
Learning shapes as directed closed surfaces

Technical Report

Sandor Szedmak
IIS, University of Innsbruck
sandor.szedmak@uibk.ac.at

Hanchen Xiong
IIS, University of Innsbruck
hanchen.xiong@uibk.ac.at

Justus Piater
IIS, University of Innsbruck
justus.piater@uibk.ac.at

December 19, 2011

1 Introduction

One of the central problems in capturing the environment by a robot is to
interpret the objects observed. This interpretation can serve as a starting
point to the potential activities. For example: can those objects be grasped,
moved and reordered? The interpretation should not stick a label to those
objects saying: this is a chair or that is a mug, but it should provide knowl-
edge enough to act in a proper way. A mug or a glass, even a bottle, can
be grasped in the same way, thus some common properties are really rele-
vant among those objects, but others, e.g. colors, texture, some details of
the shape can be ignored. Some parts, segments of the entire shape of the
objects, carry activity-related properties that need to be captured.

The shapes of an object as an entity can not be directly observed by
the known machine vision systems. Those systems can yield several differ-
ent local feature items and the task is to build an abstract shape out of
those features. Within that procedure we need to discover how those local
items can relate to each other, what is the three dimensional graph connect-
ing them, and recognize those items which can characterize the shape and
separate them from those which can relate to something else, e.g. texture.

In learning shapes we assume features which can be characterized by two
properties, a 3D position and an orientation, e.g. a surface segment, a patch,
etc. These properties can be translated relatively easily into the properties
of the potential activities. To collect this kind of features we need proper
vision systems which can provide them with sufficient accuracy. Here we
assume that these features are available for shape learning.

1

1.0.1 Shape model

We assume that the shape can be described as a manifold in the three dimen-
sional space. This manifold, we might say surface, is an almost everywhere
smooth one allowing to model edges and corners with high curvature, but
otherwise it can be partitioned into relatively large connected smooth seg-
ments. This assumption expresses the need to eliminate irrelevant small
details. Another requirement we should satisfy relates to the potential com-
plexity of the shape, namely it can be a topologically higher order manifold
with holes, with a mixture of segments with positive and negative curvature,
and convex and concave parts.

To model a surface with complex structure and in the same time forcing a
certain high level of smoothness we apply an infinite dimensional parametric
representation exploiting the fact that a complex low dimensional manifold
can be approximated by a hyperplane in a sufficiently high dimensional
space.

The representation space we have chosen is an infinite dimensional Hilbert
space of the square integrable functions. Within this space we can apply the
probability density functions as features defined on the low dimensional 3D
space to be modeled. This mathematical framework allows us to synthesize
the probabilistic generative models and the robustness of the maximum mar-
gin based discriminative methods. Furthermore, the advantage of the kernel
methods in expressing nonlinear relations can be exploited as well. The dis-
crimination happens between the shape and the non-shape points, and the
generative, density function based features provide certain local confidence
measures on the shape approximation.

The shape modeling is considered as a machine learning procedure where
the shape is extracted from local vision features. The learning task is to force
a certain type of manifold to closely fit to the parameters, position and
orientation, of the visual feature items, and in the same time it has to be
as smooth, say simple, as possible which can be achieved via regularization
constraining the complexity of the manifold applied.

The outcome of the learning method is an infinite dimensional vector,
a combination of probability density functions. This kind of representation
admits direct comparison of different objects to express their similarities and
dissimilarities. This representation can be reused in other learning method
to discover common parts within a given group of object, e.g. by applying
Kernel Principal Component Analysis.

The derived shape models can be transformed by any affine transforma-
tion, e.g. translation or rotation, via acting on the parameters, expected
values and/or covariance matrices, of the density functions used in the ex-
pression of the vectors describing the models.

The robot activities, e.g. grasping, can be modeled in a similar frame-
work, thus both the shape models and the actions applied on those shapes

2

as abstract vectors can be located in a common vector space. In this way
potential connections between shapes and actions can be predicted for a new
shape and for a new action. To do that the relationships between the novel
items and the known ones needs to computed in the common vector space.

2 Learning task

We are facing the following learning task; given a set of 3D objects charac-
terized by feature representation of different sources

• some visual features, e.g. collection of edges, texlets, surflings, see
details about these features in [4],

• grasping properties, e.g. grasp densities,

and based on these data sources we need to learn that how to predict the
grasp densities from the visual features. The inverse prediction could pro-
vide information to the generalization of the properties of an object to be
important in grasping, but in the first case it is not as central as predicting
the grasp densities.

To solve this learning task a two-phase model will be introduced; in the
first phase so called shape model is computed of a sample of visual features.
The parameters derived from the shape model is then used as feature rep-
resentation of the object to predict the grasp densities. In the first case the
shape model can be interpreted as a mixture of density functions, however
the optimization framework allows us to further generalize the model, see in
Section 5. The shape model can be applied on the grasp densities, since they
are given by entities similar to the surflings type visual features, i.e. they
are given by position and orientation. The two-phase model is summarized
by (1)

3

Visual
features

��

Grasping
features

��

surflings

��

grasping
position

orientation

��

wvutpqrsshape
prediction

��

wvutpqrsshape
prediction

��
parameters
of density
mixture

��

parameters
of density
mixture

��
visual

shape model
manifold

// ///o/o/o // ///o/o/o
on ml
hi jk
gf ed
`a bc

LEARNING
grasping
versus
shape

oooo o/ o/ o/
grasping

shape model
manifold

oooo o/ o/ o/

(1)
Here we will focus on the surfling type visual features. These features

constitute a collection of approximate tangent plane segments of the surface
of the 3D objects. The centers and the normal vectors of these segments
can be exploited to reproduce the entire surface. In this way the first task
in the full learning procedure is to learn these surfaces. To this end we need
to create a model of these surfaces such that

• the parameter vectors to be derived of the surface of each object have
to live in the same space and in this way they can be compared, and
distances, similarity measures can be computed between them,

• the parameter space needs to be sufficiently reach to express the po-
tential complexity of the surfaces,

• since the surflings are only approximation of the real surface, therefore
the parameter space should allow to estimate the confidence of the
surface model.

To fulfill these requirements the representation space of the surfaces is
chosen as a linear vector space containing the probability densities functions.

4

In this space a surface is expressed as a mixture of densities. The base
family of these densities can be chosen as multivariate Gaussians but any
other family which allows computationally feasible representation can be
considered.

Remark 1. In this model we are working with linear combination of prob-
ability densities that might produce negative probabilities, but this issue is
rather technical and will not influence the learning model itself.

After fitting the surflings based surface model to the objects we can
apply the derived surface representations to learn how these features relate
to the grasp densities. If in both cases, the surfaces and the grasp densities,
are expressed as probability mixture models then the relationships can be
revealed not only between the entire models but their parts as well. This
kind of analysis can compare the contribution of the elements of the bases
spanning the corresponding feature spaces since the elements of these bases,
e.g. Gaussian densities, are common among the spaces.

In what follows we assume that there is a preprocessing step of surflings
which can separate the surflings of an object from the surflings of the occa-
sional background, hence an object related collection of surflings expresses
the properties of an object and only that.

3 Shape model

The shape model of three dimensional objects is built upon the following
assumptions:

• The shape S of an object O can be expressed by a smooth manifold
M embedded into a Euclidean ambient space X . The dimension of
the ambient space is denoted by n.

• The manifold M is supposed to be closed and all points of the object
S fall inside, with respect to a given orientation of the manifold, or
on the manifold.

A smooth manifold can be characterized by an atlas, a collection of the pairs
{Uα, ϕα}, where {Uα}, called charts, is a set of open sets covering M, and
{ϕα} is a set of mappings such that for each α ϕα : Uα → Rn, i.e. they
map the open sets of the manifold into open sets of a Euclidean space, and
these maps and their inverses are differentiable. A surfling at a given point
x of the manifold M can be interpreted as a segment of the tangent plane
at x. A tangent plane is a local linearization of the manifold and it is built
upon the charts covering the point x. The definition and properties of the
tangent plane can be found for example in [3].

5

The normal vector to the tangent space can be defined in the ambient
space X as the normal vector of the corresponding tangent plane in X . An-
other, a more general, way of that which eliminates the need of the ambient
space, by considering the normal vector as an element of the linear func-
tionals defined on the tangent plane at a given point of the manifold. The
orthogonality then can be expressed by setting the value of these functionals
to 0 on all vectors of the corresponding tangent vectors. The elements of
the set of these linear functionals are generally called as cotangent vectors.

4 Shape learning

There are given a sample set S of vector pairs {(xi,vi)}, i = 1, . . . ,m, where
for each i xi ∈ X ⊂ Rn, is a vector assigned to a point of the manifold
M in the ambient space X , and vi ∈ Rn is a vector, the normal vector of
the tangent space of M at xi in the ambient space X . We may refer to
the pairs (xi,vi) as surface elements as well. These surface elements are
fundamentally based on a sub-sample of charts covering the manifold M

Let φs : X → Hs be a feature representation of the elements of the
manifoldM in a Hilbert spaceHs. The inner product ofHs will be expressed
by the kernel function κ : Hs ×Hs → R. Here we allow to map all vectors
of the ambient space of the manifold into the feature space to avoid some
technical difficulties.

In the sequel we use the notations 〈 , 〉X and 〈 , 〉H to denote, and to
distinct, the inner products in spaces X and in Hs respectively. In some
cases the subscript is omitted that refers to the inner product in the feature
space Hs.

Suppose the manifold M can be well approximated by surface of Rn,
and this surface can be embedded as a hyperplane into the space Hs, thus
the implicit function

F (x) = 〈u,φs(x)〉H − 1 = 0 (2)

describes the surface, where the vector u ∈ Hs gives the parametrization,
and since it is as element of Hilbert space it can be used as identifier of a
shape entity.

If the parameter vector u is given then the manifold can be recovered
by inverting the hyperplane from the feature space back into the space X .

4.1 Including normal vectors

To exploit the information coded into normal vectors {vi} of the surface
elements we need to force that for every i the vector vi is orthogonal or
at least approximately orthogonal to the tangent plane of M at xi. If
the surface corresponding to the smooth manifold M is given in X by the

6

implicit function F (x) = 0 then the direction of the normal vector at any
x ∈ X is given by the gradient of F

∇xF =

(
∂F

∂x1
, . . . ,

∂F

∂xn

)
, (3)

where (x1, . . . , xn) the scalar components of the vector x. To force the
orthogonality between∇xF (x)|x=xi and vi we have several alternatives, here
three of them are enumerated those which lead to linear constraints.

• The following constraints imposes exact orthogonality on the function
F

∇xF |x=xi = βivi, i ∈ {1, . . . ,m} (4)

saying the vectors on left and the right hand sides have to be parallel.

• One can eliminate the the coefficients {βi} by another form

∇xF |x=xi ∧ vi = 0 i ∈ {1, . . . ,m}, (5)

where ∧ marks the exterior, sometimes called as wedge, product of
two vectors. Here we exploited the fact that the exterior product of
any two parallel vectors is equal to 0.

• The strict orthogonality constraints can be relaxed by suitable approx-
imations

〈∇xF |x=xi ,vi〉X ≥ D, i ∈ {1, . . . ,m}, (6)

where D is a positive lower bound of the inner products. Since the
inner product can attain its maximum value when the estimated nor-
mal vectors of the manifold are parallel to the given set of observed
normal vectors, therefore maximizing the lower bound forces the cor-
responding normal vectors to be closely and uniformly parallel. This
type of constraint fundamentally forces the directional derivatives of
F in the directions given by {vi} to be large, and the maximum can
be obtained when the vectors are parallel within the inner product.

4.2 Optimization problem

The assumption that the manifold covering an object is closed means that
the points of the object is within or on the surface of the volume for which the
manifold is the collection of the boundary points. This fact can be expressed
as one-class classification problem where the points of the object constituting
the class are separated from all other parts of the space containing the object,

7

therefore the surface can be modeled by the following optimization problem:

min 1
2‖u‖

2
2 + Cξ1

′ξ + Cη1
′η

w.r.t. u ∈ Hs, ξ ∈ Rm, , η ∈ Rm,
s.t. 〈u,φs(xi)〉H ≥ 1− ξi, ## fitting the points

〈∇xF (x)|x=xi ,vi〉X ≥ E − ηi, ## fitting the normal vectors
ξi ≥ 0, ηi ≥ 0, i ∈ {1, . . . ,m},

(7)
where E > 0 is margin scaling parameter for trading between the fitting
of the surface points and the normal vectors. This formulation is short
symbolic summary of the manifold approximation. To the one-class classifi-
cation problem one can find introduction in [7] and applications for complex
structured learning problems [1], [10], [5] and [11]. An approach similar to
that which is presented here is published in [9] and [8]. In the [9] a one-class
classification approach is mentioned as well. The main differences between
that and our approach can be summarized in two points:

• The incorporation of the normal vectors into the surface approxima-
tion is carried out by a maximum margin based regression technique,
see further details in Section . This approach allows us to include
other characteristic properties of the surface, e.g. curvature, via ker-
nelization.

• The representation of the surface elements is built upon infinite di-
mensional functional features. This representation can express a prob-
abilistic model which can provide confidence estimation as well.

To transform (7) into a computable form the gradients∇xF (x)|x=xi need
to be unfolded. To this end we need to compute the derivative

∇xF (x) = Dx(F (x))′ = Dx(〈u,φs(x)〉)′
= Dx(φs(x))′u.

(8)

If we assume that the dimension of the feature space is finite then
Dx(φs(x)) is equal to the Jacobian matrix of the partial derivatives of the
vector valued function φs(x) with respect to the vector x. An approach to
handling the infinite case is described in Section 4.3.

The primal problem, (7), can be written as

min 1
2‖u‖

2
2 + Cξ1

′ξ + Cη1
′η

w.r.t. u ∈ Hs, ξ ∈ Rm, , η ∈ Rm,
s.t. 〈u,φs(xi)〉 ≥ 1− ξi, ## fitting the points

〈Dx(φs(x))′|x=xiu,vi〉X ≥ E − ηi, ## fitting the normal vectors
ξi ≥ 0, ηi ≥ 0, i ∈ {1, . . . ,m}.

(9)

8

The solution to this problem can be derived from the Karush-Kuhn-
Tucker(KKT) conditions, see details in [2] and references therein. Let the
following Lagrangian coefficients be introduced for all i:

αi : 〈u,φs(xi)〉 ≥ 1− ξi,
βi : 〈Dx(φs(x))′|x=xiu,vi〉X ≥ E − ηi,
γi : ξi ≥ 0,
δi : ηi ≥ 0

(10)

Since the constraints are inequalities all Lagrangians have to be nonnegative.
The Lagrangian functional of (9) reads as

L(u, ξ,η,α,β) = 1
2 〈u,u〉+ Cξ1

′ξ + Cη1
′η

−
∑m

i=1 αi 〈u,φs(xi)〉+
∑m

i=1 αi −
∑m

i=1 αiξi
−
∑m

i=1 βi 〈Dx(φs(x))′|x=xiu,vi〉X + E
∑m

i=1 βi −
∑m

i=1 βiηi
−
∑m

i=1 γiξi −
∑m

i=1 δiηi
s.t. αi ≥ 0, βi ≥ 0, γi ≥ 0, δi ≥ 0 i = 1, . . . ,m.

(11)
The partial derivatives of the Lagrangian with respect to the primal variables
and the corresponding KKT conditions are given by

∂L(u, ξ,η,α,β,γ, δ)

∂u
= u−

∑m
i=1 αiφs(xi)−

∑m
i=1 βiDx(φs(x))′|x=xivi = 0,

∂L(u, ξ,η,α,β,γ, δ)

∂ξ
= Cξ1−α− γ = 0,

∂L(u, ξ,η,α,β,γ, δ)

∂η
= Cη1− β − δ = 0.

(12)
Thus we have

u =
∑m

i=1 αiφs(xi) +
∑m

i=1 βiDx(φs(x))′|x=xivi,
α ≤ Cξ1,
β ≤ Cη1,

(13)

where in the last two lines the nonnegativity of the components of γ and δ are
exploited. After replacing primal variables in the Lagrangian functional with
the expressions containing only the Lagrangians we have the dual problem
of (9) where the maximization is turned into minimization.

min
1

2

[
α
β

]′ kernel matrix︷ ︸︸ ︷[
Kα,α Kα,β

Kβ,α Kα,α

] [
α
β

]
−
[

1
E1

]′ [
α
β

]
w.r.t. α ∈ R+, β ∈ R+,
s.t. 0 ≤ α ≤ Cξ1,

0 ≤ β ≤ Cη1,

(14)

9

The submatrices of the kernel matrix are obtained by

(Kα,α)ij = 〈φs(xi),φs(xj)〉 , i, j ∈ {1, . . . ,m},
(Kα,β)ij = 〈φs(xi), Dx(φs(x))′|x=xjvj〉 , i, j ∈ {1, . . . ,m},
(Kβ,α)ij = [Kα,β]ji, i, j ∈ {1, . . . ,m},
(Kβ,β)ij = 〈Dx(φs(x))′|x=xivi, Dx(φs(x))′|x=xjvj〉 , i, j ∈ {1, . . . ,m}.

(15)

4.3 Evaluation of the kernels

When we are going to represent the vectors of the ambient space X we
need to choose a feature space in which a complex surface of X can be
approximated with high fidelity by a hyperplane. A candidate space could
be the so called “functional feature” space where each feature vector is
represented by a function. These spaces are generally infinite dimensional,
thus very high flexibility can be guaranteed.

To realize an infinite dimensional feature space the following construction
is proposed. Let F : X × X × Θ → R be a real valued function equipped
with these properties:

1. F is a nonnegative function,

2. F is square integrable on its full domain,

3. For a fixed x ∈ X and θ ∈ Θ∫
X
F (t,x, θ)dt = 1. (16)

One can consider function F as a probability density function defined on
X and parametrized on the sets X and Θ. The parameters taken of X can
be interpreted as localization, e.g. mean, and the parameter θ as scale, e.g.
variance. After taking the second and third variables as parameters in F ,
we can define the following class of functions

F = {f |f : X → R, f(t) = F (t,x, θ), t ∈ X ,x ∈ X , θ ∈ Θ}. (17)

We might denote these functions for a parameter pair x and θ by f(.|x, θ).
Now the feature mapping is given by

φs : X → F , (18)

and defined via the formula

φs(x) = f(.|x, θ),∀x ∈ X , (19)

thus the elements of the original ambient space are used as localization of
the corresponding density functions, and the scale parameter, θ, is shared
among all these densities.

10

We need to emphasize that the feature mapping is a function valued func-
tion.

The value of the function φ at t is denoted by φ(t|x), where for sake of
simplicity the parameter θ which is fixed for all t and x is omitted.

4.4 Representation by Gaussian densities

To compute the elements of the kernel matrix in (15) we need to assign
concrete representations to the points in the ambient space. Let the fea-
ture representation be chosen from the family of the multivariate Gaussian
probability density functions

φs(t|x) = f(t|x, θ) =
1

(2π)n/2 det(θ)1/2
e−

1
2
(t−x)′θ−1(t−x), (20)

where x serves as mean vector and θ as covariance matrix. To force the
parsimony of our model the covariance matrix is supposed to be diagonal,
and all diagonal elements are equal to σ2, therefore we have

φs(t|x) = f(t|x, θ) =
1

(2π)n/2σn
e−

1
2σ2
〈t−x,t−x〉X

=
1

(2π)n/2σn
e−

1
2σ2
‖t−x‖2

=
1

(2π)n/2σn
e−

∑n
r=1(tr−xr)

2

2σ2 .

(21)

The differential operator for general multivariate Gaussian case reads as

Dxφs(t|x) = DxF (t,x, θ) =
∂F (t,x, θ)

∂x

=

∂

(
1

(2π)n/2 det(θ)1/2
e−

1
2
(t−x)′θ−1(t−x)

)
∂x

=
1

(2π)n/2 det(θ)1/2
e−

1
2
(t−x)′θ−1(t−x) ⊗ θ−1(t− x)

= φs(t|x)⊗ θ−1(t− x),

(22)

and in case of the reduced diagonal case we have

Dxφs(t|x) =
1

σ2
φs(t|x)⊗ (t− x), (23)

where we need to be aware on the fact that φs(t|x) is a function of t as well.
Before the inner products are computed some notations and reformula-

tions are being introduced. For sake of simplicity the following abbreviation
is introduced

CG =
1

(2π)n/2σn
. (24)

11

We are going to exploit the well known identity connecting the tensor
and inner products, namely

〈⊗nr=1ur,⊗nr=1vr〉 =
n∏
r=1

〈ur,vr〉 , (25)

further details can be found in Appendix A.
The xir denotes the rth component of the vector xi and similar notation

is used for the vectors vi as well.
The next simple assertion can eliminate plenty of technical details of the

kernel derivation.

Lemma 2. Assuming that the feature representation given in (21) then the
point wise product of any two feature vectors can be expressed as a product
of two functions

φs(t|xi)φs(t|xj) = g(‖xi,−xj‖2, σ)h(t, (xi + xj)/2, σ/2
1/2), (26)

such that the function g depends only on the distance ‖xi,−xj‖2 and scale
σ but not on t, and the function h is a multivariate Gaussian density func-
tion defined on the domain (t ∈)X with mean

xi,+xj
2 and with a diagonal

covariance matrix with the same diagonal elements being equal to σ2/2.

Proof. The proof is based on a straightforward reformulation of the point
wise product, namely

φs(t|xi)φs(t|xj) = C2
Ge
− ‖t−xi‖

2

2σ2 e−
‖t−xj‖

2

2σ2

= C2
Ge
− 2‖t−

xi+xj
2)‖2+

‖xi−xj‖
2

2
2σ2

= C2
Ge
−
‖xi−xj‖

2

4σ2 e−
‖t−

xi+xj
2)‖2

σ2

= C2
G

(2π)n/2σn

2n/2
e−
‖xi−xj‖

2

4σ2
2n/2

(2π)n/2σn
e
− ‖t−(

xi+xj
2)‖2

2(2−1/2σ)2

=
1

(2π)n/2(21/2σ)n
e−
‖xi−xj‖

2

4σ2︸ ︷︷ ︸
g(‖xi,−xj‖2,σ)

2n/2

(2π)n/2σn
e
− ‖t−(

xi+xj
2)‖2

2(2−1/2σ)2 ,︸ ︷︷ ︸
h(t,(xi,+xj)/2,σ/21/2)

(27)

where the last line shows the decomposition claimed.

From this statement we can conclude that

12

Corollary 3. The inner product between any two feature vectors can be
computed by

〈φs(t|xi),φs(t|xj)〉 =
∫
X φs(t|xi)φs(t|xj)dt

= 1
(2π)n/2(21/2σ)n

e−
‖xi−xj‖

2

4σ2

∫
X

2n/2

(2π)n/2σn
e
− ‖t−(

xi+xj
2)‖2

2(2−1/2σ)2 dt︸ ︷︷ ︸
=1

= 1
(2π)n/2(21/2σ)n

e
−
‖xi−xj‖

2

2(21/2σ)2 ,

(28)

which is a Gaussian kernel function with scale, or width, parameter 2(21/2σ)2

multiplied with the scalar 1
(2π)n/2(21/2σ)n

It is worth mentioning that the inner product in Corollary 3 can be inter-
preted as a multivariate Gaussian density function if one of the parameters,
xi and xj , is taken as a variable and the other as mean.

4.4.1 Computation of kernel elements

In the derivation of the dual problem we end up with four types of sub-
kernels, see in (15). Two of them are just transpose of each other, thus we
need to deal with three types only.

• Based on Corollary 3 we have in the first case

(Kα,α)ij = 〈φs(t|xi),φs(t|xj)〉 = 1
(2π)n/2(21/2σ)n

e
−
‖xi−xj‖

2

2(21/2σ)2 . (29)

• The cross kernels between the two types of constraints relating to the
positions and the surface normals can be computed by

(Kα,β)ij = 〈φs(t|xi), Dx(φs(t|x))′|x=xjvj〉
= 〈φs(t|xi),

1

σ2
[
φs(t|xj)⊗ (t− xj)

′]vj〉
=

1

σ2
〈φs(t|xi), 〈(t− xj),vj〉X φs(t|xj)〉

=
1

σ2
〈φs(t|xi), (〈t,vj〉X − 〈xj ,vj〉X)φs(t|xj)〉

=
1

σ2
(
〈φs(t|xi), 〈t,vj〉X φs(t|xj)〉 − 〈φs(t|xi), 〈xj ,vj〉X)φs(t|xj)〉

)
.

(30)
In computing this expression by parts we can exploit Corollary 3 again

〈φs(t|xi), 〈xj ,vj〉X φs(t|xj)〉 = 〈xj ,vj〉X
∫
X φs(t|xi)φs(t|xj)dt

= 〈xj ,vj〉X
1

(2π)n/2(21/2σ)n
e
−
‖xi−xj‖

2

2(21/2σ)2 ,

(31)

13

and

〈φs(t|xi), 〈t,vj〉X φs(t|xj)〉 =
∫
X 〈t,vj〉X φs(t|xi)φs(t|xj)dt

= 〈vj ,
∫
X tφs(t|xi)φs(t|xj)dt〉X .

(32)

After applying the decomposition of Lemma 2 note that the expression
in the integral can be interpreted as an expected value computation

〈vj ,
∫
X tφs(t|xi)φs(t|xj)dt〉X

= g(‖xi,−xj‖2, σ) 〈vj ,
∫
X th(t, (xi,+xj)/2, σ/2

1/2)dt〉
X

= g(‖xi,−xj‖2, σ) 〈vj , (xi,+xj)/2〉X

= 1
(2π)n/2(21/2σ)n

e
−
‖xi−xj‖

2

2(21/2σ)2 〈vj , xi+xj
2 〉

X
.

(33)

Then putting together the sub-expressions an element of the cross
kernel is given by

(Kα,β)ij = 1
σ2

1
(2π)n/2(21/2σ)n

e
−
‖xi−xj‖

2

2(21/2σ)2 〈vj , xi−xj2 〉
X
. (34)

• We have also the transpose of the previously computed sub-kernel.

(Kβ,α)ij = [Kα,β]ji = 1
σ2

1
(2π)n/2(21/2σ)n

e
−
‖xi−xj‖

2

2(21/2σ)2 〈vi, xj−xi2 〉
X
.

(35)

• The computation of kernel items relating to the normal vectors follows
a schema resembling to those mentioned above.

(Kβ,β)ij = 〈Dx(φs(t|x))′|x=xivi, Dx(φs(t|x))′|x=xjvj〉
=

1

σ4
〈〈(t− xi),vi〉X φs(t|xi), 〈(t− xj),vj〉X φs(t|xj)〉

=
1

σ4
〈〈(t− xi),vi〉X 〈(t− xj),vj〉X φs(t|xi),φs(t|xj)〉

=
1

σ4

[
〈〈t,vi〉X φs(t|xi), 〈t,vj〉X φs(t|xj)〉

+ 〈〈xi,vi〉X φs(t|xi), 〈xj ,vj〉X φs(t|xj)〉
− 〈〈t,vi〉X φs(t|xi), 〈xj ,vj〉X φs(t|xj)〉
− 〈〈xi,vi〉X φs(t|xi), 〈t,vj〉X φs(t|xj)〉

]
.

(36)

Except the first term we can apply almost the same unfolding steps
on the sub-expressions that have been used above thus we have

〈〈xi,vi〉X φs(t|xi), 〈xj ,vj〉X φs(t|xj)〉
= 〈xi,vi〉X 〈xj ,vj〉X 〈φs(t|xi),φs(t|xj)〉

= 〈xi,vi〉X 〈xj ,vj〉X
1

(2π)n/2(21/2σ)n
e
−
‖xi−xj‖

2

2(21/2σ)2 ,

(37)

14

〈〈t,vi〉X φs(t|xi), 〈xj ,vj〉X φs(t|xj)〉
= 〈xj ,vj〉X 〈〈t,vi〉X φs(t|xi),φs(t|xj)〉

= 〈xj ,vj〉X 〈
xi+xj

2 ,vi〉X
1

(2π)n/2(21/2σ)n
e
−
‖xi−xj‖

2

2(21/2σ)2

(38)

and
〈〈xi,vi〉X φs(t|xi), 〈t,vj〉X φs(t|xj)〉

= 〈xi,vi〉X 〈φs(t|xi), 〈t,vj〉X φs(t|xj)〉

= 〈xi,vi〉X 〈
xi+xj

2 ,vj〉X
1

(2π)n/2(21/2σ)n
e
−
‖xi−xj‖

2

2(21/2σ)2 .

(39)

The first term requires a little bit more care, where we have

〈〈t,vi〉X φs(t|xi), 〈t,vj〉X φs(t|xj)〉
=
∫
X 〈t,vi〉X 〈t,vj〉X φs(t|xi)φs(t|xj)dt.

(40)

If we apply the decomposition of Lemma 2 again and the identity
relating to the inner product of tensor products, see (25), we receive
the following chain of equalities

〈〈t,vi〉X φs(t|xi), 〈t,vj〉X φs(t|xj)〉
= 〈(vi ⊗ vj),

∫
X (t⊗ t)φs(t|xi)φs(t|xj)dt〉Frob

= 〈(vi ⊗ vj),
∫
X (t⊗ t)g(‖xi,−xj‖2, σ)h(t, (xi,+xj)/2, σ/2

1/2)dt〉
Frob

= g(‖xi,−xj‖2, σ) 〈(vi ⊗ vj),
∫
X (t⊗ t)h(t, (xi,+xj)/2, σ/2

1/2)dt〉
Frob

.
(41)

Note the integral expression is equal to the second, non-centralized,
moment of the multivariate Gaussian variable with density function h.
Based on the identity

cov(t) = E(t⊗ t)− E(t)⊗ E(t) (42)

which displays that how the covariance can be expressed by the first
the second moments of vector valued random variables, thus we can
write

〈〈t,vi〉X φs(t|xi), 〈t,vj〉X φs(t|xj)〉
= g(‖xi,−xj‖2, σ) 〈(vi ⊗ vj), cov(t) + E(t)⊗ E(t)〉Frob
= g(‖xi,−xj‖2, σ) 〈(vi ⊗ vj),

σ2

2 In +
xi,+xj

2 ⊗ xi,+xj
2 〉

Frob
,

(43)

where In denotes the n-dimensional identity matrix. Now we can
reverse Identity 25

〈〈t,vi〉X φs(t|xi), 〈t,vj〉X φs(t|xj)〉
= g(‖xi,−xj‖2, σ)(σ

2

2 〈vi,vj〉X + 〈vi, xi,+xj
2 〉

X
〈vj , xi,+xj

2 〉

= (σ
2

2 〈vi,vj〉X + 〈vi, xi,+xj
2 〉

X
〈vj , xi,+xj

2 〉
X

) 1
(2π)n/2(21/2σ)n

e
−
‖xi−xj‖

2

2(21/2σ)2 .

(44)

15

After combining the sub-expressions we arrive at

(Kβ,β)ij = 1
σ4

1
(2π)n/2(21/2σ)n

e−
‖xi−xj‖

2

4σ2(
〈xi,vi〉X 〈xj ,vj〉X − 〈xj ,vj〉X 〈

xi+xj
2 ,vi〉X − 〈xi,vi〉X 〈

xi+xj
2 ,vj〉X

+σ2

2 〈vi,vj〉X + 〈vi, xi,+xj
2 〉

X
〈vj , xi,+xj

2 〉
X

)
= 1

σ4
1

(2π)n/2(21/2σ)n
e
−
‖xi−xj‖

2

2(21/2σ)2 (σ
2

2 〈vi,vj〉X + 〈xj−xi2 ,vj〉X 〈
xi−xj

2 ,vi〉X).

(45)

5 General description of the learning model

The learning task that we are going to solve is the following. There is a set,
called sample, of pairs of output and input objects {(yi, xi) : yi ∈ Y, xi ∈
X , i = 1, . . . ,m, } independently and identically chosen out of an unknown
multivariate distribution P(Y,X). Here we would like to emphasize the in-
put and output objects can be arbitrary, e.g. they may be graphs, matrices,
functions, probability distributions etc. To these objects there are given
two functions φ : X → Hφ and ψ : Y → Hψ mapping the input and output
objects respectively into linear vector spaces, called in the sequel, feature
space in case of the inputs and label space when the outputs are considered.

The objective is to find a linear function acting on the feature space

f(φ(x)) = Wφ(x) + b (46)

and produces a prediction of every input object in the label space and in
this way could implicitly give back a corresponding output object. Formally
we have

y = ψ−1(ψ(y)) = ψ−1(f(φ(x))). (47)

The learning procedure can be summarized by the following table:

Embedding
φ :

X︷ ︸︸ ︷
input space →

Hφ︷ ︸︸ ︷
feature space,

ψ :

Y︷ ︸︸ ︷
output space →

Hψ︷ ︸︸ ︷
label space,

Similarity W̃ = (W,b)⇒ ψ(y) ∼ W̃φ(x),
transformation

Inversion
ψ−1 :

Hψ︷ ︸︸ ︷
label space →

Y︷ ︸︸ ︷
output space .

In the framework of the Support Vector Machine the outputs represent
two classes and the labels are chosen out of the set yi ∈ {−1,+1}. The

16

aim is to find a separating hyperplane, via its normal vector, such that
the distance between the elements of the two classes, called margin, is the
possible largest measured in the direction of this normal vector. This base
schema can be extended allowing some sample items to fall closer to the
separating hyperplane than the margin. This is demonstrated on Figure 1

Margin

Figure 1: The schema of the Support Vector Machine. There are two classes
that we are going to separate by using a hyperplane maximizing the distance
between the classes and minimizing the potential errors

This learning scenario can be formulated as an optimization problem
similar to this:

min 1
2 w′w + C1′ξ

w.r.t. w : Hφ → R , normal vector

b ∈ R , bias
ξ ∈ Rm, error vector

s.t. yi(w
′φ(xi) + b) ≥ 1− ξi

ξ ≥ 0, i = 1, . . . ,m.

5.1 Reinterpretation of the normal vector w

The normal vector w formally behaves as a linear transformation acting on
the feature vectors which makes rise the idea to extend the capability of the
original schema. This reinterpretation can be characterized briefly in the
following way

17

SVM ExtendedView
• w is the normal vector

of the separating hyper-
plane.

• W is a linear opera-
tor projecting the fea-
ture space into the label
space.

• yi ∈ {−1,+1} binary
outputs.

• The labels are equal to
the binary objects.

• yi ∈ Y arbitrary outputs

• ψ(yi) ∈ Hψ are the la-
bels, the embedded out-
puts in a linear vector
space

If we apply a one-dimensional normalized label space invoking binary la-
bels {−1,+1} in the general framework one can restore the original scenario
of the SVM, and the normal vector is a projection into the one dimensional
label space.

The extended form of the SVM tries to find an affine transformation
which maps the configuration of the input items to gain the highest similarity
between the image of the inputs and the outputs.

In summarizing the learning task we end up in the following optimization
problem presented parallel with the original primal form of the SVM to
emphasize the similarities and dissimilarities between the original and the
extended form.

Primal problems for maximum margin learning
Binary class learning Vector label learning
Support Vector Machine(SVM) Maximum Margin Regression(MMR)

min 1
2 w′w︸ ︷︷ ︸
‖w‖22

+C1′ξ 1
2 tr(W′W)︸ ︷︷ ︸

‖W‖2F

+C1′ξ

w.r.t. w : Hφ → R, normal vec. W : Hφ → Hψ, linear operator,

b ∈ R, bias, b ∈ Hψ, translation(bias),

ξ ∈ Rm, error vector, ξ ∈ Rm, error vector,

s.t. yi(w
′φ(xi) + b) ≥ 1− ξi, 〈ψ(yi),Wφ(xi) + b〉Hψ ≥ 1− ξi,

ξ ≥ 0, i = 1, . . . ,m, ξ ≥ 0, i = 1, . . . ,m.

In the extended formulation we exploit the fact the Frobenius norm and
the Frobenius inner product correspond to the linear vector space of matrices
with the dimension being equal to the number of elements of the matrices,

18

hence it gives an isomorphism between the space spanned by the normal
vector of the hyperplane occurring in the SVM and the space spanned by
the linear transformations.

One can recognize that if no bias term included in the MMR problem
then we have a completely symmetric relationship between the label and
the feature space via the representations of the input and the output items,
namely

〈ψ(yi),Wφ(xi)〉Hψ = 〈W∗ψ(yi),φ(xi)〉Hφ = 〈φ(xi),W
∗ψ(yi)〉Hφ .

Thus, in predicting the input items as the image of the corresponding linear
function defined on the outputs the adjoint of W, W∗, need to be used.
This adjoint is equal to the transpose of the matrix representation of W
when both the label space and the feature space are finite.

5.2 Dual problem

The dual problem of the MMR presented in the right column of (5.1) is
given by

min
∑m

i,j=1 αiαj

κφij︷ ︸︸ ︷
〈φ(xi),φ(xj)〉

κψij︷ ︸︸ ︷
〈ψ(yi),ψ(yj))〉−

∑m
i=1 αi,

w.r.t. αi ∈ R,
s.t.

∑m
i=1(ψ(yi))tαi = 0, t = 1, . . . ,dim(Hψ),

0 ≤ αi ≤ C, i = 1, . . . ,m.

κφij kernel items corresponding to the feature vectors,

κψij kernel items corresponding to the label vectors

The objective function contains no direct reference to the implicit rep-
resentation either the label or the feature vectors, only the corresponding
kernel elements appear. The symmetry of the objective function is clearly
recognizable showing that the underlying problem without bias is completely
reversible.

The constraints

m∑
i=1

(ψ(yi))tαi = 0, t = 1, . . . ,dim(Hψ) (48)

appear in the dual only if the bias term is included into the primal model.
The explicit occurrences of the label vectors can be transformed into

implicit ones by exploiting that the feasibility domain covered by the con-
straints:

m∑
i=1

(ψ(yi))tαi = 0, t = 1, . . . ,dim(Hψ),

19

coincides with a domain

m∑
i=1

κψijαi = 0, j = 1, . . . ,m

referring only to inner products of the label vectors.

5.3 Simple solution for the unbiased case

The unbiased case of has the form

min
1

2
α′Kα′ + q′α

w.r.t. α,
s.t. 0 ≤ α ≤ C,

(49)

where K = Kψ(y) •Kφ(x) is the point wise product of the output and input
kernel, and q = 1 a vector with every component equals to 1

The next simple, coordinate descent, approach seems to be over sim-
plified but when the sample size is really large, > 10000 then the inherent
simplicity becomes superior when the matrix Q is dense. We would like
to emphasize another approach, e.g. interior point methods, could perform
better in smaller problems, but the difference not much significant.

Step 1 Let α0 = 0 a feasible initial solution, εα an error tolerance, and
k = 0 a counter.

Step 2 k = k + 1, αk = αk−1, and set the component index of αk, i to 0.

Step 3 Solve the unconditional problem:

minτ (αk + eiτ)′K(αk + eiτ) + q′(αk + eiτ), (50)

where ei is a vector with 0 components except the component i which
is equal to 1. Problem (50) has a closed form optimal solution τ∗ which
reads as

τ∗ =
−qi − e′iKα

k

Qii
=
−qi −Kiα

k

Qii
, (51)

where Ki denotes the ith row of Q.

Step 4 Set the ith component of αk to αki = αki + τ .

Step 5 If αki > C then αki = C, and if αki < 0 then αki = 0; which operations
is the projection of an infeasible solution back into(onto) the domain
of the box constraint.

Step 6 i = i+ 1, go to Step 3!

Step 7 If ‖αk −αk−1‖22 ≤ εα then Stop, otherwise go to Step 2!

20

The reasonable advantage of this coordinate descent method is that: it
requires only a row of the matrix K in an iteration step, furthermore the
division by Qii is a numerically well controllable operation, since Qii has a
constant value during the procedure and if the kernels are normalized it has
value 1 eliminating the need of any division in the computation process.

5.4 Prediction

After solving the dual problem with the help of the optimum dual variables
we can write up the optimal linear operator

W =
∑m

i=1 αiψ(yi)φ(xi)
′.

Comparing this expression with the corresponding formula which gives the
optimal solution to the SVM, i.e.

w =

m∑
i=1

αiyiφ(xi),

we can see that the new part includes the vectors representing the output
items which in the SVM were only scalar values but we could say in the
new interpretation they are one-dimensional vectors. With the expression
of the linear operator W at hand the prediction to a new input item x can
be written up by

ψ(y) = Wφ(x)

=
∑m

i=1 αiψ(yi) 〈φ(xi),φ(x)〉︸ ︷︷ ︸
κφ(xi,x)

.

It involves only the input kernel κφ and provides the implicit representation
of the prediction ψ(y) to the corresponding output y.

If only the implicit image of the output is given we need to invert the
function ψ to gain the y. This inversion problem is sometimes called as pre-
image problem as well. Unfortunately there is no general procedure to do
that efficiently in case of complex and non-invertible mapping. We mention
here a schema that can be applied when the set of all possible outputs is finite
with a reasonable small cardinality. The meaning of the “reasonable small”
cardinality depends on the given problem, e.g. how expensive to compute
the inner product between the output items in the label space where they
are represented.

21

At the conditions mentioned above we can follow this scenario

y ∈ Ỹ ⇐ Set of the possible outputs,
y∗ = arg max

y∈Ỹ ψ(y)′Wφ(x),

= arg max
y∈Ỹ

∑m
i=1 αi

κψ(y,yi)︷ ︸︸ ︷
〈ψ(y),ψ(yi)〉

κφ(xi,x)︷ ︸︸ ︷
〈φ(xi)

′φ(x)〉,

y ∈ Ỹ = {y1, . . . ,yK}, K �∞.

The main advantage of this approach is that it requires only the inner prod-
ucts in the label space, in turn, it is independent from the representation
of the output items and can be applied in any complex structural learning
problem, e.g. on graphs. A suitable candidate for Ỹ could be the training
set.

5.5 One-class SVM interpretation

Let us reformulate the inner-product occurring in the constraints whilst the
bias term being dropped

〈ψ(yi),Wφ(xi)〉Hψ = tr
(
ψ(yi)

′Wφ(xi)
)

= tr
(
Wφ(xi)ψ(yi)

′) = 〈W,
[
ψ(yi)⊗ φ(xi)

]
〉Hψ⊗Hφ

thus, we have a one-class SVM problem living in the tensor product space
of the feature and the label spaces, where ⊗ denotes the tensor product.

One can extend the range of applications by using not only tensor prod-
uct but more general relationship between the output and input items, i.e.,

〈W,Ψ(yi,xi)〉HW , Ψ : Hψ ×Hφ → HW .

If dim(HW) > dim(Hψ) + dim(Hφ) then the support of the distribution of
one-class sample items is restricted on a manifold in HW . Further details of
the extensions beyond the tensor product can be found in [12].

6 Preliminary results on shape estimation

On Figures 2 and 3 some preliminary results are presented. The first figure
shows the sample of points of a torus, an object with hole, and the predicted
surface learned of those sample points. The number of smaple point is equal
to 200. To these point the corresponding normal vectors are computed and
used in the prediction. The points are randomly and uniformly subsampled
from the parametric representions of the torus.

The second figure demonstrates a complex object which consists of parts
with significantly different geometries. The sample points of the shape is

22

Sample points The predicted surface

−1.5
−1

−0.5
0

0.5
1

1.5

−1.5

−1

−0.5

0

0.5

1

1.5
−0.5

0

0.5

Figure 2: Learning the shape of a torus, an object with hole, of randomly,
uniformly sampled surface points

provided by the Microsoft Kinect device. To those point the normal vectors
are estimated by the Point Cloud Library, an open source package, see details
[6]. Within Figure 3 on the first image the points and the Support Vectors
are shown, the second image additionally presents the confidence region
around the point cloud.

Acknowledgment

The research leading to these results has received funding from the Euro-
pean Community’s Seventh Framework Programme FP7/2007-2013 (Spe-
cific Programme Cooperation, Theme 3, Information and Communication
Technologies) under grant agreement no. 270273, Xperience.

A Use of operators in the derivation of the kernels

When the kernels are derived we intensively exploiting the following rules
connecting vectors of different vector spaces.

From two vectors of two distinct Hilbert spaces, uα ∈ Hα and uβ ∈ Hβ
we can create an operator

[uα ⊗ uβ] : Hβ → Hα, (52)

which action on a vector vβ of Hβ is defined by

[uα ⊗ uβ]vβ
def
= 〈uβ, vβ〉uα. (53)

The conjugate of this operator is defined and denoted by

[uα ⊗ uβ]∗
def
= [uβ ⊗ uα], (54)

23

Kinect points + Original+Support Vectors
Support Vectors Estimation on confidence

Figure 3: Learning the surface of an armchair from a Kinect provided point
set. On the left the sample points(blue) and the Support Vectors(red) are
presented, on the right to those points on the left the confidence region is
added(green)

which maps Hα into Hβ.
The product of two operators

[uα ⊗ uβ][vβ ⊗ vγ] : Hγ → Hα, (55)

where
[uα ⊗ uβ] : Hβ → Hα
[vβ ⊗ vγ] : Hγ → Hβ

(56)

is defined as

[uα ⊗ uβ][vβ ⊗ vγ]wγ
def
= 〈uβ, vβ〉 〈vγ , wγ〉uα (57)

References

[1] K. Astikainen, L. Holm, E. Pitkanen, J. Rousu, and S. Szedmak. Reac-
tion kernels, structured output prediction approaches for novel enzyme
function. In Conference on Bioinformatics 2010, Valencia. 2010. Best
Paper Award.

[2] D.P. Bertsekas. Nonlinear Programming. Athena Scienctific, second
edition edition, 1999.

[3] J.M. Lee. Introduction to Smooth Manifolds, volume 218 of Graduate
Texts in Mathematics. Springer, 2003.

24

[4] M. Popović, G. Kootstra, J. A. Jørgensen, D. Kragic, and N. Krüger.
Grasping unknown objects using an early cognitive vision system for
general scene understanding. In 2011 IEEE. 2011.

[5] J. Rousu, C. Saunders, S. Szedmak, and J. Shawe-Taylor. Effcient algo-
rithms for maxmargin structured classification. In Predicting Structured
Data, pages 105–129. 2007.

[6] Radu Bogdan Rusu and Steve Cousins. 3d is here: Point cloud library
(pcl). In IEEE International Conference on Robotics and Automation
(ICRA), Shanghai, China, May 9-13 2011.

[7] B. Schölkopf, J. Platt, J. Shawe-Taylor, A. Smola, and R. Williamson.
Estimating the support of a high dimensional distribution. Neural Com-
putation, 13(7):1443 –1472, 2001.

[8] F. Steinke, M. Hein, J. Peters, and B. Schölkopf. Manifold-valued thin-
plate splines with applications in computer graphics. Computer Graph-
ics Forum, 27(2):437–448, 2008.

[9] F. Steinke, B. Schölkopf, and V. Blanz. Support vector machines for 3d
shape processing. Computer Graphics Forum, 24(3), EUROGRAPH-
ICS 2005):285–294, 2005.

[10] S. Szedmak and Z. Hussain. A universal machine learning optimiza-
tion framework for arbitrary outputs. 2009. http://eprints.pascal-
network.org.

[11] S. Szedmak, Y. Ni, and S. R. Gunn. Maximum margin learn-
ing with incomplete data: Learning networks instead of ta-
bles. Journal of Machine Learning Research, Proceedings, 11,
Workshop on Applications of Pattern Analysis:96–102, 2010.
jmlr.csail.mit.edu/proceedings/papers/v11/szedmak10a/szedmak10a.pdf.

[12] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large mar-
gin methods for structured and interdependent output variables. Jour-
nal of Machine Learning Research (JMLR), 6(Sep):1453–1484, 2005.

25

	Introduction
	Shape model

	Learning task
	Shape model
	Shape learning
	Including normal vectors
	Optimization problem
	Evaluation of the kernels
	Representation by Gaussian densities
	Computation of kernel elements

	General description of the learning model
	Reinterpretation of the normal vector w
	Dual problem
	Simple solution for the unbiased case
	Prediction
	One-class SVM interpretation

	Preliminary results on shape estimation
	Use of operators in the derivation of the kernels

