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INTRODUCTION
The past decade witnessed a revival of

learning MRFs with sampling-based approx-
imations. In particular, persistent contrastive
divergence (PCD) yields remarkable suc-
cesses in many applications. PCD is a special
case of Robbins-Monro’s stochastic approx-
imation procedure (SAP) with Gibbs sam-
pling as transitions [1].

It was also recently pointed out in [2] that
every discrete MRFs can be generally con-
verted to a Boltzmann machine, which de-
fines a binary distribution over the presence
of discrete states of all variables. Therefore,
learning discrete MRFs can be converted to
learning Boltzmann machines.

This work empirically compared two ver-
sions of SAP on learning Boltzmann ma-
chines: one with Gibbs sampling as transi-
tions, the other one with binary Hamiltonian
Monte Carlo (BHMC), which is a recent ex-
tension of HMC [3].

HAMILTONIAN MONTE CARLO
Hamiltonian Monte Carlo (HMC)

1. A Metropolis algorithm with a proposal distribution analogous to Hamiltonian dynam-
ics;

2. Compared to random walk in the standard Metropolis algorithm, HMC can propose a
distant jump while still preserving a high acceptance rate.

3. HMC can yield more effective sampling by making use of gradient information of target
distribution’s density function.

Suppose that we are interested in sampling from p(x) (where x ∈ RD). An auxiliary variable
q ∈ RD with q ∼ N (q;0,M) is introduced (usually M = c · ID). A Hamiltonian function can
be constructed as:

H(x,q) = U(x) +K(q) (1)

where U(x), K(q) are negative logarithms of p(x) and p(q). The changes of x and q over time
ν are:

ẋ(ν) =
∂H
∂q(ν)

= M−1q(ν) q̇(ν) = − ∂H
∂x(ν)

= −dU(x)

dx(ν)
(2)

Limitation: HMC can only be applied on continuous distributions of which the partial deriva-
tives of the log density function can be computed. Therefore, applying HMC to sample from
binary distributions (e.g. Boltzmann machines) is not straightforward.

BINARY HAMILTONIAN MONTE CARLO

For a Boltzmann machine p(x ∈ {−1,+1}D), an auxiliary, continuous variable y ∈ RD can
be added with its conditional probability on x as a truncated Gaussian:

p(y|x) =
{
c · exp(−y>y

2 ) ∀d ∈ [1, D], sign(yd) = xd
0 otherwise

(3)

p(y) =
∑

x

p(y|x)p(x;θ) = p(y|x)p(x;θ) (4)

Since y is continuous, we can employ HMC to sample from p(y) and x = sign(y). By substi-
tuting (4) into (1) and (2), we can have:

yd(ν) = ud sin(ωd + ν) qd(ν) = ud cos(ωd + ν) (5)

ud =
√
yd(0)2 + qd(0)2yd

ωd = tan−1(yd(0)
qd(0)

)

ud

v∗ when discontinuity takes place

When yd hits 0 at time ν∗, whether it will be reflected from the
yd = 0 or cross it depends on the sign of:

q2d(ν
−
∗ )

2
− (E(−xd,x¬d;θ)− E(xd,x¬d;θ)) (6)

where qd(ν−∗ ) = ud. (6) can be considered as a pseudo Gibbs sam-
pling. WhenE(−xd,x¬d;θ)−E(xd,x¬d;θ) > 0, the probability of
switching sign of xd is lower than not. According to (6), as long as
the energy raise is smaller than a threshold u2d/2, the switch still
can take place.

ROBBINS-MONRO’S SAP
A MRF based on exponential family:

p(x;θ) =
exp{−E(x;θ)}

Z
=

exp{θ>φ(x)}
Z

(7)
SAP Algorithm:

1. Training data set D = {x1, · · · ,xM}.
Randomly initialize model parameters
θ0 and N particles {s0,1, · · · , s0,N}.

2. for t = 0 : T do

3. for n = 1 : N do

4. Sample st+1,n from st,n using tran-
sition operator Tθ.

5. end for

6. Update: θt+1 = θt + η
[ 1

M

M∑

m=1

φ(xm)− 1

N

N∑

n=1

φ(st+1,n)
]

7. Decrease η.

8. end forSAMPLING FROM BOLTZMANN MACHINES
Gibbs Sampling BHMC Sampling
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Conclusion: BHMC samples more “boldly", but less “faithfully" than Gibbs.

LEARNING MRFS
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3−Step Gibbs Sampling

10−Step Gibbs Sampling

bHMC with N=3,η=1/4,c=1

bHMC with N=10,η=1/4,c=1

bHMC with N=3,η=1/4,c=3

bHMC with N=10,η=1/4,c=3

Conclusion: SAP with Gibbs sampling (i.e.
PCD) is preferred.
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