Implicit Learning of Simper Output Kernels for Multi-label Prediction

Hanchen Xiong, Sandor Szedmak, Justus Piater UNIVERSITY OF INNSBRUCK, AUSTRIA

(5)

(6)

OVERVIEW

Research in Multi-label Prediction:

- exploiting and utilizing inter-label dependencies;
- increasingly more sophisticated dependency are used; ?
- "overfit" output structural dependencies when the desired ones are simpler $\langle \cdot \cdot \rangle$

FROM STRUCTURAL SVM TO JOINT SVM

Structural SVM is an extension of SVM for structured-outputs, in which, however, the margin to be maximized is defined as the score gap between the desired output and the first runner-up.

$$\arg\min_{\mathbf{W}\in\mathbb{R}^{\Psi}}\frac{1}{2}||\mathbf{W}||^{2} + C\sum_{i=1}^{m}\max_{\mathbf{y}'\in\mathcal{Y}}\left\{d(\mathbf{y}^{(i)},\mathbf{y}') - \Delta_{F}(\mathbf{y}^{(i)},\mathbf{y}')\right\}$$
(1)

where $\Delta_F(\mathbf{y}^{(i)}, \mathbf{y}') = F(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}; \mathbf{W}) - F(\mathbf{x}^{(i)}, \mathbf{y}'; \mathbf{W})$, the score function is $F(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}; \mathbf{W}) =$ $\langle \mathbf{W}, \phi(\mathbf{x}^{(i)}) \otimes \mathbf{y}^{(i)} \rangle$, and *Hamming distance* $d(\mathbf{y}^{(i)}, \mathbf{y}')$ is used on outputs. Because of linear decomposability, (1) can be rewritten as:

• a regularization should be added on output structural dependencies

Our contributions: Joint SVM

- joint SVM \iff structural SVM with linearly decomposable score functions;
- in joint SVM, (non-)linear kernels can be assigned on outputs to capture inter-label dependencies;
- joint SVM shares the same computational complexity as a single SVM;
- when linear output kernels are used, a output-kernel regularization is implicitly added.
- yield promising results on 3 image annotation databases.

$$\arg\min_{\substack{\mathbf{W}\in\mathbb{R}^{\mathcal{H}_{\phi}\times\mathbb{R}^{T}}\\ \mathbf{W}\in\mathbb{R}^{\mathcal{H}_{\phi}\times\mathbb{R}^{T}}\\ \mathbf{W}}} \frac{\frac{1}{2}||\mathbf{W}||_{F}^{2} + C\sum_{i=1}^{m}\sum_{t=1}^{T}\max_{y_{t}^{i}=\{-1,+1\}}\left\{d(y_{t}^{(i)},y_{t}^{i}) - \Delta_{F}(y_{t}^{(i)},y_{t}^{i})\right\}\right\}}{\left\|\sum_{i=1}^{T}\left\{\frac{1}{2}||\mathbf{w}_{t}||^{2} + C\sum_{i=1}^{m}\max\left\{0,d(y_{t}^{(i)},-y_{t}^{(i)}) - \Delta_{F}(y_{t}^{(i)},-y_{t}^{(i)})\right\}\right\}\right\}}$$

$$\arg\min_{\mathbf{w}_{1},\cdots,\mathbf{w}_{T}\in\mathbb{R}^{\mathcal{H}_{\phi}}}\sum_{t=1}^{T}\left\{\frac{1}{2}||\mathbf{w}_{t}||^{2} + 2C\sum_{i=1}^{m}\max\left\{0,1-y_{t}^{(i)}\mathbf{w}_{t}^{\top}\phi(\mathbf{x}^{(i)})\right\}\right\}$$

$$(2)$$

where $\langle \cdot, \cdot \rangle_F$ denotes Frobenius product and $||\mathbf{W}||_F$ is the Frobenius norm of matrix \mathbf{W} . It can be seen in (2) that, with linearly decomposable score functions and output distances, structural SVM on multi-label learning is equivalent to learning T SVMs jointly: Joint SVM

$$\arg\min_{\mathbf{W}\in\mathbb{R}^{H_{\psi}\times\mathcal{H}_{\phi}}} \quad \frac{1}{2}||\mathbf{W}||_{F}^{2} + C\sum_{i=1}^{m}\bar{\xi}^{(i)}$$
s.t. $\langle\psi(\mathbf{y}^{(i)}),\mathbf{W}\phi(x^{(i)})\rangle \ge 1 - \bar{\xi}^{(i)}, \xi_{i} \ge 0, i \in \{1,\ldots,m\}$
(3)

where $\mathbf{y}^{(i)} = [y_1^{(1)}, \dots, y_T^{(i)}]$, $\mathbf{W} = [\frac{\mathbf{w}_1^{\top}}{T}; \dots; \frac{\mathbf{w}_T^{\top}}{T}]^{\top}$. The corresponding dual form of Joint SVM is: $\arg\min_{\substack{\alpha_1,\cdots,\alpha_m\\ \mathbf{s}.\mathbf{t}}} \sum_{i=1}^m \alpha_i - \sum_{i,j=1}^m \alpha_i \alpha_j K_{\psi}(\mathbf{y}^{(i)}, \mathbf{y}^{(j)}) K_{\phi}(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$ (4)

IMPLICIT REGULARIZATION ON LINEAR OUTPUT KERNELS

When a linear output kernel is used to capture pairwise dependencies of labels, via which the output vectors can be linearly mapped as $\psi(\mathbf{y}) = \mathbf{P}\mathbf{y}$: $K_{\psi}^{Lin}(\mathbf{y}^{(i)}, \mathbf{y}^{(j)}) = \mathbf{y}^{(i)\top} \mathbf{\Omega} \mathbf{y}^{(j)}$ where $\mathbf{\Omega} = \mathbf{P}^{\top} \mathbf{P}$. By denoting $\mathbf{U} = \mathbf{P}^{\top} \mathbf{W}$, we can have:

$$\arg\min_{\mathbf{W}\in\mathbb{R}^{H_{\psi}\times\mathcal{H}_{\phi}}} \frac{\frac{1}{2}||\mathbf{W}||_{F}^{2} + C\sum_{i=1}^{m}\bar{\xi}^{(i)}$$

s.t. $\langle \mathbf{y}^{(i)}, \mathbf{U}\phi(x^{(i)}) \rangle \geq 1 - \bar{\xi}^{(i)}, \xi_{i} \geq 0, i \in \{1, \dots, m\}$

we use a compact regularization for both W and Ω , $\frac{1}{2}||W^{\top}\Omega^{\top}W||_{F}^{2}$, resulting in:

$$\arg\min_{\mathbf{U}\in\mathbb{R}^{H_{\psi}\times\mathcal{H}_{\phi}}} \quad \frac{1}{2} ||\mathbf{U}||_{F}^{2} + C\sum_{i=1}^{m} \bar{\xi}^{(i)}$$

s.t. $\langle \mathbf{y}^{(i)}, \mathbf{U}\phi(x^{(i)}) \rangle \geq 1 - \bar{\xi}^{(i)}, \xi_{i} \geq 0, i \in \{1, \dots, m\}$

Remarkably, a linear output kernel is implicitly learned, and absorbed in W, also a regularization on the output kernel is also implicitly added.

EXPERIMENTAL RESULTS AND COMPARISON

Corel5K Iaprtc12 Espgame Method P(%) R(%) = F1(%)P(%) R(%) = F1(%)P(%) R(%) F1(%)

memou	- (70)		(/0)	- (70)		(70)	I (70)		••(/0)
MBRM	24.0	25.0	24.0	18.0	19.0	18.0	24.0	23.0	23.0
JEC	27.0	32.0	29.0	24.0	19.0	21.0	29.0	19.0	23.0
TagProp	33.0	42.0	37.0	39.0	27.0	32.0	45.0	34.0	39.0
FastTag	32.0	43.0	37.0	46.0	22.0	30.0	47.0	26.0	34.0
JSVM	48.5	38.0	42.6	32.7	31.6	32.2	42.2	29.4	34.6
JSVM+Pol(2)	46.6	37.0	41.3	32.6	24.4	27.9	37.9	26.6	31.2
JSVM+Pol(3)	41.5	31.3	35.7	28.5	21.3	24.4	38.0	26.1	31.0

Table 1: Comparison between different versions of joint SVM and other related methods on three benchmark databases. P, R and F1 denote precision, recall and F1 measure respectively.

