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How one can predict something like this ...
What about SVM?
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Prologue

“Young man,
in mathematics you don’t understand things.
You just get used to them.”
John von Neumann, one of the greatest mathematician of the Twenty
Century.
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Motivation II
Our tasks are:

Extend the capability of the Support Vector Machine and the
Boosting towards non-binary complex structural output objects.
Find a structural learning model to be independent from the
dimensionality of the predicted output items.
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Examples of known approaches:

Cut the problem into several parts,
I Apply plenty of binary classifiers ...

Max-Margin Markov Networks,
I Taskar(2003)

Least-square approaches,
I Cortes(2005)

Main problem is the high computational complexity.
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Learning strategy

Embedding where the structures of the input and output objects are
represented in properly chosen spaces(Hilbert, Banach,
...).

Optimization has to find the similarity based matching between the
input and the output representations.

Inversion(Pre-image problem) has to recover the best fitting output
structure of its representation.
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Embedding

Embedding φ :

X︷ ︸︸ ︷
input space →

Hφ︷ ︸︸ ︷
feature space

ψ :

Y︷ ︸︸ ︷
output space →

Hψ︷ ︸︸ ︷
label space

Similarity W̃ = (W,b)⇒ ψ(y) ∼ W̃φ(x)
transformation

Inversion ψ−1(Y)
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The “Classical” Support Vector Machine(SVM)

Margin min 1
2 wT w + C1Tξ

w.r.t. w : Hφ → R , normal vec.

b ∈ R , bias
ξ ∈ Rm, error vector

s.t. yi(wTφ(xi) + b) ≥ 1− ξi

ξ ≥ 0, i = 1, . . . ,m
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Dual problem

min
∑m

i,j=1 αiαj

κY
ij︷ ︸︸ ︷

yiyj

κφij︷ ︸︸ ︷
〈φ(xi),φ(xj)〉︸ ︷︷ ︸

KYX

−
∑m

i=1 αi ,

w.r.t. αi ∈ R,
s.t.

∑m
i=1 yiαi = 0,

0 ≤ αi ≤ C, i = 1, . . . ,m.

κφij input kernel,

κY
ij output kernel!

KYX = KY • KX joined kernel by element-wise product
The objective function is a symmetric function of the input and the
output.
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The extended primal

min 1
2 ‖W‖

2
2 + C1Tξ

w.r.t. W
b ∈ R , bias
ξ ∈ Rm, error vector

s.t. F (W ; Φ(xi ,yi)) + b ≥ 1− ξi

ξ ≥ 0, i = 1, . . . ,m

F (W ; Φ(xi ,yi)) linear function of W, parametrized by a function of
the input and the output. It has to be monotonic, increasing
function of ‖W‖2.
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Reinterpretation of the normal vector w

Original yi ∈ {−1,+1} binary outputs
w is the normal vector of the separating hyperplane.

New yi ∈ Y arbitrary outputs
I ψ(yi ) ∈ Hψ embedded labels in a linear vector space

wT is a linear operator projecting the input space into
the output space.

I The aim to find the highest similarity between the
output and the projected input.

The output space is a one dimensional subspace in the SVM.
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Affine transformation = Linear transformation
+translation

Singular value decomposition of W = UDVT

Output Transformation Input
⇐= (=⇒)

y1
y2

y3

U = Rotation

D =

{
Scaling
Projection

V = Rotation
+
b = Translation

x1

x2

x3
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Primal problems

Binary class learning Vector label learning
Support Vector Machine(SVM) Maximum Margin Robot(MMR)

min 1
2 wT w︸ ︷︷ ︸
‖w‖2

2

+C1Tξ 1
2 tr(WT W)︸ ︷︷ ︸
‖W‖2

Frobenius

+C1Tξ

w.r.t. w : Hφ → R , normal vec. W : Hφ → Hψ , linear operator

b ∈ R , bias b ∈ Hψ , translation(bias)
ξ ∈ Rm, error vector ξ ∈ Rm, error vector

s.t. yi(wTφ(xi) + b) ≥ 1− ξi
〈
ψ(yi),Wφ(xi) + b

〉
Hψ
≥ 1− ξi

ξ ≥ 0, i = 1, . . . ,m ξ ≥ 0, i = 1, . . . ,m
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One-class SVM interpretation
No bias

Let us reformulate the inner-product occurring in the constraints

〈
ψ(yi),Wφ(xi)

〉
Hψ

= tr
(
ψ(yi)

T Wφ(xi)
)

= tr
(
Wφ(xi)ψ(yi)

T )
=
〈

W,
[
ψ(yi)⊗ φ(xi)

]〉
Hψ⊗Hφ

Margin

Origin

thus, we have a one-class SVM problem living in the tensor product
space of the output and the input.
(⊗ denotes the tensor product)
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One-class SVM interpretation
One step further ...

One can extend the range of applications by using not only tensor
product but more general relationship between the output and input,
i.e., 〈

W,Ψ(yi ,xi)
〉
HW

, Ψ : Hψ ×Hφ → HW .

If dim(HW ) > dim(Hψ) + dim(Hφ) then the support of the distribution
of one-class sample items is restricted on a manifold in HW .
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Alternative linear functions of W

They are subversions of the general case, but they can better express
some kind of relationship between the input and output.

xi,yi matrices, Ψ covers the operation of matrix product. It allows
to use sample items with different dimensionality.
xi,yi matrices of same size, Ψ covers the operation of point-wise
product.
xi,yi are taken from an algebra with special properties, e.g.
Clifford, Jordan, Ψ expresses the product operation of the algebra.
They can represent complex structures.
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Advantage of the tenzor product

The identity
〈xi ⊗ yi ,xj ⊗ yj〉 = 〈xi ,xj〉〈yi ,yj〉

allows us
I to separate the input and output kernels,
I to work with vectors which may have infinite number of

components, they can be functions, e.g. probability densities,
generalized functions - Dirac δ -, etc..
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Dual problem

min
∑m

i,j=1 αiαj

κφij︷ ︸︸ ︷
〈φ(xi),φ(xj)〉

κψij︷ ︸︸ ︷
〈ψ(yi),ψ(yj))〉−

∑m
i=1 αi ,

w.r.t. αi ∈ R,
s.t.

∑m
i=1(ψ(yi))tαi = 0, t = 1, . . . ,dim(Hψ), Only if bias is used

0 ≤ αi ≤ C, i = 1, . . . ,m.

κφij input kernel,

κψij output kernel
The objective function is a symmetric function of the input and the
output.
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To get rid of occurrences of explicit labels ...

The explicit occurrences of the label vectors can be transformed into
implicit ones1: ∑m

i=1(ψ(yi))tαi = 0, t = 1, . . . ,dim(Hψ),
m∑m

i=1 κ
ψ
ij αi = 0, j = 1, . . . ,m

This transformation preserves the feasibility domain!

1Tijl De Bie, Private conversation
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Prediction
No bias

The linear operator:

W =
∑m

i=1 αiψ(yi)φ(xi)
T

Prediction in the label space:

ψ(y) = Wφ(x)

=
∑m

i=1 αiψ(yi) 〈φ(xi),φ(x)〉︸ ︷︷ ︸
κφ(xi ,x)

Szedmak (UoS) SVM with vector output Southampton 04/2008 22 / 71



Prediction when the labels are implicit
An approach

Assume the set of outcomes is known

y ∈ Ỹ ⇐ Set of the possible outputs
y∗ = arg maxy∈ eY ψ(y)T Wφ(x)

= arg maxy∈ eY∑m
i=1 αi

κψ(y,yi )︷ ︸︸ ︷
〈ψ(y),ψ(yi)〉

κφ(xi ,x)︷ ︸︸ ︷
〈φ(xi),φ(x)〉

Finite outcome
y ∈ Ỹ = {y1, . . . ,yK}, K �∞

The best candidate for Ỹ could be the training set!
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Prediction when the labels are explicit
Regression type prediction

The task is
y ∼Wφ(x)

Because we implicitly maximize the inner-product instead of
minimizing the distance we need to scale the predictor

y ∼= λWφ(x)

A simple, least square estimation of λ based on the training items
equals to

λ =
1T (Ky • Kφ)α

αT (Ky • Kφ)α
,

where the denominator is the dual objective value + the sum of the
dual variables.
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Learning convolution operator
input windows⇒ output windows
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Representation of multiclass output

Indicators, e.g.: 3 classes⇒ {(1,0,0), (0,1,0), (0,0,1)},
Vectors pointing into the class centers,
Class centers can be means or medians,
Vertices of hyper-tetrahedron Vectors with unit length and with
minimum pair-wise correlation.

The experiments favour the hyper-tetrahedron, it is the most
“symmetric” structure.
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Vertices of hyper-tetrahedron
n-class case:
Consider the matrix V with elements:

Vij =

{
1 if i = j ,
− 1

n−1 otherwise.

The labels are rows of the matrix A which satisfies V = AAT .
One eigenvalue of V is zero, thus A has n rows but n− 1 columns only.

* www.wikipedia.org/wiki/tetrahedron
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How to use it?

Cook Book
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Multiclass classification
Skeleton of the procedure

Centralize and normalize data and choose input kernel,
Choose vector labels to the classes, centralize and normalize
them as well,
Solve the MMR problem,
Find the best fitting class to the predicted label!
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Multiclass classification
Centralize and normalize the input and choose input kernel

Centralize the data!

xi = xi −
1
m
∑m

i=1 xi

To normalize the feature vectors divide them by their Euclidean
length(`2 norm).

xi = xi/‖x‖2
In case of large number of classes(>10) the Gaussian kernel
might be the best first choice.
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Multiclass classification
Choose vector labels to the categories of multiclasses

Assume the number of classes is 5.
Labels are indicators to the classes ∈ {0,1}5.
Example:

I

Classes Labels
1 (1,0,0,0,0),
2 (0,1,0,0,0),
3 (0,0,1,0,0),
4 (0,0,0,1,0),
5 (0,0,0,0,1),

for class k component k of the label vector is set to 1 others are 0.

The inner products of the labels, the elements of the output
kernel, equal to 1 if the sample items come from the same class
and 0 otherwise.
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Multiclass classification
Find the best fitting class to the predicted label

MMR gives as raw prediction a real valued, not a zero-one, vector
ψ(y).
Solve for the best candidate of classes

y ∈ Ỹ ⇐ Set of the possible outputs
y∗ = arg maxy∈ eY ψ(y)T Wφ(x)

= arg maxy∈ eY∑m
i=1 αi

κψ(y,yi )︷ ︸︸ ︷
〈ψ(y),ψ(yi)〉

κφ(xi ,x)︷ ︸︸ ︷
〈φ(xi)

Tφ(x)〉

In our example the candidates are

Ỹ = {(1,0,0,0,0),
(0,1,0,0,0),
(0,0,1,0,0),
(0,0,0,1,0),
(0,0,0,0,1)}
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Experiments
Multiclass classification

Test error rate (%)
SVM MMR

all one hyper-tetrahedron indicator
vs. all Normalized on

Name — item variable — item variable
abalone * 72.3 79.7 73.0 73.0 73.4 73.9 73.0 74.1
glass 30.4 30.8 27.3 27.6 29.2 26.4 29.0 29.0
optdigits * 3.8 2.7 2.0 1.6 3.3 2.1 1.9 3.3
page-blocks 3.4 3.4 4.4 3.4 3.7 4.5 3.6 3.3
satimage * 8.2 7.8 8.2 17.5 8.6 8.7 17.7 9.1
spectrometer 42.8 53.7 99.5 37.5 53.9 99.6 38.4 53.3
yeast 41.0 40.3 41.6 40.6 40.3 42.6 41.6 40.9

Table: Test error rates (%). If the data set has dedicated training and test subsets,
marked with *, then the table shows the accuracy computed on the given test subset
otherwise the presented accuracies are averages computed via 5-fold cross-validation.
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Rooted DAG kernel
Feature and(or) label vectors

Take a directed, acyclic, rooted graph(rDAG).
The nodes are indexed by topological order which means if there
is a directed edge from node A to node B then iA < iB holds for the
labels .
Feature vector φ(N) to a node N is taken out of {0,1}n, where n
equals to the number of nodes. The components of φ(N)
corresponds to the nodes and indexed by their topological order.
A component of the feature vector φ(N) is 1 if the corresponding
node is on the shortest path from the root to N, otherwise it is set
to 0.
Use the centralization and normalization if necessary, e.g. the
lengths of the shortest paths have high variance!
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Rooted DAG kernel
Base graph
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Rooted DAG kernel
Numbering by topological order

If there is edge from node a to node b then ia < ib holds for the labels.
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Rooted DAG kernel
Shortest path from root to nodes

n = 12, φ(N9) =
1 2 3 4 5 6 7 8 9 10 11 12
1 1 0 0 0 1 0 0 1 0 0 0
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Embedding Hierarchy
Via similarity(dissimilarity)

Tree Kernel


1 0.5 0 0 · · ·

0.5 1 0 0
0 0 1 0.5
0 0 0.5 1
...

. . .


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Possible shape of an output kernel
EC(enzyme chemical reaction)
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Performance measures
Correctness of the path

`0/1 Zero-one loss
`∆ Symmetric difference loss
P Precision
R Recall

F1 Combination of the Precision and Recall
⇒ 2PR

P+R
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Methods

SVM Flat SVM
H-SVM Node-wise SVM
H-RLS Hierarchical least square (Cesa-Bianchi)

H-M3 − l∆ H-M3 trained on `∆ (Rousu)
H-M3 − lH̄ H-M3 trained on subtree loss (Rousu)

MMRlin Proposed method with linear input kernel
MMRpoly Proposed method with polynomial kernel
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Enzyme EC-feature dataset

Enzyme-EC `0/1 `∆ P R F1
3-levels, 236 nodes

SVM 99.7 1.3 99.6 41.1 58.2
H-SVM 98.5 1.2 98.9 41.7 58.7
H-RLS 95.6 2.0 51.9 54.7 53.3

H-M3-l∆ 95.7 1.2 87.0 49.8 63.3
H-M3-lH̄ 85.5 2.5 44.5 66.7 53.4

4-levels, 1345 nodes
MMRPoly(4) 33.0 2.2(1.6) 72.4(77.0) 72.4(77.0) 72.4(77.0)

Table: Prediction losses l0/1 and l∆, precision, recall and F1 values obtained
using different learning algorithms. All figures, except l∆, are given as
percentages. Precision and recall are computed in terms of totals of
microlabel predictions in the test set.
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Enzyme prediction with special kernels and methods

Accuracies on test:

Sequence Nearest MMR MMR HM3 HM3

Kernels neighbour linear poly-51 linear poly-51
GTG,STR4,GAP 91.3 85.7 90.4 76.9 93.7

Kernels are
GTG protein 3D structure,

STR4 string kernel, maximum length 4,
GAP string kernel with gaps

Presented on
Machine Learning in Systems Biology (MLSB-2007)
Evry, France, [1]
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WIPO-alpha dataset

WIPO-alpha `0/1 `∆ P R F1
SVM 87.2 1.84 93.1 58.2 71.6

H-SVM 76.2 1.74 90.3 63.3 74.4
H-RLS 72.1 1.69 88.5 66.4 75.9

H-M3-l∆ 70.9 1.67 90.3 65.3 75.8
H-M3-lH̄ 65.0 1.73 84.1 70.6 76.7
MMRlin 46.9 1.77 77.9 77.9 77.9

Table: Prediction losses l0/1 and l∆, precision, recall and F1 values obtained
using different learning algorithms. All figures, except l∆, are given as
percentages. Precision and recall are computed in terms of totals of
microlabel predictions in the test set.

Szedmak (UoS) SVM with vector output Southampton 04/2008 44 / 71



Computational times

EC WIPO-alpha
MMRlin 48 1.9

MMRpoly 38 1.2

Table: The computational times of the optimizer in seconds (Intel Pentium
3.5 GHz; interpreted, pure Matlab code)
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Reformulation of the primal problem

The equality
〈ψ(y),Wφ(x)〉ψ = 〈W,φ(x)ψ(y)T 〉F

and

W =

mk∑
k=1

αkψ(yk )φ(xk )T

give the constraints, where α the dual variable replaced with u to
distinct the primal.

∑mk
k=1 uk

κψ(yi ,yk )︷ ︸︸ ︷
〈ψ(yi),ψ(yk )〉

κφ(xk ,xi )︷ ︸︸ ︷
〈φ(xk ),φ(xi)〉 ≥ 1− ξi , i = 1, . . . ,m

C ≥ uk ≥ 0, k = 1, . . . ,mk
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Reparametrization of the primal problem
Unbiased case

min 1
2 〈W

′W〉F + C1′ξ 1
2 u′Qu + C1′ξ

w.r.t. W : Hφ → Hψ , u ∈ Rnr

ξ ∈ Rm, ξ ∈ Rm,

s.t.
〈
ψ(yi),Wφ(xi)

〉
Hψ
≥ 1− ξi

∑nr
r=1 urκ

ψ
ir κ

φ
ri ≥ 1− ξi

ξ ≥ 0, i = 1, . . . ,m ξ ≥ 0, i = 1, . . . ,m
κ

Hψ
ir = 〈ψ(yi),ψ(yr )〉Hψ [KHψ ]pq = κ

Hψ
pq

κ
Hφ
ri = 〈φ(xr ),φ(xi)〉Hφ [KHφ ]rs = κ

Hφ
rs

Q = KHψ • KHφ or I

Similar reparametrization proposed by Mangasarian for the binary
SVM [4].
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One class form

Let G be a matrix such that

Gij = (Ψ(xi , yi))j = κψij κ
φ
ji = 〈ψ(yi),ψ(yj)〉〈φ(xi),φ(xj)〉

and we have the base problem:

Primal Dual
min 1

2‖u‖
2
2 + C1′ξ

w.r.t. u, ξ
s.t. Gu ≥ 1− ξ,

ξ ≥ 0

min 1
2α
′GG′α− 1′α

w.r.t. α ∈ Rm,
s.t. 0 ≤ α ≤ C1
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!A consequence!

All the information known about the data
incorporated into the matrix G

⇒ similar to the kernel trick!
But what kind of matrices are the proper ones
to choose them as data descriptors?
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Properties of G

G is not restricted to be
Positive (Semi)Definite It can contain non-definite inner products, e.g.

Minkowski or Hyperbolic geometry,
Symmetric It can contain anti-symmetric inner products, i.e.

〈a,b〉 = −〈b,a〉
Square matrix
The structures processed in a learning task might have very irregular
geometrical properties2

they are not vectors of a Hilbert space, or
they can not be approximated by this kind of objects.

2See Pekalska (2005) [9]
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Extending the scope, other kind of regularizations

Let us change the regularization term

min 1
2R(w) + C1′ξ

w.r.t. w, ξ
s.t. Gw ≥ 1− ξ

ξ ≥ 0,

where R(.) might be ‖.‖1, ‖.‖2, ‖.‖22, ‖.‖∞ and any reasonable
measures of regularisation.
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Examples for the matrix G

Similarity case: large values of Gij mean high similarity
e.g. inner product3:

Gij =

sψ(yi ,yj )︷ ︸︸ ︷
〈ψ(yi),ψ(yj)〉

sφ(xj ,xi )︷ ︸︸ ︷
〈φ(xj),φ(xi)〉

Using inverse distances, potential functions

Gij =
1

1 + d2(ψ(yi),ψ(yj))d2(φ(xj),φ(xi))

3Mangasarian (1998): Generalized SVM [4]
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Can we use distances or any dissimilarity measures?

Dissimilarity case: small values of Gij mean high similarity
e.g. distances:

Gij = d(ψ(yi),ψ(yj))d(φ(xj),φ(xi))

We need to change the regularization strategy!

Szedmak (UoS) SVM with vector output Southampton 04/2008 53 / 71



Predictions, a plausible approach

Conjecture that maximizing(minimizing) the margin gives the best
answer.
Assume that the set of the possible outputs is Ỹ.
Similarity case:

y∗ = arg maxy∈ eY∑mk
k=1 wk

sψ(y,yk )︷ ︸︸ ︷
〈ψ(y),ψ(yk )〉

sφ(xk ,x)︷ ︸︸ ︷
〈φ(xk ),φ(x)〉

Dissimilarity case:

y∗ = arg miny∈ eY∑m
i=1 αi

dψ(y,yi )︷ ︸︸ ︷
d(ψ(y),ψ(yi))

dφ(xi ,x)︷ ︸︸ ︷
d(φ(xi),φ(x))
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Let’s play!
The game

We are given
two players,
a payoff matrix G.

Player 1

Player 2
−2 −1 0
−1 0 1
0 1 2

= G

Player 1 chooses a column index j and
Player 2 chooses a row index i then
Player 1 gains Gij and
Player 2 loses the same.

It is called: two players, zero-sum game.
See von Neumann (1928) [8].
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Let’s play!
Repeat the game

Players have to be unpredictable otherwise they can lose
They change their choice of indeces

The strategies:
Choose column or row with a certain probabilities.

Player 1 chooses j with probability aj and
Player 2 chooses i with probability di .

They are called mixed strategies.
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The learning game

Choose gij as yihj(xi)!
I gij > 0 if yi and hj (xi) agree in sign and
I gij < 0 if yi and hj (xi) are distinct.

G is a real payoff for Player 1.
The expected payoff for Player 1 equals to∑

ij GijProb(Player 1 = j ,Player 2 = i)
=
∑

ij Gijajdi ,

since the player choices are independent by definition.
Player 1 tries to maximize, player 2 tries to minimize this value.
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L1 norm regularization,⇒linear programming
The learning game

Players
Learner(1) Nature(2)

Strategies
Find the best weights Find the worst distribution,

for weak learners! the weights to the data!

maxw minα
∑

ij αiGijwj = minα maxw
∑

ij αiGijwj∑
j wj = 1, wj ≥ 0, j = 1, . . . ,n,∑
i αi = 1, αi ≥ 0, i = 1, . . . ,m.

w Learner strategy
α Nature strategy

J. Neumann, 1928
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Learning scenarios, linear example

Learning similarity
G is payoff

↙ ↘
Learner Nature
↓ ↓

Primal Dual
min 1′w + Cd1′ξ
w.r.t. w, ξ,
s.t. Gw ≥ 1− ξ,

w ≥ 0, ξ ≥ 0.

max 1′α
w.r.t. α,
s.t. G′α ≤ 1,

Cd1 ≥ α ≥ 0,
Dual Primal
↑ ↑

Nature Learner
↖ ↗

G is loss
Learning dissimilarity
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Boosting
Given

a sample S = {yi , xi}, i = 1, . . . ,m, where
yi ∈ {−1,1} are the labels that we are going to
predict,
xi ∈ Rnx are input vectors,

a set of so called weak learners
H = {hj : x → {−1,1}, j = 1, . . . ,n},
assume if hj ∈ H then −hj ∈ H.

Let hij
.

= hj(xi).
We are looking for a predictor, a decision function, as a convex
combination of the weak learners

f (x) =
∑

j

ajhj(x),
∑

j

aj = 1, aj ≥ 0,

which can outperform the prediction capability of the weak learners.
See Schapire (2002) [10].
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Linear Programming Boosting
How to solve
The point of view of the learner, Player 1, is:

maxa mind
∑

ij gijajdi

s.t.
∑

j aj = 1, aj ≥ 0, j = 1, . . . ,m,∑
i di = 1, di ≥ 0, i = 1, . . . ,n.

It boils down into a primal, point of view of the learner, and a dual
problem, point view of the nature, where gij = yihj(xi)

Primal Dual
maxρ,a ρ
s.t.

∑n
j=1 gijaj ≥ ρ,

i = 1, . . . ,m,∑
j aj = 1, aj ≥ 0,

minβ,d β
s.t.

∑m
i=1 gijdi ≤ β,

j = 1, . . . ,n,∑
i di = 1, di ≥ 0.

Learner Nature
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Normalization

Preprocessing

ψ(yi) ⇒ ψ(yi)/‖ψ(yi)‖,
φ(xi) ⇒ φ(xi)/‖φ(xi)‖,

I It can happen within the optimization. (no additional cost!)

Kernels with implicit normalization, e.g. Gaussian,

〈u,v〉 = exp
(
− d(u,v)

)
, d() ≥ 0.

Spherical embedding

ψ : Y → Sy ⊂ Hψ, Sy :
φ : X → Sx ⊂ Hφ, Sx :

}
Hyper-spheres
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Spherical embedding

Spherical embedding

ψ : Y → Sy ⊂ Hψ, Sy :
φ : X → Sx ⊂ Hφ, Sx :

}
Hyper-spheres

Stereographic projection

Pole

x’
x

x

x’

Φ : φ(x)→ φ′(x),
K ′ij=〈φ′(x)i , φ

′(x)j〉
=R2

(
1− 2R2‖φ(xi )−φ(xj )‖2

(‖φ(xi )‖2+R2)(‖φ(xj )‖2+R2)

)
=R2

(
1− 2R2(Kii +Kjj−2Kij )

(Kii +R2)(Kjj +R2)

)
,

R Ball radius.
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Effect of the normalization

Effect of L2 normalization
Wandering support vectors

x→ x x→ x
‖x‖2

x→ x
‖x‖22

identity projection onto ball inversion
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Solution
Quadratic Augmented Lagrangian Form

min 1
2α

T [Kψ(y) • Kφ(x)

]
α− 1Tα

+λT Kψ(y)α + CALP
2 αT K T

ψ(y)Kψ(y)α ⇐ biased case

w.r.t. α ∈ Rm, primal variables,
λ ∈ Rm, Lagrangian variables,

s.t. 0 ≤ α ≤ C ,⇐ Simple box constraint

CALP Augmented Lagrangian Penalty Parameter
• component-wise(Schur) product
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Solution schema

Outer loop

Fix the Lagrangian variables,
Inner loop

I Solve the problem above the box constraint,
I The update formula

αk+1
i = P[0,C](−1− 〈αk ,Ki〉/Kii )

i = 1, . . . ,m

Update the Lagrangian,
Increase the penalty constant

If there is no bias only the inner loop has to be processed!!!
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Alternative solution approaches

Extragradient based methods for variational inequalities
I Korpelevich [3]
I Nesterov [7], [6]
I Nemirovski [5]

Cutting plane methods(e.g. column generation, decomposition)
I Joachims [2]

Active set methods
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Multiview learning
Additive case

We have {ψ(y)i , (φ
1(x1

i ),φ2(x2
i ), . . . )} several sources of inputs taken

out of distinct distributions.

min 1
2
∑nK

k=1 tr(WT
k Wk ) + C1Tξ

w.r.t. Wk : Hφk → Hψ , linear op.

b ∈ Hψ, translation(bias)
ξ ∈ Rm, error vector

s.t.
〈
ψ(yi),

∑nk
k=1 Wkφ

k (xk
i ) + b

〉
Hψ
≥ 1− ξi

ξ ≥ 0, i = 1, . . . ,m

Kernel: Ky •
∑nk

k=1 Kxk ,
• element-wise product
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Multiview learning
Product case

min 1
2 tr(WT W) + C1Tξ

w.r.t. W : H1
φ ⊗H2

φ → Hψ , linear op.

b ∈ Hψ , translation(bias)
ξ ∈ Rm, error vector

s.t.
〈
ψ(yi),W

(
φ1(x1

i )⊗ φ2(x2
i )
)

+ b
〉
Hψ
≥ 1− ξi

ξ ≥ 0, i = 1, . . . ,m,

Kernel: Ky • Kx1 • Kx2 ,
• element-wise product
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Epilogue

“Grey is, young friend, all theory:
And green of life the golden tree.”
Johann Wolfgang von Göthe: Faust
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This is the End

Thanks!
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