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Background

Undirected Graphical Models:

Markov Random Fields (or Markov Network)

Condtional Random Fields

Modeling:

p(x;θ) =
exp (−E (x;θ))

Z(θ)
(1)

Energy: E (x;θ) = −θ>φ(x) (2)

with random variables x = [x1, x2, . . . , xD ] ∈ XD where xd can take Nd

discrete values, φ(x) is a K -dimensional vector of sufficient statistics, and
parameter θ ∈ RK .
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Maximum Log-Likelihood Training

UGMs’ likelihood functions is concave w.r.t. θ
[Koller and Friedman, 2009];

Given training data D = {x(m)}Mm=1, the derivative of average

log-likelihood L(θ|D) = 1
M

∑M
m=1 log p(x(m);θ) as

∂L(θ|D)

∂θ
= ED(φ(x))︸ ︷︷ ︸

ψ+

−Eθ(φ(x))︸ ︷︷ ︸
ψ−

=
1

M

M∑
m=1

φ(x(m))−
∑
x′∈D

p(x′;θ)φ(x)′

(3)

interpretation: iteratively pulls down the energy of the data space
occupied by D (positive phase), but raises the energy over all data
space XD (negative phase), until it reaches a balance (ψ+ = ψ−).
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Existing Learning Methods

Approximate the second term of the gradient L:

∂L(θ|D)

∂θ
= ED(φ(x))︸ ︷︷ ︸

ψ+

−Eθ(φ(x))︸ ︷︷ ︸
ψ−

Markov Chain Monte Carlo Maximum Likelihood
(MCMCML)[Geyer, 1991]

Contrastive Divergence (CD) [Hinton, 2002]

Persistent Contrastive Divergence (PCD) [Tieleman, 2008]

Tempered Transition (TT) [Salakhutdinov, 2010]

Parallel Tempering (PT) [Desjardins et al., 2010]

CD,PCD,TT and PT can be summarized as a Robbins-Monro’s
stochastic approximation procedure (SAP).
[Robbins and Monro, 1951]
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Robbins-Monro’s SAP

1 Training data set D = {x(1), · · · , x(M)}. Randomly initialize model
parameters θ0 and N particles {s0,1, · · · , s0,N}.

2 for t = 0 : T do // T iterations

3 for n = 1 : N do // go through all N particles

4 Sample st+1,n from st,n using transition operator Hθt ;

5 end for

6 Update: θt+1 = θt + η
[ 1

M

M∑
m=1

φ(x(m))− 1

N

N∑
n=1

φ(st+1,n)
]

7 Decrease η.

8 end for

9 When using Gibbs sampler as Hθt , SAP becomes PCD, and similarly,
TT and PT can be substituted as well.
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MCMCML

In MCMCML, a proposal distribution p(x;θ0) is set up in the same
form as a UGM, and we have

Z(θ)
Z(θ0) =

∑
x exp(θ>φ(x))∑
x exp(θ>0 φ(x))

=
∑

x exp(θ>φ(x))

exp(θ>0 φ(x))
× exp(θ>0 φ(x))∑

x exp(θ>0 φ(x))

=
∑

x
exp(θ>φ(x))

exp(θ>0 φ(x))
× exp(θ>0 φ(x))∑

x exp(θ>0 φ(x))

=
∑

x exp
(
(θ − θ0)>φ(x)

)
p(x;θ0)

≈ 1
S

∑S
s=1 w

(s)

(4)

where w (s) is
w (s) = exp

(
(θ − θ0)>φ(x̄(s))

)
, (5)

MCMCML is an importance sampling approximation of the gradient.
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MCMCML

1: t ← 0, initialize the proposal distribution p(x;θ0)
2: Sample {x̄(s)} from p(x;θ0)
3: while ! stop criterion do
4: Calculate w (s) using (5)

5: Calculate gradient ∂L̃(θt |D)
∂θt

using importance sampling
approximation.

6: update θt+1 = θt + η ∂L̃(θt |D)
∂θt

7: t ← t + 1
8: end while
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MCMCML

MCMCML’s performance highly depends on initial proposal
distribution;

at time t, it is helpful to update the proposal distribution as the
p(x;θt−1);

this is analogous to sequential importance sampling with resampling
at every iteration, however, the construction of sequential
distributions is by learning;

this also looks like SAP learning schemes.

a similar connection between PCD and Sequential Monte Carlo was
found in [Asuncion et al., 2010]
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SAP Learning as Sequential Monte Carlo

1: Initialize p(x;θ0), t ← 0

2: Sample particles {x̄(s)
0 }Ss=1 ∼ p(x;θ0)

3: while ! stop criterion do
4: Assign w (s) ← 1

S ,∀s ∈ S // importance reweighting

5: // resampling is ignored because it has no effect
6: switch (algorithmic choice) // MCMC transition
7: case CD:
8: generate a brand new particle set {x̄(s)

t+1}
S
s=1 with Gibbs sampling from D

9: case PCD:
10: evolve particle set {x̄(s)

t }Ss=1 to {x̄(s)
t+1}

S
s=1 with one step Gibbs sampling

11: case Tempered Transition:
12: evolve particle set {x̄(s)

t }Ss=1 to {x̄(s)
t+1}

S
s=1 with tempered transition

13: case Parallel Tempering:
14: evolve particle set {x̄(s)

t }Ss=1 to {x̄(s)
t+1}

S
s=1 with parallel tempering

15: end switch
16: Compute the gradient ∆θt according to (4);
17: θt+1 = θt + η∆θt , t ← t + 1;
18: reduce η;

19: end whileHanchen Xiong (UIBK) Learning UGMs with Persistent SMC November 26, 2014 9 / 22



SAP Learning as Sequential Monte Carlo

A sequential Monte Carlo (SMC) algorithms can work on the
condition that sequential, intermediate distributions are well
constructed: two successive ones should be close.

the gap between successive distributions in SAP: η × D
1 learning rate η;

2 the dimensionality of x: D.
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Persistent Sequential Monte Carlo

Every sequential, intermediate distributions is constructed by learning,
so learning and sampling are interestingly entangled.

applying SMC philosophy future in sampling: Persistent SMC (SPMC)

{x̄(s)}S/2s=1 ∼ UD {x̄t−1,(s)}S/2s=1 ∼ pH(x;θt−1)

p0(x;θt) p1(x;θt) · · · pH(x;θt)

{x̄(s)}S/2s=1 ∼ UD {x̄t,(s)}S/2s=1 ∼ pH(x;θt)

p0(x;θt+1) p1(x;θt+1) · · · pH(x;θt+1)

{x̄t+1,(s)}S/2s=1 ∼ pH(x;θt+1)
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Persistent Sequential Monte Carlo

{x̄(s)}S/2s=1 ∼ UD {x̄t−1,(s)}S/2s=1 ∼ pH(x;θt−1)

p0(x;θt) p1(x;θt) · · · pH(x;θt)

{x̄(s)}S/2s=1 ∼ UD {x̄t,(s)}S/2s=1 ∼ pH(x;θt)

p0(x;θt+1) p1(x;θt+1) · · · pH(x;θt+1)

{x̄t+1,(s)}S/2s=1 ∼ pH(x;θt+1)

UD is a uniform distribu-
tion on x, and interme-
diate sequential distribu-
tions are: ph(x;θt+1) ∝
p(x;θt)

1−βhp(x;θt+1)βh

where 0 ≤ βH ≤ βH−1 ≤
· · ·β0 = 1.
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Number of Sub-Sequential Distributions

One issue arising in PSMC is the number of βh, i.e. H

By exploiting degeneration of particle set: the importance weighting
for each particle is

w (s) =
ph(x̄(s);θt+1)

ph−1(x̄(s);θt+1)

= exp
(
E (x̄(s);θt)

)∆βh
exp

(
E (x̄(s);θt+1)

)−∆βh
(6)

where ∆βh is the step length from βh−1 to βh, i.e. ∆βh = βh − βh−1.
the ESS of a particle set as [Kong et al., 1994]

σ =
(
∑S

s=1 w
(s))2

S
∑S

s=1 w
(s)2
∈
[

1

S
, 1

]
(7)

ESS σ is actually a function of ∆βh.

Set a threshold on σ, at every h, and find the biggest gap by using
bidirectional search.
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bidirectional search.
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PSMC

Input: a training dataset D = {x(m)}Mm=1, learning rate η
1: Initialize p(x;θ0), t ← 0

2: Sample particles {x̄(s)
0 }Ss=1 ∼ p(x;θ0)

3: while ! stop criterion // root-SMC do
4: h← 0, β0 ← 1
5: while βh < 1 // sub-SMC do
6: assign importance weights {w (s)}Ss=1 to particles according to (6)
7: resample particles based on {w (s)}Ss=1

8: find the step length ∆βh
9: βh+1 = βh + δβ

10: h← h + 1
11: end while
12: Compute the gradient ∆θt according to (4)
13: θt+1 = θt + η∆θt

14: t ← t + 1
15: end while
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Experiments

two experiments on two challenges:

big learning rates

high dimensional distributions
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First Experiment: Small Learning Rates

a small-size Boltzmann Machine with only 10 variables is used to avoid the
effect of model complexity
learning rate ηt = 1

100+t
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Figure: The performance of algorithms with the first learning rate scheme. (a):
log-likelihood vs. number of epochs; (b) and (c): the number of βs in PSMC and
SMC at each iteration (blue) and their mean values (red).

Hanchen Xiong (UIBK) Learning UGMs with Persistent SMC November 26, 2014 16 / 22



First Experiment: Bigger Learning Rates

learning rate ηt = 1
20+0.5×t

0 20 40 60 80 100
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

number of epochs

lo
g
−

lik
e
lih

o
o
d

 

 

ML

PCD−10

PCD−1

PT

TT

PSMC

SMC

(a)

0 20 40 60 80 100
7

8

9

10

11

12

number of epochs

n
u

m
b

e
r 

o
f 

te
m

p
e

ra
tu

re
s

PSMC

(b)

0 20 40 60 80 100
7

8

9

10

11

12

number of epochs

n
u

m
b

e
r 

o
f 

te
m

p
e

ra
tu

re
s

Standard SMC

(c)

Figure: The performance of algorithms with the second learning rate scheme. (a):
log-likelihood vs. number of epochs; (b) and (c): the number of βs in PSMC and
SMC at each iteration (blue) and their mean values (red).
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First Experiment: Large Learning Rates

learning rate ηt = 1
10+0.1×t
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Figure: The performance of algorithms with the third learning rate scheme. (a):
log-likelihood vs. number of epochs; (b) and (c): the number of βs in PSMC and
SMC at each iteration (blue) and their mean values (red).
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Second Experiment: Small Dimensionality/Scale

we used the popular restricted Boltzmann machine to model handwritten
digit images (the MNIST database).
10 hidden unites
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Second Experiment: Large Dimensionality/Scale

500 hidden unites
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Conclusion

a new interpretation of learning undirected graphical models:
sequential Monte Carlo (SMC)

reveal two challenges in learning: large learning rate, high
dimensionality;

deeper application of SMC in learning −→ Persistent SMC;

yield higher likelihood than state-of-the-art algorithms in challenging
cases.
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END
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