Towards Maximum Likelihood: Learning Undirected Graphical Models using Persistent Sequential Monte Carlo

Hanchen Xiong

Institute of Computer Science University of Innsbruck, Austria

November 26, 2014

Learning UGMs with Persistent SMC

Background

Undirected Graphical Models:

- Markov Random Fields (or Markov Network)
- Condtional Random Fields

Modeling:

$$p(\mathbf{x}; \boldsymbol{\theta}) = \frac{\exp\left(-E(\mathbf{x}; \boldsymbol{\theta})\right)}{\mathbf{Z}(\boldsymbol{\theta})}$$
(1)
Energy: $E(\mathbf{x}; \boldsymbol{\theta}) = -\boldsymbol{\theta}^{\top} \boldsymbol{\phi}(\mathbf{x})$ (2)

with random variables $\mathbf{x} = [x_1, x_2, \dots, x_D] \in \mathcal{X}^D$ where x_d can take N_d discrete values, $\phi(\mathbf{x})$ is a *K*-dimensional vector of sufficient statistics, and parameter $\boldsymbol{\theta} \in \mathbb{R}^K$.

イロト 不得下 イヨト イヨト 二日

Maximum Log-Likelihood Training

 UGMs' likelihood functions is concave w.r.t. θ [Koller and Friedman, 2009];

- 31

(日) (周) (三) (三)

Maximum Log-Likelihood Training

- UGMs' likelihood functions is concave w.r.t. θ [Koller and Friedman, 2009];
- Given training data $\mathcal{D} = \{\mathbf{x}^{(m)}\}_{m=1}^{M}$, the derivative of average log-likelihood $\mathcal{L}(\boldsymbol{\theta}|\mathcal{D}) = \frac{1}{M} \sum_{m=1}^{M} \log p(\mathbf{x}^{(m)}; \boldsymbol{\theta})$ as

$$\frac{\partial \mathcal{L}(\boldsymbol{\theta}|\mathcal{D})}{\partial \boldsymbol{\theta}} = \underbrace{\mathbb{E}_{\mathcal{D}}(\boldsymbol{\phi}(\mathbf{x}))}_{\psi^+} - \underbrace{\mathbb{E}_{\boldsymbol{\theta}}(\boldsymbol{\phi}(\mathbf{x}))}_{\psi^-} = \frac{1}{M} \sum_{m=1}^{M} \boldsymbol{\phi}(\mathbf{x}^{(m)}) - \sum_{\mathbf{x}' \in \mathcal{D}} \boldsymbol{p}(\mathbf{x}'; \boldsymbol{\theta}) \boldsymbol{\phi}(\mathbf{x})'$$
(3)

- 4 回 ト 4 三 ト - 三 - シック

Maximum Log-Likelihood Training

- UGMs' likelihood functions is concave w.r.t. θ [Koller and Friedman, 2009];
- Given training data $\mathcal{D} = \{\mathbf{x}^{(m)}\}_{m=1}^{M}$, the derivative of average log-likelihood $\mathcal{L}(\boldsymbol{\theta}|\mathcal{D}) = \frac{1}{M} \sum_{m=1}^{M} \log p(\mathbf{x}^{(m)}; \boldsymbol{\theta})$ as

$$\frac{\partial \mathcal{L}(\boldsymbol{\theta}|\mathcal{D})}{\partial \boldsymbol{\theta}} = \underbrace{\mathbb{E}_{\mathcal{D}}(\phi(\mathbf{x}))}_{\psi^+} - \underbrace{\mathbb{E}_{\boldsymbol{\theta}}(\phi(\mathbf{x}))}_{\psi^-} = \frac{1}{M} \sum_{m=1}^{M} \phi(\mathbf{x}^{(m)}) - \sum_{\mathbf{x}' \in \mathcal{D}} \rho(\mathbf{x}'; \boldsymbol{\theta}) \phi(\mathbf{x})'$$
(3)

 interpretation: iteratively pulls down the energy of the data space occupied by D (positive phase), but raises the energy over all data space X^D (negative phase), until it reaches a balance (ψ⁺ = ψ⁻).

• Approximate the second term of the gradient \mathcal{L} :

$$rac{\partial \mathcal{L}(oldsymbol{ heta}|\mathcal{D})}{\partial oldsymbol{ heta}} = \underbrace{\mathbb{E}_{\mathcal{D}}(\phi(\mathbf{x}))}_{\psi^+} - \underbrace{\mathbb{E}_{oldsymbol{ heta}}(\phi(\mathbf{x}))}_{\psi^-}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

• Approximate the second term of the gradient \mathcal{L} :

$$rac{\partial \mathcal{L}(oldsymbol{ heta}|\mathcal{D})}{\partial oldsymbol{ heta}} = \underbrace{\mathbb{E}_{\mathcal{D}}(\phi(\mathbf{x}))}_{\psi^+} - \underbrace{\mathbb{E}_{oldsymbol{ heta}}(\phi(\mathbf{x}))}_{\psi^-}$$

• Markov Chain Monte Carlo Maximum Likelihood (MCMCML)[Geyer, 1991]

• Approximate the second term of the gradient \mathcal{L} :

$$rac{\partial \mathcal{L}(oldsymbol{ heta}|\mathcal{D})}{\partial oldsymbol{ heta}} = \underbrace{\mathbb{E}_{\mathcal{D}}(\phi(\mathbf{x}))}_{\psi^+} - \underbrace{\mathbb{E}_{oldsymbol{ heta}}(\phi(\mathbf{x}))}_{\psi^-}$$

- Markov Chain Monte Carlo Maximum Likelihood (MCMCML)[Geyer, 1991]
- Contrastive Divergence (CD) [Hinton, 2002]

• Approximate the second term of the gradient \mathcal{L} :

$$rac{\partial \mathcal{L}(oldsymbol{ heta}|\mathcal{D})}{\partial oldsymbol{ heta}} = \underbrace{\mathbb{E}_{\mathcal{D}}(\phi(\mathbf{x}))}_{\psi^+} - \underbrace{\mathbb{E}_{oldsymbol{ heta}}(\phi(\mathbf{x}))}_{\psi^-}$$

- Markov Chain Monte Carlo Maximum Likelihood (MCMCML)[Geyer, 1991]
- Contrastive Divergence (CD) [Hinton, 2002]
- Persistent Contrastive Divergence (PCD) [Tieleman, 2008]

• Approximate the second term of the gradient \mathcal{L} :

$$rac{\partial \mathcal{L}(oldsymbol{ heta}|\mathcal{D})}{\partial oldsymbol{ heta}} = \underbrace{\mathbb{E}_{\mathcal{D}}(\phi(\mathbf{x}))}_{\psi^+} - \underbrace{\mathbb{E}_{oldsymbol{ heta}}(\phi(\mathbf{x}))}_{\psi^-}$$

- Markov Chain Monte Carlo Maximum Likelihood (MCMCML)[Geyer, 1991]
- Contrastive Divergence (CD) [Hinton, 2002]
- Persistent Contrastive Divergence (PCD) [Tieleman, 2008]
- Tempered Transition (TT) [Salakhutdinov, 2010]

• Approximate the second term of the gradient \mathcal{L} :

$$rac{\partial \mathcal{L}(oldsymbol{ heta}|\mathcal{D})}{\partial oldsymbol{ heta}} = \underbrace{\mathbb{E}_{\mathcal{D}}(\phi(\mathbf{x}))}_{\psi^+} - \underbrace{\mathbb{E}_{oldsymbol{ heta}}(\phi(\mathbf{x}))}_{\psi^-}$$

- Markov Chain Monte Carlo Maximum Likelihood (MCMCML)[Geyer, 1991]
- Contrastive Divergence (CD) [Hinton, 2002]
- Persistent Contrastive Divergence (PCD) [Tieleman, 2008]
- Tempered Transition (TT) [Salakhutdinov, 2010]
- Parallel Tempering (PT) [Desjardins et al., 2010]

• Approximate the second term of the gradient \mathcal{L} :

$$rac{\partial \mathcal{L}(oldsymbol{ heta}|\mathcal{D})}{\partial oldsymbol{ heta}} = \underbrace{\mathbb{E}_{\mathcal{D}}(\phi(\mathbf{x}))}_{\psi^+} - \underbrace{\mathbb{E}_{oldsymbol{ heta}}(\phi(\mathbf{x}))}_{\psi^-}$$

- Markov Chain Monte Carlo Maximum Likelihood (MCMCML)[Geyer, 1991]
- Contrastive Divergence (CD) [Hinton, 2002]
- Persistent Contrastive Divergence (PCD) [Tieleman, 2008]
- Tempered Transition (TT) [Salakhutdinov, 2010]
- Parallel Tempering (PT) [Desjardins et al., 2010]
- CD,PCD,TT and PT can be summarized as a Robbins-Monro's stochastic approximation procedure (SAP). [Robbins and Monro, 1951]

• Training data set $\mathcal{D} = \{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(M)}\}$. Randomly initialize model parameters $\boldsymbol{\theta}^{0}$ and N particles $\{\mathbf{s}^{0,1}, \dots, \mathbf{s}^{0,N}\}$.

- Training data set $\mathcal{D} = \{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(M)}\}$. Randomly initialize model parameters $\boldsymbol{\theta}^{0}$ and N particles $\{\mathbf{s}^{0,1}, \dots, \mathbf{s}^{0,N}\}$.
- **2** for t = 0: T do // T iterations

end for

- Training data set $\mathcal{D} = \{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(M)}\}$. Randomly initialize model parameters $\boldsymbol{\theta}^{0}$ and N particles $\{\mathbf{s}^{0,1}, \dots, \mathbf{s}^{0,N}\}$.
- **3** for t = 0: T do // T iterations
- **6** for n = 1 : N do // go through all N particles

end for

end for

- Training data set $\mathcal{D} = \{\mathbf{x}^{(1)}, \cdots, \mathbf{x}^{(M)}\}$. Randomly initialize model parameters $\boldsymbol{\theta}^{0}$ and N particles $\{\mathbf{s}^{0,1}, \cdots, \mathbf{s}^{0,N}\}$.
- **2** for t = 0: T do // T iterations
- **6** for n = 1 : N do // go through all N particles
- Sample $\mathbf{s}^{t+1,n}$ from $\mathbf{s}^{t,n}$ using transition operator H_{θ^t} ;
- end for

end for

- Training data set $\mathcal{D} = \{\mathbf{x}^{(1)}, \cdots, \mathbf{x}^{(M)}\}$. Randomly initialize model parameters $\boldsymbol{\theta}^{0}$ and N particles $\{\mathbf{s}^{0,1}, \cdots, \mathbf{s}^{0,N}\}$.
- **2** for t = 0: T do // T iterations
- **6** for n = 1 : N do // go through all N particles
- Sample $\mathbf{s}^{t+1,n}$ from $\mathbf{s}^{t,n}$ using transition operator H_{θ^t} ;
- end for

• Update:
$$\boldsymbol{\theta}^{t+1} = \boldsymbol{\theta}^t + \eta \Big[\frac{1}{M} \sum_{m=1}^M \phi(\mathbf{x}^{(m)}) - \frac{1}{N} \sum_{n=1}^N \phi(\mathbf{s}^{t+1,n}) \Big]$$

end for

- Training data set $\mathcal{D} = \{\mathbf{x}^{(1)}, \cdots, \mathbf{x}^{(M)}\}$. Randomly initialize model parameters $\boldsymbol{\theta}^{0}$ and N particles $\{\mathbf{s}^{0,1}, \cdots, \mathbf{s}^{0,N}\}$.
- **2** for t = 0: T do // T iterations
- **6** for n = 1 : N do // go through all N particles
- Sample $\mathbf{s}^{t+1,n}$ from $\mathbf{s}^{t,n}$ using transition operator H_{θ^t} ;
- end for

• Update:
$$\boldsymbol{\theta}^{t+1} = \boldsymbol{\theta}^t + \eta \Big[\frac{1}{M} \sum_{m=1}^M \phi(\mathbf{x}^{(m)}) - \frac{1}{N} \sum_{n=1}^N \phi(\mathbf{s}^{t+1,n}) \Big]$$

- O Decrease η .
- end for

- Training data set $\mathcal{D} = \{\mathbf{x}^{(1)}, \cdots, \mathbf{x}^{(M)}\}$. Randomly initialize model parameters θ^0 and N particles $\{\mathbf{s}^{0,1}, \cdots, \mathbf{s}^{0,N}\}$.
- **2** for t = 0: T do // T iterations
- **6** for n = 1 : N do // go through all N particles
- Sample $\mathbf{s}^{t+1,n}$ from $\mathbf{s}^{t,n}$ using transition operator H_{θ^t} ;
- end for

• Update:
$$\boldsymbol{\theta}^{t+1} = \boldsymbol{\theta}^t + \eta \Big[\frac{1}{M} \sum_{m=1}^M \phi(\mathbf{x}^{(m)}) - \frac{1}{N} \sum_{n=1}^N \phi(\mathbf{s}^{t+1,n}) \Big]$$

- O Decrease η .
- end for
- When using Gibbs sampler as H_{θ^t} , SAP becomes PCD, and similarly, TT and PT can be substituted as well.

Hanchen Xiong (UIBK)

 In MCMCML, a proposal distribution p(x; θ₀) is set up in the same form as a UGM, and we have

$$\frac{\mathbf{Z}(\theta)}{\mathbf{Z}(\theta_{0})} = \frac{\sum_{\mathbf{x}} \exp(\theta^{\top} \phi(\mathbf{x}))}{\sum_{\mathbf{x}} \exp(\theta^{\top} \phi(\mathbf{x}))} \\
= \frac{\sum_{\mathbf{x}} \exp(\theta^{\top} \phi(\mathbf{x}))}{\exp(\theta^{\top} \phi(\mathbf{x}))} \times \frac{\exp(\theta^{\top}_{0} \phi(\mathbf{x}))}{\sum_{\mathbf{x}} \exp(\theta^{\top}_{0} \phi(\mathbf{x}))} \\
= \sum_{\mathbf{x}} \frac{\exp(\theta^{\top} \phi(\mathbf{x}))}{\exp(\theta^{\top} \phi(\mathbf{x}))} \times \frac{\exp(\theta^{\top}_{0} \phi(\mathbf{x}))}{\sum_{\mathbf{x}} \exp(\theta^{\top}_{0} \phi(\mathbf{x}))} \\
= \sum_{\mathbf{x}} \exp\left((\theta - \theta_{0})^{\top} \phi(\mathbf{x})\right) p(\mathbf{x}; \theta_{0}) \\
\approx \frac{1}{5} \sum_{s=1}^{5} w^{(s)}$$
(4)

where
$$w^{(s)}$$
 is
$$w^{(s)} = \exp\left((\boldsymbol{\theta} - \boldsymbol{\theta}_0)^\top \phi(\bar{\mathbf{x}}^{(s)})\right), \quad (5)$$

3

(日) (同) (三) (三)

 In MCMCML, a proposal distribution p(x; θ₀) is set up in the same form as a UGM, and we have

$$\frac{\mathbf{Z}(\theta)}{\mathbf{Z}(\theta_{0})} = \frac{\sum_{\mathbf{x}} \exp(\theta^{\top} \phi(\mathbf{x}))}{\sum_{\mathbf{x}} \exp(\theta_{0}^{\top} \phi(\mathbf{x}))} \\
= \frac{\sum_{\mathbf{x}} \exp(\theta_{0}^{\top} \phi(\mathbf{x}))}{\exp(\theta_{0}^{\top} \phi(\mathbf{x}))} \times \frac{\exp(\theta_{0}^{\top} \phi(\mathbf{x}))}{\sum_{\mathbf{x}} \exp(\theta_{0}^{\top} \phi(\mathbf{x}))} \\
= \sum_{\mathbf{x}} \frac{\exp(\theta^{\top} \phi(\mathbf{x}))}{\exp(\theta_{0}^{\top} \phi(\mathbf{x}))} \times \frac{\exp(\theta_{0}^{\top} \phi(\mathbf{x}))}{\sum_{\mathbf{x}} \exp(\theta_{0}^{\top} \phi(\mathbf{x}))} \\
= \sum_{\mathbf{x}} \exp\left((\theta - \theta_{0})^{\top} \phi(\mathbf{x})\right) p(\mathbf{x}; \theta_{0}) \\
\approx \frac{1}{5} \sum_{s=1}^{S} w^{(s)}$$
(4)

where
$$w^{(s)}$$
 is
$$w^{(s)} = \exp\left((\boldsymbol{\theta} - \boldsymbol{\theta}_0)^\top \phi(\bar{\mathbf{x}}^{(s)})\right), \quad (5)$$

• MCMCML is an importance sampling approximation of the gradient.

(日) (同) (三) (三)

- 1: $t \leftarrow 0$, initialize the proposal distribution $p(\mathbf{x}; \boldsymbol{\theta}_0)$
- 2: Sample $\{\bar{\mathbf{x}}^{(s)}\}$ from $p(\mathbf{x}; \boldsymbol{\theta}_0)$
- 3: while ! stop criterion do
- 4: Calculate $w^{(s)}$ using (5)
- 5: Calculate gradient $\frac{\partial \tilde{\mathcal{L}}(\theta_t | \mathcal{D})}{\partial \theta_t}$ using importance sampling approximation.

6: update
$$oldsymbol{ heta}_{t+1} = oldsymbol{ heta}_t + \eta rac{\partial ilde{\mathcal{L}}(oldsymbol{ heta}_t | \mathcal{D})}{\partial oldsymbol{ heta}_t}$$

- 7: $t \leftarrow t+1$
- 8: end while

E SQA

くほと くほと くほと

 MCMCML's performance highly depends on initial proposal distribution;

3

(日) (同) (三) (三)

- MCMCML's performance highly depends on initial proposal distribution;
- at time t, it is helpful to update the proposal distribution as the $p(\mathbf{x}; \boldsymbol{\theta}_{t-1})$;

- 32

- 4 同 6 4 日 6 4 日 6

- MCMCML's performance highly depends on initial proposal distribution;
- at time t, it is helpful to update the proposal distribution as the $p(\mathbf{x}; \boldsymbol{\theta}_{t-1})$;
- this is analogous to sequential importance sampling with resampling at every iteration, however, the construction of sequential distributions is by learning;

くほと くほと くほと

- MCMCML's performance highly depends on initial proposal distribution;
- at time t, it is helpful to update the proposal distribution as the $p(\mathbf{x}; \boldsymbol{\theta}_{t-1})$;
- this is analogous to sequential importance sampling with resampling at every iteration, however, the construction of sequential distributions is by learning;
- this also looks like SAP learning schemes.

くほと くほと くほと

- MCMCML's performance highly depends on initial proposal distribution;
- at time t, it is helpful to update the proposal distribution as the $p(\mathbf{x}; \boldsymbol{\theta}_{t-1})$;
- this is analogous to sequential importance sampling with resampling at every iteration, however, the construction of sequential distributions is by learning;
- this also looks like SAP learning schemes.
- a similar connection between PCD and Sequential Monte Carlo was found in [Asuncion et al., 2010]

- 31

SAP Learning as Sequential Monte Carlo

- 1: Initialize $p(\mathbf{x}; \boldsymbol{\theta}_0), t \leftarrow 0$
- 2: Sample particles $\{\bar{\mathbf{x}}_{0}^{(s)}\}_{s=1}^{S} \sim p(\mathbf{x}; \boldsymbol{\theta}_{0})$
- 3: while ! stop criterion do
- 4: Assign $w^{(s)} \leftarrow \frac{1}{S}, \forall s \in S // \text{ importance reweighting}$
- 5: // resampling is ignored because it has no effect
- 6: switch (algorithmic choice) // MCMC transition
- 7: case CD:
- 8: generate a brand new particle set $\{\bar{\mathbf{x}}_{t+1}^{(s)}\}_{s=1}^{S}$ with Gibbs sampling from \mathcal{D} 9: case PCD:
- 10: evolve particle set $\{\bar{\mathbf{x}}_{t}^{(s)}\}_{s=1}^{S}$ to $\{\bar{\mathbf{x}}_{t+1}^{(s)}\}_{s=1}^{S}$ with one step Gibbs sampling
- 11: **case** Tempered Transition:
- 12: evolve particle set $\{\bar{\mathbf{x}}_{t}^{(s)}\}_{s=1}^{S}$ to $\{\bar{\mathbf{x}}_{t+1}^{(s)}\}_{s=1}^{S}$ with tempered transition
- 13: case Parallel Tempering:
- 14: evolve particle set $\{\bar{\mathbf{x}}_{t}^{(s)}\}_{s=1}^{S}$ to $\{\bar{\mathbf{x}}_{t+1}^{(s)}\}_{s=1}^{S}$ with parallel tempering
- 15: end switch
- 16: Compute the gradient $\Delta \theta_t$ according to (4);

17:
$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \eta \Delta \boldsymbol{\theta}_t, \ t \leftarrow t+1;$$

18: reduce η ;

10. and while

Hanchen Xiong (UIBK)

SAP Learning as Sequential Monte Carlo

• A sequential Monte Carlo (SMC) algorithms can work on the condition that sequential, intermediate distributions are well constructed: two successive ones should be close.

SAP Learning as Sequential Monte Carlo

- A sequential Monte Carlo (SMC) algorithms can work on the condition that sequential, intermediate distributions are well constructed: two successive ones should be close.
- \bullet the gap between successive distributions in SAP: $\eta \times D$
 - 1 learning rate η ;
 - **2** the dimensionality of \mathbf{x} : D.

Persistent Sequential Monte Carlo

• Every sequential, intermediate distributions is constructed by learning, so learning and sampling are interestingly entangled.

Persistent Sequential Monte Carlo

- Every sequential, intermediate distributions is constructed by learning, so learning and sampling are interestingly entangled.
- applying SMC philosophy future in sampling: Persistent SMC (SPMC)

Persistent Sequential Monte Carlo

 \mathcal{U}^{D} is a uniform distribution on **x**, and intermediate sequential distributions are: $p_h(\mathbf{x}; \boldsymbol{\theta}_{t+1}) \propto p(\mathbf{x}; \boldsymbol{\theta}_t)^{1-\beta_h} p(\mathbf{x}; \boldsymbol{\theta}_{t+1})^{\beta_h}$ where $0 \leq \beta_H \leq \beta_{H-1} \leq \cdots \beta_0 = 1$.

November 26, 2014

12 / 22

• One issue arising in PSMC is the number of β_h , *i.e.* H

- 31

- One issue arising in PSMC is the number of β_h , *i.e.* H
- By exploiting degeneration of particle set: the importance weighting for each particle is

$$w^{(s)} = \frac{p_h(\bar{\mathbf{x}}^{(s)}; \boldsymbol{\theta}_{t+1})}{p_{h-1}(\bar{\mathbf{x}}^{(s)}; \boldsymbol{\theta}_{t+1})}$$

= $\exp\left(E(\bar{\mathbf{x}}^{(s)}; \boldsymbol{\theta}_t)\right)^{\Delta\beta_h} \exp\left(E(\bar{\mathbf{x}}^{(s)}; \boldsymbol{\theta}_{t+1})\right)^{-\Delta\beta_h}$ (6)

where $\Delta\beta_h$ is the step length from β_{h-1} to β_h , *i.e.* $\Delta\beta_h = \beta_h - \beta_{h-1}$. the ESS of a particle set as [Kong et al., 1994]

$$\sigma = \frac{\left(\sum_{s=1}^{S} w^{(s)}\right)^2}{S \sum_{s=1}^{S} w^{(s)2}} \in \left[\frac{1}{S}, 1\right]$$
(7)

- One issue arising in PSMC is the number of β_h , *i.e.* H
- By exploiting degeneration of particle set: the importance weighting for each particle is

$$w^{(s)} = \frac{p_h(\bar{\mathbf{x}}^{(s)}; \boldsymbol{\theta}_{t+1})}{p_{h-1}(\bar{\mathbf{x}}^{(s)}; \boldsymbol{\theta}_{t+1})}$$

= $\exp\left(E(\bar{\mathbf{x}}^{(s)}; \boldsymbol{\theta}_t)\right)^{\Delta\beta_h} \exp\left(E(\bar{\mathbf{x}}^{(s)}; \boldsymbol{\theta}_{t+1})\right)^{-\Delta\beta_h}$ (6)

where $\Delta\beta_h$ is the step length from β_{h-1} to β_h , *i.e.* $\Delta\beta_h = \beta_h - \beta_{h-1}$. the ESS of a particle set as [Kong et al., 1994]

$$\sigma = \frac{(\sum_{s=1}^{S} w^{(s)})^2}{S \sum_{s=1}^{S} w^{(s)2}} \in \left[\frac{1}{S}, 1\right]$$
(7)

• ESS σ is actually a function of $\Delta\beta_h$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- One issue arising in PSMC is the number of β_h , *i.e.* H
- By exploiting degeneration of particle set: the importance weighting for each particle is

$$w^{(s)} = \frac{p_h(\bar{\mathbf{x}}^{(s)}; \boldsymbol{\theta}_{t+1})}{p_{h-1}(\bar{\mathbf{x}}^{(s)}; \boldsymbol{\theta}_{t+1})}$$

= $\exp\left(E(\bar{\mathbf{x}}^{(s)}; \boldsymbol{\theta}_t)\right)^{\Delta\beta_h} \exp\left(E(\bar{\mathbf{x}}^{(s)}; \boldsymbol{\theta}_{t+1})\right)^{-\Delta\beta_h}$ (6)

where $\Delta\beta_h$ is the step length from β_{h-1} to β_h , *i.e.* $\Delta\beta_h = \beta_h - \beta_{h-1}$. the ESS of a particle set as [Kong et al., 1994]

$$\sigma = \frac{(\sum_{s=1}^{S} w^{(s)})^2}{S \sum_{s=1}^{S} w^{(s)2}} \in \left[\frac{1}{S}, 1\right]$$
(7)

- ESS σ is actually a function of $\Delta\beta_h$.
- Set a threshold on σ, at every h, and find the biggest gap by using bidirectional search.

Hanchen Xiong (UIBK)

November 26, 2014 13 / 22

PSMC

Input: a training dataset $\mathcal{D} = \{\mathbf{x}^{(m)}\}_{m=1}^{M}$, learning rate η 1: Initialize $p(\mathbf{x}; \boldsymbol{\theta}_0), t \leftarrow 0$ 2: Sample particles $\{\bar{\mathbf{x}}_{0}^{(s)}\}_{s=1}^{S} \sim p(\mathbf{x}; \theta_{0})$ 3: while ! stop criterion // root-SMC do 4: $h \leftarrow 0, \beta_0 \leftarrow 1$ while $\beta_h < 1$ // sub-SMC do 5: assign importance weights $\{w^{(s)}\}_{s=1}^{S}$ to particles according to (6) resample particles based on $\{w^{(s)}\}_{s=1}^{S}$ 6: 7: find the step length $\Delta\beta_h$ 8: $\beta_{h+1} = \beta_h + \delta\beta$ <u>g</u>. $h \leftarrow h + 1$ 10: end while 11: 12: Compute the gradient $\Delta \theta_t$ according to (4) 13: $\theta_{t+1} = \theta_t + \eta \Delta \theta_t$ 14: $t \leftarrow t + 1$ 15: end while

Experiments

two experiments on two challenges:

- big learning rates
- high dimensional distributions

- 31

- 4 週 ト - 4 三 ト - 4 三 ト

First Experiment: Small Learning Rates

a small-size Boltzmann Machine with only 10 variables is used to avoid the effect of model complexity learning rate $\eta_t = \frac{1}{100+t}$

Figure: The performance of algorithms with the first learning rate scheme. (a): log-likelihood *vs.* number of epochs; (b) and (c): the number of β s in PSMC and SMC at each iteration (blue) and their mean values (red).

Hanchen Xiong (UIBK)	Learning UGMs with Persistent S	MC
----------------------	---------------------------------	----

First Experiment: Bigger Learning Rates

learning rate $\eta_t = \frac{1}{20+0.5 \times t}$

Figure: The performance of algorithms with the second learning rate scheme. (a): log-likelihood *vs.* number of epochs; (b) and (c): the number of β s in PSMC and SMC at each iteration (blue) and their mean values (red).

Hanchen Xiong (UIBK)	Learning UGMs with Persistent SMC	November 26, 2014	17 / 22

First Experiment: Large Learning Rates

learning rate
$$\eta_t = \frac{1}{10+0.1 \times t}$$

Figure: The performance of algorithms with the third learning rate scheme. (a): log-likelihood *vs.* number of epochs; (b) and (c): the number of β s in PSMC and SMC at each iteration (blue) and their mean values (red).

Hanchen Xiong (UIBK)	Learning UGMs with Persistent SMC	November	26, 2014	18 / 22

-

Second Experiment: Small Dimensionality/Scale

we used the popular restricted Boltzmann machine to model handwritten digit images (the MNIST database). 10 hidden unites

Second Experiment: Large Dimensionality/Scale

500 hidden unites

Hanchen Xiong (UIBK)

Learning UGMs with Persistent SMC

November 26, 2014 20 / 22

• a new interpretation of learning undirected graphical models: sequential Monte Carlo (SMC)

3

- a new interpretation of learning undirected graphical models: sequential Monte Carlo (SMC)
- reveal two challenges in learning: large learning rate, high dimensionality;

- 3

▲ 同 ▶ → 三 ▶

- a new interpretation of learning undirected graphical models: sequential Monte Carlo (SMC)
- reveal two challenges in learning: large learning rate, high dimensionality;
- deeper application of SMC in learning \longrightarrow Persistent SMC;

- a new interpretation of learning undirected graphical models: sequential Monte Carlo (SMC)
- reveal two challenges in learning: large learning rate, high dimensionality;
- deeper application of SMC in learning \longrightarrow Persistent SMC;
- yield higher likelihood than state-of-the-art algorithms in challenging cases.

END

・ロト ・回ト ・ヨト

Hanchen Xiong (UIBK)

Learning UGMs with Persistent SMC

November 26, 2014 22 / 22

Asuncion, A. U., Liu, Q., Ihler, A. T., and Smyth, P. (2010). Particle filtered MCMC-MLE with connections to contrastive divergence.

In ICML.

Tempered Markov Chain Monte Carlo for training of restricted Boltzmann machines.

In AISTATS.

Geyer, C. J. (1991).

Markov Chain Monte Carlo Maximum Likelihood. Computing Science and Statistics:Proceedings of the 23rd Symposium on the Interface.

Hinton, G. E. (2002).

Training products of experts by minimizing contrastive divergence. *Neural Computation*, 14(8):1771–1800.

Koller, D. and Friedman, N. (2009). Probabilistic Graphical Models: Principles and Techniques. MIT Press.

Kong, A., Liu, J. S., and Wong, W. H. (1994).
 Sequential Imputations and Bayesian Missing Data Problems.
 Journal of the American Statistical Association, 89(425):278–288.

 Robbins, H. and Monro, S. (1951).
 A Stochastic Approximation Method. Ann.Math.Stat., 22:400–407.

📄 Salakhutdinov, R. (2010).

Learning in markov random fields using tempered transitions. In NIPS.

Tieleman, T. (2008).

Training Restricted Boltzmann Machines using Approximations to the Likelihood Gradient.

In ICML, pages 1064-1071.