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OVERVIEW
Research in Multi-label Prediction:

• exploiting and utilizing inter-label de-

pendencies;©
• increasingly more sophisticated de-

pendency are used; ?
• “overfit" output structural dependen-

cies when the desired ones are simpler

§
• a regularization should be added on

output structural dependenciesV
Our contributions: Joint SVM

• joint SVM ⇐⇒ structural SVM with
linearly decomposable score functions;

• in joint SVM, (non-)linear kernels can
be assigned on outputs to capture
inter-label dependencies;

• joint SVM shares the same computa-
tional complexity as a single SVM;

• when linear output kernels are used, a
output-kernel regularization is implic-
itly added.

• yield promising results on 3 image an-
notation databases.

FROM STRUCTURAL SVM TO JOINT SVM
Structural SVM is an extension of SVM for structured-outputs, in which, however, the

margin to be maximized is defined as the score gap between the desired output and the first
runner-up.

arg min
W∈RΨ

1
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||W||2 + C

m∑
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y′∈Y

{
d(y(i),y′)−∆F (y(i),y′)

}
(1)

where ∆F (y(i),y′) = F (x(i),y(i); W)−F (x(i),y′; W), the score function is F
(
x(i),y(i); W

)
=

〈W, φ(x(i)) ⊗ y(i)〉, and Hamming distance d(y(i),y′) is used on outputs. Because of linear
decomposability, (1) can be rewritten as:
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t , y′t)

}
⇓
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2 ||wt||2 + C
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0, d(y

(i)
t ,−y(i)t )−∆F (y
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⇓

arg min
w1,··· ,wT∈RHφ

∑T
t=1

{
1
2 ||wt||2 + 2C

∑m
i=1 max

{
0, 1− y(i)t w>t φ(x(i))

}}
(2)

where 〈·, ·〉F denotes Frobenius product and ||W||F is the Frobenius norm of matrix W.
It can be seen in (2) that,with linearly decomposable score functions and output distances,

structural SVM on multi-label learning is equivalent to learning T SVMs jointly: Joint SVM

arg min
W∈RHψ×Hφ

1
2 ||W||

2
F + C

∑m
i=1 ξ̄

(i)

s.t.
〈
ψ(y(i)),Wφ(x(i))

〉
≥ 1− ξ̄(i), ξi ≥ 0, i ∈ {1, . . . ,m}

(3)

where y(i) = [y
(1)
1 , . . . , y

(i)
T ], W = [

w>1
T ; . . . ;

w>T
T ]>. The corresponding dual form of Joint SVM

is:
arg min

α1,··· ,αm

∑m
i=1 αi −

∑m
i,j=1 αiαjKψ(y(i),y(j))Kφ(x(i),x(j))

s.t ∀i, 0 ≤ αi ≤ C
(4)

therefore, the same computational complexity as a single regular SVM.

IMPLICIT REGULARIZATION ON LINEAR OUTPUT KERNELS
When a linear output kernel is used to capture pairwise dependencies of labels, via which the output vectors can be linearly mapped as

ψ(y) = Py: KLin
ψ (y(i),y(j)) = y(i)>Ωy(j) where Ω = P>P. By denoting U = P>W, we can have:

arg min
W∈RHψ×Hφ

1
2 ||W||

2
F + C

∑m
i=1 ξ̄

(i)

s.t.
〈
y(i),Uφ(x(i))

〉
≥ 1− ξ̄(i), ξi ≥ 0, i ∈ {1, . . . ,m}

(5)

we use a compact regularization for both W and Ω, 1
2 ||W

>Ω>W||2F , resulting in:

arg min
U∈RHψ×Hφ

1
2 ||U||

2
F + C

∑m
i=1 ξ̄

(i)

s.t.
〈
y(i),Uφ(x(i))

〉
≥ 1− ξ̄(i), ξi ≥ 0, i ∈ {1, . . . ,m}

(6)

Remarkably, a linear output kernel is implicitly learned, and absorbed in W, also a regularization on the output kernel is also implicitly added.

EXPERIMENTAL RESULTS AND COMPARISON
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