NIPS workshop on RLCO 2014

Implicit Learning of Simpler Output Kernels for Multi-label Prediction

Hanchen Xiong, Sandor Szedmak, Justus Piater

University of Innsbruck, Austria

Montreal, Canada. 2014.12.13

1

Support Vector Machines

Inter-Label Dependencies

Structural Outputs:
$$\mathcal{Y} = \{-1, +1\}^T$$

 $\mathbf{y}^{(i)} = [y_1^{(i)}, y_2^{(i)}, y_3^{(i)}, \cdots, y_d^{(i)}]^\top$

tree	mountain	beach	sea
+1	+1	-1	-1
-1	-1	+1	+1

Labels are inter-dependent: e.g. Markov network

Structural Support Vector Machine

$$\underbrace{F\left(\mathbf{x}^{(i)}, y^{(i)}; \mathbf{w}\right) - F\left(\mathbf{x}^{(i)}, -y^{(i)}; \mathbf{w}\right)}_{\Delta_F(y^{(i)}, -y^{(i)})} \ge d(y^{(i)}, -y^{(i)}) - \xi^{(i)}$$

generalized to structured outputs

$$F(\mathbf{x}^{(i)}, \mathbf{y}; \mathbf{w}) = F(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}; \mathbf{w}) - F(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}; \mathbf{w})$$

$$\mathbf{y}_{d(\mathbf{y}^{(i)}, \mathbf{y}^{\prime})}^{\mathbf{y}_{d(\mathbf{y}^{(i)}, \mathbf{y}^{\prime})}}$$

$$\mathbf{Structural SVM:}$$

$$\min_{\mathbf{W} \in \mathbb{R}^{\Psi}} \frac{1}{2} ||\mathbf{W}||^{2} + C \sum_{i=1}^{m} \max_{\mathbf{y}^{\prime} \in \mathcal{Y}} \left\{ d(\mathbf{y}^{(i)}, \mathbf{y}^{\prime}) - \Delta_{F}(\mathbf{y}^{(i)}, \mathbf{y}^{\prime}) \right\}$$

$$\mathbf{4}$$

Structural SVM

$$\min_{\mathbf{W}\in\mathbb{R}^{\Psi}} \frac{1}{2} ||\mathbf{W}||^{2} + C \sum_{i=1}^{m} \max_{\mathbf{y}'\in\mathcal{Y}} \left\{ d(\mathbf{y}^{(i)}, \mathbf{y}') - \Delta_{F}(\mathbf{y}^{(i)}, \mathbf{y}') \right\}$$
We define function as $F(\mathbf{x}^{(i)}, \mathbf{y}^{(i)}; \mathbf{W}) = \langle \mathbf{W}, \phi(\mathbf{x}^{(i)}) \otimes \mathbf{y}^{(i)} \rangle_{F}$
and use Hamming distance on outputs:
$$\int_{\mathbf{W}\in\mathbb{R}^{\mathcal{H}_{\phi}\times\mathbb{R}^{T}}} \frac{1}{2} ||\mathbf{W}||_{F}^{2} + C \sum_{i=1}^{m} \sum_{t=1}^{T} \max_{y_{t}'=\{-1,+1\}} \left\{ d(y_{t}^{(i)}, y_{t}') - \Delta_{F}(y_{t}^{(i)}, y_{t}') \right\}$$

Linear Score Function in Structural SVM

Structural SVM:

$$\min_{\mathbf{W}\in\mathbb{R}^{\mathcal{H}_{\phi}\times\mathbb{R}^{T}}} \frac{1}{2} ||\mathbf{W}||_{F}^{2} + C \sum_{i=1}^{m} \sum_{t=1}^{T} \max_{y_{t}'=\{-1,+1\}} \left\{ d(y_{t}^{(i)},y_{t}') - \Delta_{F}(y_{t}^{(i)},y_{t}') \right\}$$

$$\min_{\mathbf{w}_{1},\cdots,\mathbf{w}_{T}\in\mathbb{R}^{\mathcal{H}_{\phi}}} \sum_{t=1}^{T} \left\{ \frac{||\mathbf{w}_{t}||^{2}}{2} + C \sum_{i=1}^{m} \max\left\{ 0, d(y_{t}^{(i)},-y_{t}^{(i)}) - \Delta_{F}(y_{t}^{(i)},-y_{t}^{(i)}) \right\} \right\}$$

Regular SVM: $\min_{\mathbf{w}\in\mathbb{R}^{\mathcal{H}}} \left[\frac{1}{2} ||\mathbf{w}||^{2} + C \sum_{i=1}^{m} \max\{0, d(y^{(i)}, -y^{(i)}) - \Delta_{F}(y^{(i)}, -y^{(i)})\} \right]$ linearly decomposable \downarrow Structural SVM \rightarrow training *T* SVMs jointly.

6

Joint SVM

training T SVMs jointly:

$$\min_{\mathbf{w}, \mathbf{r}, \mathbf{t}, \mathbf{w}_{1}, \mathbf{w}_{2}, \dots, \mathbf{w}_{T} \in \mathbf{R}^{\mathcal{H}_{\phi} \times 1} \sum_{i=1}^{m} \xi_{t}^{(i)}$$
w.r.t. $\mathbf{w}_{1}, \mathbf{w}_{2}, \dots, \mathbf{w}_{T} \in \mathbf{R}^{\mathcal{H}_{\phi} \times 1}$
s.t. $\sum_{t=1}^{T} y_{t}^{(i)} (\mathbf{w}_{t}^{\top} \phi(x^{(i)})) \geq T - \sum_{t=1}^{T} \xi_{t}^{(i)}$

$$y^{(i)} = [y_{1}^{(1)}, \dots, y_{T}^{(i)}], \text{ and } \mathbf{W} = [\frac{\mathbf{w}_{1}^{\top}}{T}; \dots; \frac{\mathbf{w}_{T}^{\top}}{T}]^{\top}, \bar{\xi}^{(i)} = \frac{\sum_{t=1}^{T} \xi_{t}^{(i)}}{T}$$

$$\mathbf{Joint SVM:}$$

$$\min_{\mathbf{W} \in \mathbb{R}^{T} \times \mathcal{H}_{\phi}} \frac{1}{2} ||\mathbf{W}||_{F}^{2} + C \sum_{i=1}^{m} \bar{\xi}^{(i)}$$
s.t. $\langle \mathbf{y}^{(i)}, \mathbf{W} \phi(x^{(i)}) \rangle \geq 1 - \bar{\xi}^{(i)}, \bar{\xi}^{(i)} \geq 0, i \in \{1, \dots, m\}$

define linear kernels on structured outputs :

$$\begin{aligned}
& K_{\psi}(\mathbf{y}^{(i)}, \mathbf{y}^{(j)}) = \langle \psi(\mathbf{y}^{(i)}), \psi(\mathbf{y}^{(j)}) \rangle \\
& \min_{\mathbf{W} \in \mathbb{R}^{H_{\psi} \times \mathcal{H}_{\phi}}} \quad \frac{\frac{1}{2} ||\mathbf{W}||_{F}^{2} + C \sum_{i=1}^{m} \bar{\xi}^{(i)} \\
& \text{s.t.} \quad \langle \psi(\mathbf{y}^{(i)}), \mathbf{W}\phi(x^{(i)}) \rangle \geq 1 - \bar{\xi}^{(i)}, \xi_{i} \geq 0, i \in \{1, \dots, m\} \end{aligned}$$

Low Training Complexity:

Dual Joint SVM:

$$\max_{\alpha_{1},\dots,\alpha_{m}} \sum_{i=1}^{m} \alpha_{i} - \sum_{i,j=1}^{m} \alpha_{i} \alpha_{j} K_{\psi}(\mathbf{y}^{(i)}, \mathbf{y}^{(j)}) K_{\phi}(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$$
s.t. $\forall i, 0 \le \alpha_{i} \le C$
the same computational complexity as a single SVM
Dual SVM:

$$\max_{\boldsymbol{\alpha} \in \mathbb{R}^{m}} \sum_{i=1}^{m} \alpha_{i} - \sum_{i,j=1}^{m} \alpha_{i} \alpha_{j} y^{(i)} y^{(j)} K_{\phi}(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}))$$
s.t. $0 < \alpha_{i} < C, i \in \{1, \dots, m\}$
8

Joint SVM : Implicit Output Kernel Learning and Regularization

When linear output is used:

$$\begin{split} & \underset{\mathbf{W} \in \mathbb{R}^{H_{\psi} \times \mathcal{H}_{\phi}}}{\min_{\mathbf{W} \in \mathbb{R}^{H_{\psi} \times \mathcal{H}_{\phi}}} \sum_{i=1}^{1} ||\mathbf{W}||_{F}^{2} + C \sum_{i=1}^{m} \bar{\xi}^{(i)}} \\ & \underset{\psi^{(i)}(\mathbf{y}^{(i)}) = \mathbf{P} \mathbf{y}^{(i)} \quad \mathbf{W} \phi(x^{(i)}) \rangle \geq 1 - \bar{\xi}^{(i)}, \xi_{i} \geq 0, i \in \{1, \dots, m\} \\ & \underset{\mathbf{W} \in \mathbb{R}^{H_{\psi} \times \mathcal{H}_{\phi}}}{\min_{\mathbf{W} \in \mathbb{R}^{H_{\psi} \times \mathcal{H}_{\phi}}} \sum_{i=1}^{1} ||\mathbf{W}||_{F}^{2} + C \sum_{i=1}^{m} \bar{\xi}^{(i)} \\ & \underset{(\mathbf{y}^{(i)}, \mathbf{P}^{\top} \mathbf{W} \phi(x^{(i)})) \geq 1 - \bar{\xi}^{(i)}, \xi_{i} \geq 0, i \in \{1, \dots, m\} \\ & \underset{\mathbf{W} \in \mathbb{R}^{H_{\psi} \times \mathcal{H}_{\phi}}}{\min_{\mathbf{W} \in \mathbb{R}^{H_{\psi} \times \mathcal{H}_{\phi}}} \sum_{i=1}^{1} ||\mathbf{W}||_{F}^{2} + C \sum_{i=1}^{m} \bar{\xi}^{(i)} \\ & \underset{\mathbf{X} \in \mathbb{R}^{H_{\psi} \times \mathcal{H}_{\phi}}}{\min_{\mathbf{W} \in \mathbb{R}^{H_{\psi} \times \mathcal{H}_{\phi}}} \sum_{i=1}^{1} ||\mathbf{W}||_{F}^{2} + C \sum_{i=1}^{m} \bar{\xi}^{(i)} \\ & \underset{\mathbf{X} \in \mathbb{R}^{H_{\psi} \times \mathcal{H}_{\phi}}}{\min_{\mathbf{W} \in \mathbb{R}^{H_{\psi} \times \mathcal{H}_{\phi}}} \sum_{i=1}^{1} |\mathbf{U}||_{F}^{2} + C \sum_{i=1}^{m} \bar{\xi}^{(i)} \\ & \underset{\mathbf{X} \in \mathbb{R}^{H_{\psi} \times \mathcal{H}_{\phi}}}{\min_{\mathbf{W} \in \mathbb{R}^{H_{\psi} \times \mathcal{H}_{\phi}}} \sum_{i=1}^{1} ||\mathbf{U}||_{F}^{2} + C \sum_{i=1}^{m} \bar{\xi}^{(i)} \\ & \underset{\mathbf{X} \in \mathbb{R}^{H_{\psi} \times \mathcal{H}_{\phi}}}{\min_{\mathbf{W} \in \mathbb{R}^{H_{\psi} \times \mathcal{H}_{\phi}}} \sum_{i=1}^{1} |\mathbf{U}||_{F}^{2} + C \sum_{i=1}^{m} \bar{\xi}^{(i)} \\ & \underset{\mathbf{X} \in \mathbb{R}^{H_{\psi} \times \mathcal{H}_{\phi}}}{\min_{\mathbf{W} \in \mathbb{R}^{H_{\psi} \times \mathcal{H}_{\phi}}} \sum_{i=1}^{1} |\mathbf{U}||_{F}^{2} + C \sum_{i=1}^{m} \bar{\xi}^{(i)} \\ & \underset{\mathbf{X} \in \mathbb{R}^{H_{\psi} \times \mathcal{H}_{\phi}}}{\min_{\mathbf{W} \in \mathbb{R}^{H_{\psi} \times \mathcal{H}_{\phi}}} \sum_{i=1}^{1} |\mathbf{U}||_{F}^{2} + C \sum_{i=1}^{m} \bar{\xi}^{(i)} \\ & \underset{\mathbf{X} \in \mathbb{R}^{H_{\psi} \times \mathcal{H}_{\phi}}}{\min_{\mathbf{W} \in \mathbb{R}^{H_{\psi} \times \mathcal{H}_{\phi}}} \sum_{i=1}^{1} |\mathbf{U}||_{F}^{2} + C \sum_{i=1}^{m} \bar{\xi}^{(i)} \\ & \underset{\mathbf{X} \in \mathbb{R}^{H_{\psi} \times \mathcal{H}_{\phi}}}{\min_{\mathbf{W} \in \mathbb{R}^{H_{\psi} \times \mathcal{H}_{\phi}}} \sum_{i=1}^{1} |\mathbf{U}||_{F}^{2} + C \sum_{i=1}^{m} \bar{\xi}^{(i)} \\ & \underset{\mathbf{X} \in \mathbb{R}^{H_{\psi} \times \mathcal{H}_{\phi}}}{\min_{\mathbf{W} \in \mathbb{R}^{H_{\psi} \times \mathcal{H}_{\phi}}} \sum_{i=1}^{1} |\mathbf{U}||_{F}^{2} + C \sum_{i=1}^{m} |\mathbf{U}||_{F}^{2} + C \sum_{i=1}^{m$$

Results and Comparisons

Benchmark Databases for Image Annotation

			<u>]</u>
bug, green, insect, tree, wood	blue, cloud, ocean sky, water	, black, compu handle,	uter, drawing screen
asian, boy, gun, man, white	anime, comic, people red, woman	e, feet, flow red, sh	ver, fur.
	Number of	I	
Dataset labe	els training	test	average
	instances	instances	labels
Corel5k 260	0 4500	500	3.3965
Espgame 268	8 18689	2081	4.6859
Iaprtc12 29	1 17665	1962	5.7187

Comparable Results:

	Corel5K			Espgame		Iaprtc12			
Method	P(%)	R(%)	F1(%)	P(%)	R(%)	F1(%)	P(%)	R(%)	F1(%)
MBRM	24.0	25.0	24.0	18.0	19.0	18.0	24.0	23.0	23.0
JEC	27.0	32.0	29.0	24.0	19.0	21.0	29.0	19.0	23.0
TagProp	33.0	42.0	37.0	39.0	27.0	32.0	45.0	34.0	39.0
FastTag	32.0	43.0	37.0	46.0	22.0	30.0	47.0	26.0	34.0
JSVM	48.5	38.0	42.6	32.7	31.6	32.2	42.2	29.4	34.6
JSVM+Pol(2)	46.6	37.0	41.3	32.6	24.4	27.9	37.9	26.6	31.2
JSVM+Pol(3)	41.5	31.3	35.7	28.5	21.3	24.4	38.0	26.1	31.0

MBRM: S. L. Feng, R. Manmatha, and V. Lavrenko. Multiple bernoulli relevance models for image and video annotation. In Computer Vision and Pattern Recognition, 2004.

JEC: Ameesh Makadia, Vladimir Pavlovic, and Sanjiv Kumar. Baselines for image annotation. International Journal of Computer Vision, 90:88–105, 2010.

TagProp: Matthieu Guillaumin, Thomas Mensink, Jakob Verbeek, and Cordelia Schmid. Tagprop: Discriminative metric learning in nearest neighbor models for image auto-annotation. In International Conference on Computer Vision, 2009.

FasTag: Minmin Chen, Alice Zheng, and Kilian Q. Weinberger. Fast image tagging. In International Conference on Machine Learning, 2013

Results and Contributions : Comparison with State-of-the-arts

Preference to Simpler Label-Dependence

A take-home message: A simpler output kernel is desirable to avoid overfitting in output structural dependencies.

Thanks for your attention !

Questions and Answers ?

$$\frac{1}{2}\mathbf{tr}(\mathbf{W}^{\top}\mathbf{P}\mathbf{P}^{\top}\mathbf{W}) = \frac{1}{2}\mathbf{tr}(\mathbf{P}\mathbf{P}^{\top}\mathbf{W}\mathbf{W}^{\top})$$

lemma: for positive (semi-)definite matrices A and B:

$$\operatorname{tr}(AB)^m \leq {\{\operatorname{tr}(A)^{2m}\operatorname{tr}(B)^{2m}\}^{1/2}}$$

where *m* is positive integer.

$$\frac{1}{2}\mathbf{tr}(\mathbf{P}\mathbf{P}^{\top}\mathbf{W}\mathbf{W}^{\top}) \leq \frac{1}{2}\mathbf{tr}(\mathbf{P}\mathbf{P}^{\top})\mathbf{tr}(\mathbf{W}\mathbf{W}^{\top}) = \frac{1}{2}||\mathbf{P}||_{F}^{2}||\mathbf{W}||_{F}^{2}$$

"On Some Matrix Trace Inequalities", Zubeyde Ulukok and Ramazan Trkmen, Journal of Inequalities and Applications, 2010

Multiple SVMs: train *T* SVMs independently

too expensive (*T* can be very large)
ignore inter-label dependencies

	Training	Testing	Testing		
	Time (sec)	Time (sec)	Precision (%)	Recall $(\%)$	F1 (%)
Independent SVMs (Gau)	6285.11	117.20	15.3	22.1	18.1
Independent SVMs (Pol)	4612.23	147.9	15.1	29.7	20.0
Joint SVM (Gau)	80.68	6.92	40.8	37.1	38.9
Joint SVM (Pol)	76.48	9.11	48.5	38.0	42.6