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OVERVIEW

Research in Multi-label Prediction:

FROM STRUCTURAL SVM TO JOINT SVM

Structural SVM is an extension of SVM for structured-outputs, in which, however, the
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where (-, -) r denotes Frobenius product and ||W|| ¢ is the Frobenius norm of matrix W.

e in joint SVM, (non-)linear kernels can
be assigned on outputs to capture
inter-label dependencies;

It can be seen in (2) that,with linearly decomposable score functions and output distances,
structural SVM on multi-label learning is equivalent to learning 7' SVMs jointly: Joint SVM
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IMPLICIT REGULARIZATION ON LINEAR OUTPUT KERNELS

When a linear output kernel is used to capture pairwise dependencies of labels, via which the output vectors can be linearly mapped as

P(y) = Py: K" (yW,yW)) =y T Qyl) where @ = P'P. By denoting U = P' W, we can have:
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we use a compact regularization for both W and €, ||W ' Q' W]||3,, resulting in:
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Remarkably, a linear output kernel is implicitly learned, and absorbed in W, also a regularization on the output kernel is also implicitly added.

EXPERIMENTAL RESULTS AND COMPARISON

Corel5K Espgame laprtc12
Method P(%) R(%) FlL(%)  P(h) R FlL(%)  P(h) R Fl(h)
MBRM 24.0 25.0 24.0 18.0 19.0 18.0 24.0  23.0 23.0
JEC 27.0 32.0 29.0 24.0 19.0 21.0 29.0 19.0 23.0
TagProp 33.0 420 37.0 39.0 27.0 32.0 45.0  34.0 39.0
FastTag 320  43.0 37.0 46.0 22.0 30.0 47.0 260 34.0
JSVM 48.5 38.0 42.6 32.7 31.6 32.2 42.2 29.4 34.6
JSVM+Pol(2) 46.6 37.0 41.3 32.6 24.4 27.9 37.9 26.6 31.2
JSVM+Pol(3) 41.5 313 35.7 28.5 21.3 24.4 38.0 26.1 31.0

Table 1: Comparison between different versions of joint SVM and other related methods on three
benchmark databases. P, R and F1 denote precision, recall and F1 measure respectively.
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