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Abstract

We introduce a maximum margin framework realizing a regression type learning in an ar-
bitrary Hilbert space whilst the corresponding dual problem preserving the structure and,
therefore, the complexity that of the binary Support Vector Machine(SVM). We demon-
strate via some examples this learning framework is broadly applicable in several seemingly
different problems. One example is the multiclass classification problem which, in this way,
can be implemented with the complexity of a binary SVM. The reduction of the complexity
does not involve diminishing performance but, in some cases this approach can improve
the classification accuracy. The multiclass classification is realized where the output labels
are vector valued. Other examples implement multiview learning problems.
Keywords: Maximum Margin Robot, Vector labels, Multiclass learning, Multiview learn-
ing

1. Introduction

Our original motivation to develop a maximum margin based regression framework comes
from the multiclass classification problem which has been considered a more complex prob-
lem than the well-known implementations of binary classification. There are two main
streams among the attempts to tackle these kind of problems. The first one decomposes
the multiclass problem into a certain combination of binary problems, e.g. “one versus all”,
“one versus one” approaches built upon some kind of binary classifiers. The second one
derives a regression based solution framework exploiting the multivariate capability of the
Canonical Correlation Analysis and Partial Least Squares Regression, see at Rosipal and
Trejo (2001), Barker and Rayens (2003) and Rosipal et al. (2003). The Support Vector
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Machine seems to be a good candidate to find a maximum margin framework to solve the
multiclass classification. Some approaches in Weston and Watkins (1998), Crammer and
Singer (2001)and Franc and Hlavac (2002) mostly considered a classification based formu-
lation. The authors in Tsochantaridis et al. (2005) discuss the multiclass learning as a
subcase of classification of objects with special structure.

Recently Evgeniou et al. (2005), Micchelli and Pontil (2004) and Micchelli and Pontil
(2005) presented a synthesis of the kernel learning approach with a general form of regres-
sion, where vector labeled output items are also learned by a machine that is an extension of
the Support Vector learner. In Evgeniou et al. (2005) the complexity issue is mentioned as a
weakness of the presented approach. In this paper we show that there is an implementation
of this kind of maximum margin based machine with computational complexity indepen-
dent of the number of classes and that it requires no more computation than a single binary
Support Vector Classifier. The multiclass learning is then expressed as an application.

First, we formulate the Support Vector Machine with vector output that we call as
Maximum Margin Robot (MMR). Then we present two examples, multiclass and multiview
learning are presented. Following this we provide primal and dual perceptron learners for
vector labels and present a Novikoff type theorem for this algorithm.

The notations that we use are summarized in Table 1. Note that we assume every
mentioned Hilbert space has finite dimension and it is defined above the real numbers;
furthermore there is a fixed orthogonal basis in every space, thus every object, vector and
linear operator can be represented in matrix, might be high dimensional, form. When we
talk about a vector we mean it is an object in a Hilbert space and, in this sense any matrix
and high dimensional hyper-matrix behave as vectors.

2. Formulation of the SVM with vector output

The Support Vector Regression (SVR), described by Vapnik (1998) can be a candidate for
vector label learning, but the extension of its capability is seemingly restricted. In its base
formulation it uses the difference of two scalars the output value and the predictor in each
constraint. Including vectors We have two possibilities to include label vectors: increase
the number of the constraints up to the product of the sample size and the dimension of
the label vectors or incorporate a distance function into the constraints but this kind of
functions are generally nonlinear and hardly invertible. Thus, both alternatives blow up
the complexity of the underlying optimization problem.

The idea underlying implementation for the vector valued Support Vector Machine stems
from a simple reinterpretation of the normal vector of the separating hyperplane. We say
this vector is a projection operator of the feature vectors into an one-dimensional subspace.
An extension of the range of this projection into multi-dimensional subspace gives the
solution for vector labeled learning.

Assume we have a sample S of pairs {(yi,xi) : yi ∈ Hy, xi ∈ X , i = 1, . . . ,m}
independently and identically generated by an unknown multivariate distribution, and an
embedding of the input objects into a Hilbert space called feature space by the function
φ : X → Hφ.
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Symbol Explanation
X space of the possible input vectors,
Hφ Hilbert space comprising the feature vectors, the images of the input

vectors with respect to the embedding φ(),
Hy space of the output(label) vectors,
Hψ Hilbert space comprising the image of label vectors with respect to the

embedding ψ()
W matrix represented linear operator projecting the feature space Hφ into

Hψ,
〈., .〉Hz , ‖.‖Hz inner product and norm defined in the Hilbert space Hz,
tr(W) trace of the matrix W,
dim(H) dimension of the space H.
x1 ⊗ x2 tensor product of the vectors x1 ∈ H1 and x2 ∈ H2 and it represents

a linear operator A : H2 → H1 which acts on a vector z ∈ H2 as
(x1 ⊗ x2)z def= (x1xT2 )z = x1〈x2, z〉H2 .

〈A,B〉F Frobenius inner product of matrix represented linear operators A and
B and it is defined by tr(ATB).

‖A‖F Frobenius norm of a matrix represented linear operator A and defined
by
√
〈A,A〉F .

A ·B element-wise(Schur) product of the matrices A and B.

Table 1: Notation used in the paper

The Maximum Margin Robot a certain type of Support Vector Machine with vector
output is realized on this sample by the following optimization problem

min 1
2tr(WTW) + C1T ξ

w.r.t. {W|W : Hφ(x) → Hy,W linear operator},
{b|b ∈ Hy, bias vector},
{ξ|ξ ∈ Rm, slack or error vector}

s.t.
〈
yi, (Wφ(xi) + b)

〉
Hy ≥ 1− ξi, i = 1, . . . ,m,

ξ ≥ 0.

(1)

where 0 and 1 denote the vectors with components 0 and 1 respectively.

Introducing dual variables {αi|i = 1, . . .m} to the margin constraints and based on the
Karush-Kuhn-Tucker theory we can express the linear operator W by the direct products
of the output and feature vectors, that is

W =
m∑
i=1

αiyiφ(xi)T . (2)
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The dual then gives

min
∑m

i,j=1 αiαj

κφij︷ ︸︸ ︷
〈φ(xi),φ(xj)〉

κyij︷ ︸︸ ︷
〈yi,yj)〉−

∑m
i=1 αi,

w.r.t. {αi|αi ∈ R},
s.t.

∑m
i=1(yi)tαi = 0, t = 1, . . . ,dim(Hy),

0 ≤ αi ≤ C, i = 1, . . . ,m,

(3)

where we can write the values of inner products in the objective as kernel items

〈φ(xi),φ(xj)〉〈yi,yj)〉 = κφijκ
y
ij , (4)

where κφij and κyij stand for the elements of the kernel matrices for the feature vectors and
for the label vectors respectively. Hence, the vector labels are kernelized as well. The
synthesized kernel is the element-wise product of the input and the output kernels, an
operation that preserves positive semi-definiteness.

2.1 Some remarks about Maximum Margin Robot

The meaning of the regularization term tr(WTW) in the primal problem implies we are
looking for a linear operator with the smallest sum of the squared singular values.

The complexity of the dual moderately increases relative to the base SVM since the
structure of the objective remains the same where we have constraints with the same content
but the number of them is increased to the dimension of the output space. However, using
a proper optimization technique all the constraints except the box one can be included into
the objective function as a penalty term, then we need to solve only a quadratic problem
over a box constraint. For most practical cases the bias b can be ignored implying no other
constraints than the box one is included.

The formulation of the Maximum Margin Robot can be extend further realizing that the
simplicity of the dual problem is still preserved if in the primal problem the left hand side
of the margin constraints comprise a real valued function F being linear in W an approach
similar to the paper of Tsochantaridis et al. (2005). To allow the regularization term in the
objective to work properly we need to assume that F is a monotonic increasing function of
tr(WTW).

The MMR can be an efficient base method for structural learning since it can process
any abstract Hilbertian labels. The structure of the output just like the input objects can
be embedded into an appropriate Hilbert space preserving most of the original properties
and then the relationship between the input and output can be discovered. The embedding
of the outputs implies an inversion problem which requires us to find the original structure
from the predicted Hilbertian image. One approach is shown when the multiclass learning
is detailed. It applies an enumeration of the possible outcomes to find the best. Obviously,
it can only be implemented if the cardinality of the label set is small.

2.2 Relation to other approaches

We would like to emphasize our learning model has deep roots in recent machine learning
researches. The papers of Evgeniou et al. (2005), Micchelli and Pontil (2004) and Mic-
chelli and Pontil (2005) mentioned in the introduction gave the direction of using regression
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instead of extending the classification approach. Crammer and Singer (2001) applied the
kernel of the output vectors and the trace minimization via Frobenius norm minimization.
Tsochantaridis et al. (2005) following Taskar et al. (2003) try to integrate the maximum
margin and the inversion problem of the outputs into one optimization problem. Our ob-
jective is to handle them separately keeping the computational complexity of the maximum
margin problem at a low level.

3. Multiclass classification

The multiclass classification can be implemented within the framework of the MMR. Let
us assume the label vectors are chosen out of a finite set {ŷ1, . . . , ŷT } in the learning task.
The decision function predicting one of these labels can be expressed by using the predicted
vector output

d(x) = arg max
t=1,...,T

〈ŷt,Wφ(x) + b〉Hy (5)

= arg max
t=1,...,T

m∑
i=1

αiκ
y(ŷt,yi)κφ(xi,x) + 〈ŷt,b〉Hy ,

where the bias vector b is the corresponding Lagrangian of the constraint
∑m

i=1(yi)tαi =
0, t = 1, . . . ,dim(Hy) in the dual.

Now we are able to set up a multiclass classification. Some promising versions of the
label selection are:

• The label vectors are chosen as indicator vectors of the classes following the rule

(yi)t =
{

1 if item i belongs to category t, t = 1, . . . , T,
0 otherwise.

(6)

• Let the label vectors be defined on a unit ball. We are looking for a configuration of
these vectors in which the correlation between any two distinct vectors is the same and
minimized. These vectors span a hyper-tetrahedron defined in a space with dimension
T − 1. For example if T = 2 there are two one dimensional vectors 1,−1, if T = 3
then there are three vectors spanning a equilateral triangle. The hyper-tetrahedron
is a generalization of these shapes in a higher dimensional Euclidean space.

This kind of configuration can be derived as follows. Let a matrix A with size T × T
be given by

Aij =
{

1 if i = j,
− 1

(T−1) otherwise. (7)

The eigenvalue decomposition of A equals to UΓUT , where U is the matrix of the
eigenvectors and Γ is a diagonal matrix comprising the eigenvalues. Let Û = U

√
Γ,

where
√

Γ is evaluated component-wise. One eigenvalue of A is 0 so the corresponding
column of Û can be deleted, thus we received a matrix with size T × (T − 1) and
satisfying A = ÛÛT . Hence the length of column vectors is 1 and the correlations
between them are the same and equal to − 1

T−1 . The reader can refer to Appendix A.
for the proof of the correctness of this procedure.
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• A simple and straightforward labeling technique can be deducted using the class cen-
ters. The mean or the median vectors of the classes arise as good candidates. They
may be computed on the raw data or after a certain kind of normalization.

If the label vectors are chosen as indicator vectors given in (6), then we have T special
maximum margin machines realizing a set of one class SVMs for each of the classes. This
statement follows from the fact multiplying the projection matrix W from the left with the
transpose of a label vector with only one non-zero component selects one row of W and this
row can be considered as a normal vector of the hyperplane cutting the feature space into
two parts such that one part contains the corresponding class with the smallest error. The
speciality of our implementation comes from the structure of the objective function where
the sum of the squared norm of the normal vectors is minimized allowing the subproblems to
influence each other. In this way we can balance the occurring differences in the classification
errors among the classes which might give a better overall performance.

If the indicator type label vectors from (6) are applied then the bias has to be excluded
from the model, since the dual constraint contains only non-negative components of {yi},
therefore, the only feasible solution for α is 0. Hence, the separating hyperplanes are linear
subspaces of the feature space.

3.1 Experiments with the multiclass learning

In order to test the MMR we used multiclass classification problems from the UCI Repos-
itory of machine learning datasets, the details are given by Blake and Merz (1998). The
data sets chosen mostly correspond to those used by Rifkin and Klautau (2004) to give a
well-defined benchmark environment for comparison. Table 2 shows these sets and their
descriptors.

We used similar configurations to those was described in the paper of Rifkin and Klautau
(2004), and a Gaussian kernel as well. The accuracies are computed in the following way

• If the original dataset is split into given training and test sets, we use them; otherwise,
a 5-fold cross-validation was applied.

• The size for the Gaussian kernel was evaluated by a 5-fold cross-validation procedure
applied only on the training set. The set {σ|0.001 · 2i, i = 0, . . . , 20} of candidate
parameters was scanned and the value producing the best average performance on
the five validation subsets was chosen.

We computed the accuracies when the input vectors are normalized by projecting them onto
a unit ball, and when the input vectors are normalized component-wise by subtracting the
mean and dividing with the standard deviation. In both cases we also considered indicators
and vertices of a hyper-tetrahedron for output coding.

In the optimization task we dropped the bias term, hence the box constraint was only
active in the dual. The solver used a simple coordinate descent method and it was imple-
mented in pure Matlab code. It requires only one column of the kernel matrix in each step
of the algorithm allowing very large problems to be processed. Table 4 demonstrates the
average solution time for every dataset when the data was normalized and when was not.
It shows the practical performance of MMR guarantees the efficiency in huge multiclass
classifications.
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Number of
Name Training Test Classes Numerical/

Items Items Nominal attr.
abalone 3133 1044 29 8/1
glass 214 * 7 9/0
optdigits 3823 1797 10 64/0
page-blocks 5473 * 5 10/0
satimage 4435 2000 6 36/0
spectrometer 531 * 48 101/0
yeast 1484 * 10 8/0

Table 2: Parameters of the data sets used in the experiment. * denotes the datasets with
no dedicated training and test subsets.

Test error rate (%)
SVM MMR

all one hyper-tetrahedron indicator
vs. all Normalized on

Name — item variable — item variable
abalone * 72.3 79.7 73.0 73.0 73.4 73.9 73.0 74.1
glass 30.4 30.8 27.3 27.6 29.2 26.4 29.0 29.0
optdigits * 3.8 2.7 2.0 1.6 3.3 2.1 1.9 3.3
page-blocks 3.4 3.4 4.4 3.4 3.7 4.5 3.6 3.3
satimage * 8.2 7.8 8.2 17.5 8.6 8.7 17.7 9.1
spectrometer 42.8 53.7 99.5 37.5 53.9 99.6 38.4 53.3
yeast 41.0 40.3 41.6 40.6 40.3 42.6 41.6 40.9

Table 3: Test error rates (%). If the data set has dedicated training and test subsets,
marked with *, then the table shows the accuracy computed on the given test
subset otherwise the presented accuracies are averages computed via 5-fold cross-
validation.

In Table 3 the values for the methods “one versus all” and “one versus one” are borrowed
from Rifkin and Klautau (2004) as well. We should emphasize that if the computational
complexity of a learner is small then a systematic scanning of the parameter space for an
optimal configuration remains sufficiently cheap, so that using any validation procedure
better (and sometimes much better) accuracies can be achieved.

The accuracy and computational time result shows that the tetrahedron configuration
of the multiclass labels performs very well and in average twice as fast as the indicator case.
If there is no a prior information to make a distinction between the output labels then a
highly symmetric Euclidean embedding is probably the best choice.
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Times (s)
MMR

hyper-tetrahedron indicator
Normalized on

Name — item variable — item variable
abalone * 0.457 0.231 0.220 0.185 0.493 0.511
glass 0.009 0.015 0.008 0.010 0.025 0.018
optdigits * 0.435 0.253 0.244 0.220 0.565 0.575
page-blocks 0.402 0.232 0.291 0.267 0.630 0.724
satimage * 0.511 0.468 0.320 0.272 0.687 0.717
spectrometer 0.016 0.019 0.012 0.009 0.050 0.028
yeast 0.155 0.051 0.047 0.042 0.115 0.111

Table 4: The average solution time of the dual problem on the training

4. Multiview learning

In the multiview learning we are given a compound sample S of pairs {
(
yi, (x1

i , . . . ,x
Nk
i )
)

:

yi ∈ Hy, xki ∈ Xk, i = 1, . . . ,m, k = 1, . . . , Nk} independently and identically generated
by an unknown multivariate distribution, and given a set of embedding of the inputs into
Hilbert spaces by the functions φk : Xk → Hφk , k = 1, . . . , Nk. We may consider a
setting where the input vectors (x1

i , . . . ,x
Nk
i ) in one sample item are the same however the

embedding functions are distinct.
This learning problem arises when there are several sources of the input vectors chosen

from distinct distributions. In case of identical distributions a simple concatenation of the
inputs can work, but when it is not true, source specific embedding can help.

We present two models, an additive and a multiplicative ones, to synthesize the effect of
the inputs considered. For the sake of simplicity the models do not include the bias term.
The additive primal model and its dual are as follows

Primal:

min 1
2

∑Nk
k=1 tr(WT

k Wk) + C1T ξ
w.r.t. Wk : Hφk → Hy set of linear operators,
s.t.

〈
yi,
∑NK

k=1 Wkφk(xki )
〉
Hy ≥ 1− ξi,

i = 1, . . . ,m,
ξ ≥ 0.

Dual:
min 1

2αT (Ky ·
∑Nk

k=1 Kφk)α− 1Tα
w.r.t. α ∈ Rm

s.t. 0 ≤ α ≤ C.

(8)

Here we use a multivariate linear regression approach which leads to a summation of
the corresponding input kernels in the dual.
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The multiplicative case and its dual reads as

Primal:

min 1
2tr(WTW) + C1T ξ

w.r.t. W :
⊗Nk

k=1Hφk → Hy linear operator,

s.t.
〈
yi,W

(⊗Nk
k=1 φk(xki )

)〉
Hy
≥ 1− ξi,

i = 1, . . . ,m,
ξ ≥ 0.

Dual:
min 1

2αT (Ky ·Kφ1 · . . . ·KφNk
))α− 1Tα

w.r.t. α ∈ Rm

s.t. 0 ≤ α ≤ C.

(9)

In this model the direct product of the inputs collects the information provided by the
sources and it works in a nonlinear fashion. The dual comprises the element-wise product
of the kernels. In both models the final structure of the duals are the same.

Several other formulation can be assumed to connect the input vectors, where one can
combine the additive and the multiplicative models into an element-wise polynomial of the
input kernels.

4.1 Experiments with multiview learning

The MMR based multiview learning has been tested on image classification. The dataset2

is commonly used for generic object recognition, for example by Fergus et al. (2003). The
three object classes in this dataset are; motorbikes, aeroplanes and faces. It also contains
an additional background class to give the negative examples for each class.

For each image two sets of low level features were computed. One3 used the affine
invariant Harris detector developed by Mikolajczyk and Schmid (2001) to find interest
points within an image and to compute Invariant Moments as patch descriptors. The other
was introduced by Lowe (1999) as a keypoint detector4 to recognize interesting patches with
the so-called SIFT affine invariant patch descriptors. These sets of image patch descriptors
form the basis of the feature generation.

Since different images have different numbers of interest points vector quantization was
used to map these sets of points into a fixed length feature vector. In our experiment, k-
means clustering was computed to learn K cluster centers based upon the features from all
images. For each image a fixed length feature vector was then created by using a histogram
corresponding to the distribution of the interest points with respect to the clusters on
that image. In all the following experiments, the parameter for clustering was chosen as
K = 400. We compared the performance of the additive and multiplicative models with
the two binary SVMs trained on only one feature vector, moment or SIFT, and when these
vectors concatenated one. Following the general practice in machine vision we use the
receiver-operating characteristic (ROC) curve related accuracy measure, so called, Equal

2. Available at http://www.robots.ox.ac.uk/∼vgg/data/
3. Available at http : //lear.inrialpes.fr/people/Mikolajczyk/.
4. Available at http : //www.cs.ubc.ca/ ∼ lowe/keypoints/

9



Szedmak, Shawe-Taylor and Hernandez

Equal Error Rate (%)
Ferguson Binary SVM MMR

Dataset et al. Moment SIFT Concatenated Additive Multiplicative
Airplanes 90.2 92.4 97.0 97.3 98.0 98.2
Faces 96.4 98.0 96.5 98.5 98.2 98.2
Motorbikes 92.5 95.3 95.0 95.1 96.5 94.7

Table 5: Classification accuracies for the multiview learning compared with the performance
of binary SVM processing feature sets separately and in concatenation.

Error Rate (EER). The EER shows the accuracy when the proportions of the false negatives
and false positives are the same in the prediction. The base line values for the binary SVMs
are borrowed from Meng et al. (2005).

5. Perceptron algorithm for Maximum Margin Robot

The formulation of MMR also suggests an implementation of a perceptron type algorithm
for maximum margin regression. Here we aim to demonstrate the transparency of the
formulation of the MMR, which allows us to inherit most of the machine learning techniques
developed earlier.

Consider the optimization problem in (1) when only the error term is minimized

min
m∑
i=1

h(λ− 〈yi,Wφ(xi)〉Hy) (10)

subject to {W|W : Hx → Hy,W a linear operator},

where λ is a prescribed margin, and the function h(u) denotes the Hinge loss, that is

h(u) =
{
u if u > 0,
0 otherwise.

(11)

The error function that we are going to minimize has subgradient with respect to W and
this can be computed independently in an incremental way for each term occurring in the
summation (10). The reader can consult to Bertsekas (1999) and Kiwiel (2004) for details
of incremental subgradient methods. The term-wise subgradient is equal to

∂h(λ− 〈yi,Wφ(xi)〉Hy)|W =
{
−yiφ(xi)T if λ− 〈yi,Wφ(xi)〉Hy > 0

0 otherwise.
(12)

We can define the learning speed with a step size, denoted by s, and we obtain the
perceptron-like algorithm given in Figure 1.

The departure from the original perceptron algorithm is very moderate. Here we need
to learn a matrix realizing the projection of the input vectors into the output space. The
incremental subgradient based update employs the direct product of the corresponding
output and input vectors to update the projection matrix.
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Input of the learner: The sample S, step size s
Output of the learner: W ∈ Rdim(Hy)×dim(Hx)

Initialization: Wt = 0; t = 0;
Repeat

for i = 1, 2, . . . ,m do
read input: xi ∈ Rn;
if 〈yi,Wtφ(xi)〉Hy < λ then

Wt+1 = Wt + syiφ(xi)T

t = t+ 1
end if

end for
until

(13)

Figure 1: Vector perceptron algorithm

A dual version of perceptron algorithm can be derived to learn vector outputs. Assume
W is expressible by the sample items in the form of (2) then we have the optimization
problem

min
m∑
i=1

h(λ−
m∑
j=1

αj

κyij︷ ︸︸ ︷
〈yi,yj)〉

κφij︷ ︸︸ ︷
〈φ(xi),φ(xj)〉) (14)

subject to αj ≥ 0, j = 1, . . . ,m,

The partial derivatives for αi, k = 1, . . . ,m equals to

∂h(λ−
m∑
j=1

αjκ
y
ijκ

φ
ij)|αi

=

{
−κyijκ

φ
ij if h(λ−

∑m
j=1 αjκ

y
ijκ

φ
ij) > 0

0 otherwise.
(15)

Finally the dual perceptron algorithm is formulated according to Figure 2.
An analogue of the standard Novikoff theorem provides an upper bound on the number

of updates and a lower bound on the achievable margin in the primal formulation. Here we
follow the derivation that was presented in Li et al. (2002).

Let us define the margin for perceptron learner as

γ(W, S, φ) = min
(yi,xi)∈S

〈yi,Wφ(xi)〉F
‖W‖F

. (17)

Then we can claim the following statement:

Theorem 1 Let S = {(yi,xi)} ⊂ (Y × X ), i = 1, . . . be a sample independently and
identically drawn from an unknown distribution and let φ : X → Hφ be an embedding into
a Hilbert space, furthermore assume that ‖φ(xi)‖ = 1 and ‖yi‖ = 1 for all i, and that the
learning rate, the step size, s is a fixed positive real number in (1).

Suppose there exists a linear operator W∗ such that ‖W∗‖F = 1 and

γ(W∗, S, φ) ≥ Γ, (18)

and the algorithm stops when the functional margin 1 is achieved.
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Input of the learner: The sample S, step size s,
Output of the learner: (αj), j = 1, . . . ,m,
Initialization: αj = 0; j = 1, . . . ,m,
Repeat

for i = 1, 2, . . . ,m do
read input: xi ∈ Rn;
if 〈
∑m

j=1 αjκ
y
ijκ

φ
ij) < λ then

for j = 1, 2, . . . ,m do
αj = αj + sκyijκ

φ
ij

endif
end if

end for
until

(16)

Figure 2: Dual vector perceptron algorithm

1. Then the number of updates made by Algorithm (1) is bounded by

t ≤ 1
Γ2

(
1 +

2
s

)
. (19)

2. Then for the solution Wt of (1) we have

γ(Wt, S, φ) ≥ Γ
s+ 2

. (20)

Proof

1. Following the Novikoff pattern we first upper bound the norm of the matrix Wt

obtained after t updates:

‖Wt‖2F = ‖Wt−1‖2F + 2s〈yiWt−1φ(xi)〉Hy + s2‖yiφ(xi)T ‖2F
≤ ‖Wt−1‖2F + 2s+ s2‖yi‖2‖φ(xi)‖2 (21)
≤ ‖Wt−1‖2F + 2s+ s2

≤ ts(s+ 2).

We now provide a reverse inequality for the inner product with W?:

〈Wt,W?〉F = 〈Wt−1,W?〉F + s
〈
yiφ(xi)T ,W?

〉
F

= 〈Wt−1,W?〉F + s 〈yi,W?φ(xi)〉Hy
≥ 〈Wt−1,W?〉F + sΓ
≥ tsΓ.

Then we can create the squeezing inequality:

ts(s+ 2)‖W?‖2F ≥ ‖Wt‖2F ‖W?‖2F ≥ 〈Wt,W?〉2F ≥ (tsΓ)2. (22)

implying the result.
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2. Taking the bound (19) for t and substituting into (21) we arrive at

‖Wt‖F ≤
s+ 2

Γ
. (23)

Then for the margin we have

γ(Wt, S, φ) ≥ min
(yi,xi)∈S

〈yi,Wtφ(xi)〉F
‖Wt‖F

(24)

≥ 1
‖Wt‖F

(25)

≥ Γ
s+ 2

, (26)

which proves the statement.

Sparsity bounds Graepel et al. (2000) can also be used to translate this bound on
the number of updates into a corresponding bound on the generalization of the resulting
classifier.

6. Conclusions

In this paper we have shown an algebraic generalization of the well-known Support Vector
Machine to solve regression type vector labeled learning problems. In an application of
the Maximum Margin Robot we demonstrate that multiclass learning is expressible in a
simple optimization framework and this sort of simplicity not only preserves the accuracy
but may improve it. In another application some approaches to the multiview learning
have been represented. A vectorized version of the perceptron algorithm with margin (or
τ -perceptron) has been shown for which the number of updates can be bounded in terms
of the optimal margin obtainable.

In further research we plan to make a similar reduction of the complexity for structural
learning. The simplicity and transparency of the learning methods in this formulation can
give strong support to the generalization theory as well by removing unnecessary technical
complications.

An interesting and fruitful extension of our approach is to use objects in infinite di-
mensional Hilbert spaces, that is to learn when the input and the output are real valued
functions exploiting the simplicity and finiteness of the dual problem.

Using vector outputs the maximum margin is applicable to solve regression type prob-
lems and, thus, realizes an alternative of the maximum likelihood and least square methods
for several well-known statistical methods, e.g. for multivariate regression and for variance
analysis.
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Apendix A.

Here we illuminate the background of the method presented in Section 3

Proposition 2 Given a set of vectors {x1, . . . ,xk ∈ Rk} all different from the zero vector.
If the Euclidean norm of these vectors equal to 1 and the inner product of any two distinct
vectors is equal to and achieves the minimum then these vectors span a k − 1 dimensional
subspace in Rk and the inner-products of distinct vectors equal to − 1

k−1 .

Proof Let the vectors x1, . . . ,xk be rows of a matrix X. The inner-products between the
vectors is given by C = XXT . Because for every i, j = 1, . . . , k ‖xi‖ = 1 and 〈xi,xj〉 are
the same the components of C satisfy

Cij =
{

1 if i = j,
−t otherwise.

(27)

We can assume computing the minimum of the common value for the inner products that
t ≥ 0. It is true since t = 0 gives a feasible inner product matrix where the vectors constitute
a normalized orthogonal basis of the space Rk, so, we can claim t at least 0.

The matrix C can be written as C = (1+ t)I− t11T , where I the k dimensional identity
matrix and 1 is a vector with components 1 in Rk. Because of the construction of C it
is a symmetric and positive (semi)definite matrix. Let its eigenvalue decomposition equal
to UΓUT where U is an orthogonal matrix of the eigenvectors and Γ a diagonal matrix
comprising the eigenvalues. We have the equality

(1 + t)I− t11T = UΓUT (28)

that we can multiply from left by ST and from right by S which gives

(1 + t)I− tST11TS = Γ. (29)

Since the matrices (1 + t)I and Γ are diagonal, thus the matrix equality (29) holds if the
matrix ST11TS is a diagonal matrix as well. However ST11TS is a direct product of the
vector ST1 with its transpose therefore the rank of this matrix is at most 1. From this fact
and the diagonality of this matrix we can conclude that only one diagonal component can
depart from 0.

Assume first this diagonal component differs from 0. Without hurting the generality we
can fix the non-zero component into the upper-left position of the matrix. The value of this
non-zero component is equal to 1TSST1 which gives k. Now we have

(1 + t)I− Γ =


tk 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 . (30)
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We can express the eigenvalues in Γ by unfolding the matrix equality (30)

γ1 = 1 + t− tk, (31)
γ2 = 1 + t, (32)
... =

... (33)
γk = 1 + t. (34)

The positive semi-definiteness of C demands non-negative eigenvalues. γ1 is non-
negative if t ≤ 1

k−1 . The minimization of the pairwise inner-product implies maximization
of t so we can conclude t = 1

k−1 and then γ1 = 0 but because all other eigenvalues equal to
1 + 1

k−1 the rank is k− 1 hence the vectors in X live in a k− 1 dimensional subspace of Rk.
If there is no non-zero diagonal component in ST11TS then it can happen if ST1 = 0

implying C = 0 and X = 0 which contradicts with our assumptions.
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