
space {0, 1}|Ωz| corresponding to a subset W of Ωz such
that 〈w, zi〉 ≥ λ, where λ > 0 is given constant and i =
1, . . . ,m are the indeces of the sample items. It means by
the definition of the inner product

〈w, zi〉 =
∑

ωxi∈Ωxi ,ωyi∈Ωyi

µxi(ωxi)µyi(ωyi),

thus, that we are looking for is a set W which comprises
a sufficiently large number of the most important common
patterns of all sample items.

We can associate sets represented by indicators to all the
sample items zi = ψ(yi)⊗φ(xi) and to the linear functional
w as well by

zi → [zi > 0] = {zij > 0} = Zi
w → [w > 0] = {wj > 0} =W.

(28)

Since all the nonzero components of w are equal to a con-
stant, thus we can restore w from its set based representation

Algorithm 1 Primal perceprtron for sets
Input of the learner: The sample S,
Output of the learner: W ∈ Rdim(Hy)dim(Hx)

Initialisation: Wt = ∅; i = 1;,
noUpdate = true
repeat

for i = 1, 2, . . . ,m do
read input: zi = ψ(yi)⊗ φ(xi)
t = 0
if 〈wt, zi〉 < λ then

wt →Wt

zi → Zi
Wt+1 =Wt ∪ Zi {Set update}
Wt+1 → wt+1

t = t+ 1
noUpdate = false

end if
end for

until noUpdate is true

via a bijective mapping between the vector and set represen-
tation.

We can write up a perceptron type algorithm, see details
in [CST00], for solving problems following the schema of
the L1 norm based maximum margin learner. The algorithm
is given by Algorithm 1.

A Novikoff-style bound [Nov62] on this algorithm can
be stated. Based on the definition of w for any two realisa-
tions wk and wl 〈wk,wl〉 = |Wk ∩ Wl|, and let ‖w‖2 =
〈w,w〉 = |W|.

We can define a margin to the perceptron learner by

γ(w,S) = min
(yi,xi)∈S

〈w, zi〉
‖w‖2

, zi = ψ(yi)⊗ φ(xi). (29)

Let δi(λ,w) be such that if 〈w, zi〉 ≥ λ then |W ∩ Zi| ≥
δi(λ,w). This kind of δi(λ,w) > `min has to exist as a
consequence of the definition of the inner product, the non-
negativity and the normalisation of the sample items. Now
we consider the minimum of them, i.e.

δ(λ,w) = min
i=1,...,m

δi(λ,w)

. The non-negativity guarantees δ(λ,w) is monotonic, in-
creasing function of its two variables, so, greater λ or |W|
implies greater δ.

Theorem 3 Let S = {(xi, yi)} ⊂ (Y × X ), i = 1, . . . ,
be a sample independently and identically drawn from an
unknown distribution and let φ : X → Lφ and ψ : Y → Lψ
be mappings into spaces of tuples of indicators.

Let zi = ψ(yi) ⊗ φ(xi) be tensor product and Zi the
indicator set of nonzero items in zi.

Assume that 0 < λ < 1, and 0 < `min ≤ |Zi| ≤
`max, i = 1, . . . ,m, the support, the number of patterns,
of every sample items falls within a given range.

Furthermore, there is a w∗ such that Algorithm (1) stops
with no more update, 〈w∗, zi〉 ≥ λ, i = 1, ...,m, and then

1. the number of updates in Algorithm (1) is bounded by

t ≤ `max
∆2

, (30)



2. the margin at the solution wt has a lower bound

γ(wt,S) ≥ λ∆
`max

, (31)

where ∆ =
δ(λ,w∗)
‖w∗‖2

.

Proof: We are going to follow the main thread of the Novikoff’s
reasoning, but with some extensions.

Because w∗ satisfies all the margin constraints, therefore
for any twe have |W∗| ≥ |Wt|, thus, δ(λ,W∗) ≥ δ(λ,Wt).
Let us use the short notation δ(λ) = δ(λ,W∗).

After t steps of update the squared L2 norm of wt can be
bounded by

‖wt‖22 = |Wt| ≤ `maxt. (32)

Now consider the following inner product

〈w∗,wt〉 = |W∗ ∩Wt|
= |W∗ ∩ (Wt−1 ∪ Zit)|
= |(W∗ ∩Wt−1) ∪ (W∗ ∩ Zit)|

(33)

by induction on t

= |W∗ ∩ (
⋃
tZit)| ≥ δ(λ)t. (34)

since for any tWt ⊆ W∗ holds.
Merging the inequalities above we obtain√
`maxt‖w∗‖2 ≥ ‖w∗‖2‖wt‖2 ≥ 〈w∗,wt〉 ≥ δ(λ)t.

(35)
It gives us an upper bound on the number of updates as func-
tion of the functional margin

t ≤ `max
∆2

. (36)

After substituting this inequality into (32) we have

‖wt‖2 ≤
`max

∆
, (37)

and at the end for the functional margin the lower bound can
be obtained

γ(wt,S) ≥ λ∆
`max

, (38)

which statement completes the proof.

Remark 4 One can recognise behind this scenario a spe-
cial variant of the weighted set covering problem. The sam-
ple items to be found as errors in the perceptron algorithm
give a cover to all of the patterns occurring in the sample.
It is obviously not an optimum cover, the smallest in cardi-
nality of all possible ones, but a sufficiently good one. It is
an open question how to extend the range of the applications
of the machine learning algorithms of this kind to produce
approximations for hard combinatorial problems. This rela-
tionship allow us to find some connections between the L1

norm based learning and the Set Covering Machine intro-
duced in [MST02].

8 Discussion
We have shown in this paper that measuring the margin by
L1 norm in a maximum margin learning problem gives a
simple solution to an otherwise hardly tractable class of struc-
tural learning tasks.
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