# Homogeneity Analysis for Object-Action Relation Learning Xperience Summer School 2013

#### Hanchen Xiong

Institute of Computer Science University of Innsbruck, Austria

October 4, 2013



Object-Action Relation Learning

# Motivation

Object-Action Modeling and Learning: Enable an agent to discover manipulation knowledge from empirical data, based on which, different tasks can be done in a data-driven way.

| input           | output | applications                        |  |  |  |
|-----------------|--------|-------------------------------------|--|--|--|
| object & action | effect | effect outcome prediction           |  |  |  |
| action & effect | object | object selection                    |  |  |  |
| object & effect | action | action planing & action recognition |  |  |  |

Table: Applications of the object-action relation model.

#### Challenges:

(1) complex and (most of them are) useless representation of objects and actions;

(2) Few, incomplete and noisy empirical data.

イロト 人間ト イヨト イヨト

# Limited Scenario

Within a limited scenario, data can be probably enough.

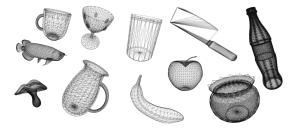


Figure: A sample set of objects in kitchen scenario

Image: A match a ma

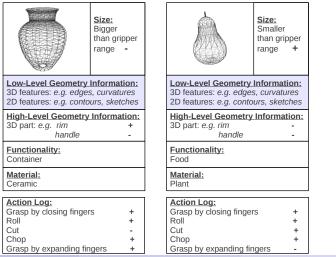
# Limited Representations

- Effect representations:  $E \in \{-1, 1\}$
- Object representations:  $O_i = [v_1, v_2, \cdot, v_K]^\top$ , where  $v_k \in [1, N_k]$  (collection of discrete-valued attributes).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

## Data Structure

#### **Object-Action Profiles:**



Hanchen Xiong (UIBK)

Object-Action Relation Learning

э

# Data Structure

#### How training data looks like:

| 0 | Mesh  | <gripper< th=""><th>L_0</th><th colspan="2">_Geo H_Geo</th><th>Func</th><th>Mate</th><th colspan="4">Action log</th><th></th></gripper<> | L_0 | _Geo H_Geo |     | Func   | Mate | Action log |         |      |     |      |         |
|---|-------|------------------------------------------------------------------------------------------------------------------------------------------|-----|------------|-----|--------|------|------------|---------|------|-----|------|---------|
|   |       |                                                                                                                                          | 3D  | 2D         | rim | handle |      |            | Grasp_C | Roll | Cut | Chop | Grasp_E |
| 1 | file1 | 1                                                                                                                                        |     |            | 1   | -1     | 1    | 1          | 1       | -1   | *   | 1    | -1      |
| 2 | file2 | -1                                                                                                                                       |     |            | -1  | *      | 2    | 2          | -1      | *    | 1   | 1    | *       |
| 3 | file3 | -1                                                                                                                                       |     |            | 1   | 1      | 2    | 5          | *       | 1    | *   | 1    | 1       |
| 4 | file4 | 1                                                                                                                                        |     |            | 1   | 1      | 5    | 3          | 1       | 1    | -1  | *    | 1       |
| 5 | file5 | 1                                                                                                                                        |     |            | -1  | -1     | 1    | 4          | *       | 1    |     | 1    | -1      |
| 6 | file6 | -1                                                                                                                                       |     |            | 1   | 1      | 4    | 6          | 1       | -1   | *   | -1   | 1       |

| Functionality | Container | Food | Cooker | Cutting tool | Eating tool |  |
|---------------|-----------|------|--------|--------------|-------------|--|
|               | 1         | 2    | 3      | 4            | 5           |  |

| Material | Plastic | Glass | Ceramic | Plant | Animal | Metal |
|----------|---------|-------|---------|-------|--------|-------|
|          | 1       | 2     | 3       | 4     | 5      | 6     |

Figure: A collection of object-action profiles, red \* denotes missing data

# Modeling

#### The proposed model:

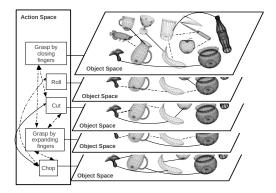


Figure: Object-action relation modeling: the object space is composed with many layers, in which objects are connected each other (solid lines denote strong connections and dashed lines for weak connections; there is only one layer in action space, and actions are connected similarly.

Hanchen Xiong (UIBK)

Object-Action Relation Learning

## Difficulties of Model Learning

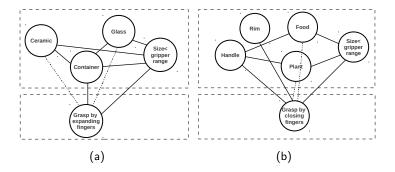


Figure: Two examples of dependencies between actions and objects' basic properties and geometry features: (a) grasp by expanding fingers; (b) grasp by closing fingers.

A (10) N (10)

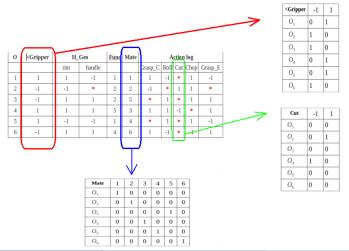
Homogeneity analysis is a popular statistics tool for categorical multivariate analysis.

Assume there are M object-action profiles in the dataset, each profile is represented by a J-dimensional vector  $O_i = [v_1, v_2, \dots, v_J]^{\top} (i \in [1, M])$  with each variable  $v_j$  denotes an attribute in the profile. For variable  $v_j$ , it takes on  $n_j$  categorical values (e.g. the action effect has binary values: +1 and -1).

Our data is categorical and multivariate, so straightforward.

## How Homogeneity Analysis Works

Data Reformulation By gathering the values of  $v_j$  over all M object-action profiles in an  $M \times n_j$  binary indicator matrix  $G_j, j \in \{1, 2, \dots, J\}$ 



Hanchen Xiong (UIBK)

Object-Action Relation Learning

October 4, 2013 10 / 29

# How Homogeneity Analysis Works

The key strength of homogeneity analysis is that it can simultaneously produces two projections to the same Euclidean space  $\mathbb{R}^{p}$ , one from *J*-dimensional profiles  $O_i$ , the other from the *M*-dimensional categorical attribute indicator vectors (columns of *G*). These projections are referred to as object score and category quantification, respectively

Denoting  $X \in \mathbb{R}^p$  as the object score vector, and  $Y_j \in \mathbb{R}^{n_j \times p}$  as the category quantification matrix of  $v_j$ , then the objective function is:

$$f(X, Y_1, \cdots, Y_J) = \frac{1}{J} \sum_{j=1}^J \operatorname{tr}(X - G_j Y_j)^\top (X - G_j Y_j)$$
(1)

For each  $G_j$ , we construct an  $M \times M$  diagonal matrix  $S_j$  with diagonal values equal the sum of the rows of  $G_j$ , i.e.,  $S_j(i, i) = 0$  if the  $v_j$  value of  $O_i$  is missing. Then the corresponding cost function is

$$f(X, Y_1, \cdots, Y_J) = \frac{1}{J} \sum_{j=1}^J \operatorname{tr}(X - G_j Y_j)^\top S_j (X - G_j Y_j)$$
(2)

$$\frac{1}{M} \mathbf{1}_{M \times 1}^{\top} S_* X = \mathbf{0}$$
(3)  
$$\frac{1}{M} X^{\top} S_* X = I$$
(4)

Object-Action Relation Learning

October 4, 2013 12 / 29

$$f(X, Y_1, \cdots, Y_J) = \frac{1}{J} \sum_{j=1}^{J} \operatorname{tr}(X - G_j Y_j)^{\top} S_j(X - G_j Y_j)$$
(5)

alternating least squares (ALS) algorithm is used. The basic idea of ALS is to iteratively optimize with respect to X or to  $[Y_1, \dots, Y_M]$  with the other held fixed. Assuming  $X^{(0)}$  is provided arbitrarily at iteration t = 0, each iteration of ALS can be summarized as:

• update 
$$Y_j$$
:  
 $Y_j^{(t)} = (G_j^{\top} S_j G_j)^{-1} G_j^{\top} X^{(t)};$ 
(6)

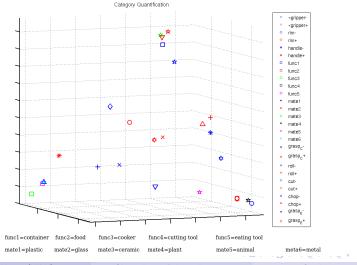
Update X:

$$X^{(t+1)} = S_*^{-1} \sum_{j=1}^J G_j Y_j^t;$$
(7)

 $\bigcirc$  normalize X:  $X^{(t+1)} = Gram-Schmidt(X^{(t+1)}).$ October 4, 2013 13 / 29

**Object-Action Relation Learning** 

How Object Scores  $X_i$  and Category Quantifications  $Y_j$  look like

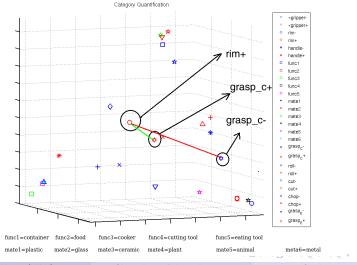


Hanchen Xiong (UIBK)

Object-Action Relation Learning

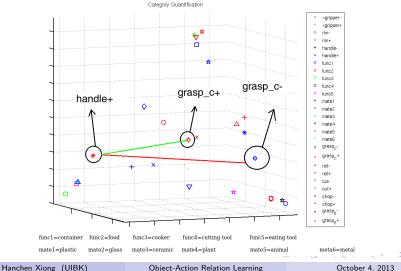
October 4, 2013 14 / 29

How Object Scores  $X_i$  and Category Quantifications  $Y_j$  look like

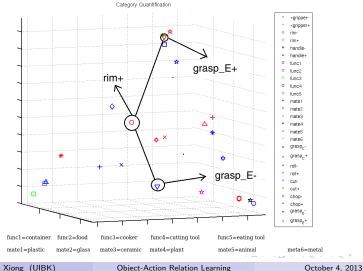


Object-Action Relation Learning

How Object Scores  $X_i$  and Category Quantifications  $Y_j$  look like



How Object Scores  $X_i$  and Category Quantifications  $Y_i$  look like

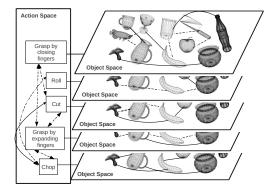


17 / 29

Hanchen Xiong (UIBK)

## Dependency Learning

Homogeneity analysis provides us Object Scores  $X_i$  and Category Quantifications  $Y_j$ , we are very close but not exactly



イロト 不得下 イヨト イヨト 二日

First, the *J* variables  $[v_1, v_2, ..., v_J]$  of each object  $O_i$  are divided into two groups, the object (variable) group  $V_o$  which covers basic properties and geometry features, and the action (variable) group  $V_a$  which contains action effects on the object  $O_i$ . We initially assume that each variable in action group  $v_{\beta}^a \in V_a$  depends on all variables of the object group  $V_o$ .

## Dependency Learning, cont.

Then, for variable  $v_{\beta}^{a}$ , we find its corresponding positive and negative category quantifications  $Y_{\beta,+}^{a}$  and  $Y_{\beta,-}^{a}$ , and compute the distances between them and all categories' quantifications in the object group as

$$d(Y^{a}_{\beta,+/-}, Y^{o}_{\omega,k}) = ||Y^{a}_{\beta,+/-} - Y^{o}_{\omega,k}||_{2}$$
(9)

where  $Y_{k,w}^o$  denotes the *k*-th category quantification of variable  $v_{\omega}^o$  in the object group. We compute the maximum ratio between them as

$$\lambda_{\omega,k}^{\beta} = \max\left\{\frac{d(Y_{\beta,+}^{a}, Y_{\omega,k}^{o})}{d(Y_{\beta,-}^{a}, Y_{\omega,k}^{o})}, \frac{d(Y_{\beta,-}^{a}, Y_{\omega,k}^{o})}{d(Y_{\beta,+}^{a}, Y_{\omega,k}^{o})}\right\}$$
(10)

イロト イポト イヨト イヨト 二日

## Dependency Learning, cont.

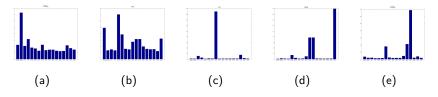


Figure: Check the dependency of five actions ((a) grasp by closing fingers (b) roll (c) cut (d) chop (e) grasp by expanding fingers) on category quantifications of object variables (from left to right bars denotes the maximum ratios (10) of igripper-, igripper+, handle-, handle+, rim-,rim+, container, food, cooker, cutting tool, eating tool, plastic, glass, ceramic, plant, animal, metal).

Eliminate the dependencies between action variable  $v^a_\beta$  and category quantifications in  $V_0$  if

$$\frac{\lambda_{\omega,k}^{\beta}}{\sum_{\omega,k}\lambda_{\omega,k}^{\beta}} < \sigma$$

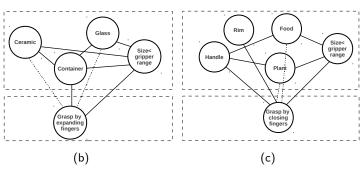
Hanchen Xiong (UIBK)

Object-Action Relation Learning

(11)

## Dependency Learning, cont.

| Action variable in $V_a$ | Depended category quantification of variable in $V_o$                                                                    |  |  |  |  |  |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| $grasp_C$                | <pre><gripper-, <gripper+,="" function="food," handle-,="" material="plant&lt;/pre" rim+,="" rim-,=""></gripper-,></pre> |  |  |  |  |  |
| roll                     | <pre><gripper-, function="eating" handle+,="" handle-,="" material="metal&lt;/pre" tool,=""></gripper-,></pre>           |  |  |  |  |  |
| cut                      | function=food, material=plant                                                                                            |  |  |  |  |  |
| chop                     | function=cutting tool, function=eating tool, material=metal                                                              |  |  |  |  |  |
| $grasp_E$                | function=container, material=glass, material=ceramic                                                                     |  |  |  |  |  |



(a)

- 2

イロト イポト イヨト イヨト

## **Object Scores Decomposition**

$$X^{(t+1)} = S_*^{-1} \sum_{j=1}^J G_j Y_j^t;$$
(12)

(12) updates object scores X by taking the average of the quantifications of the categories it belongs to.

Object score/representation at  $\beta$  action layer

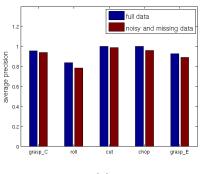
$$X_{\beta} = \hat{S}_{*,\omega,k}^{-1} \sum_{\omega,k \in \mathsf{dependent}(\beta)} \pi_{\omega,k} \hat{G}_{\omega,k} \hat{Y}_{\omega,k}$$
(13)

 $\pi_{\omega,k}$  denotes the normalized dependency weights which reflect how  $\beta$  depends on quantifications in  $\hat{Y}_{\omega,k}$ :

$$\pi_{\omega,k} = \frac{\lambda_{\omega,k}^{\beta}}{\sum_{\omega,k \in \mathsf{dependent}(\beta)} \lambda_{\omega,k}^{\beta}} \tag{14}$$

## Action Effect Prediction

Assume O is an unseen object. Its representation in action layer  $\beta$  can be computed (13), and then the binary effect classification can be easily done by majority voting of the k-nearest neighbouring objects of training set.

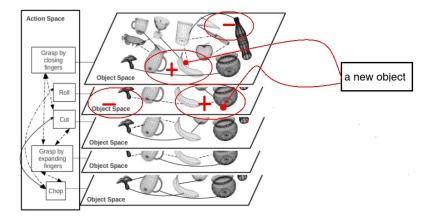


(d)

Figure: The average precision of correct effect prediction of five actions.

Hanchen Xiong (UIBK)

## Object Selection, cont.



Hanchen Xiong (UIBK)

Object-Action Relation Learning

October 4, 2013 25 / 29

(日) (四) (王) (王) (王)

## **Object Selection**

Second, the model can perform object (*O*) selection out of a set of candidates **C** based on action ( $\beta$ ) and effect ( $E \in [-1, 1]$ ). Given the desired category *E* of action  $\beta$ , first object representations in candidate set  $X_{\beta}^{(O \in \mathbf{C})}$  can be computed (13). Then the ratio of the distance between each  $X_{\beta}^{(O)}$  and  $\beta_{c}^{E}$  to the distance between  $X_{\beta}^{(O)}$  and  $\beta_{c}^{-E}$  can be computed:

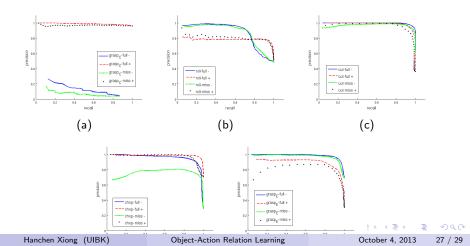
$$\phi_{O} = \frac{d(X_{\beta}^{(O)}, \beta_{c}^{E})}{d(X_{\beta}^{(O)}, \beta_{c}^{-E})}$$
(15)

where  $\beta_c^{+1/-1}$  are the centroids of object representations which belongs to positive and negative category in  $\beta$  action layer:

$$\beta_{c}^{+/-} = (G_{\beta,+/-}^{\top} S_{\beta,+/-} G_{\beta,+/-})^{-1} G_{\beta,+/-}^{\top} X_{\beta}$$
(16)

## Object Selection, cont.

The optimal object  $O^{\dagger}$  is the one with smallest  $\phi_O$ . Alternatively, with the ratios of all objects in **C** computed, the object retrieval result can be ranked by their ratios in increasing order.



# **Conclusive Remarks**

- object-action relations are exploited;
- multi-layer structure, in which actions are represented object-oriented manner, and objects are represented in a semi action-oriented manner;
- novel object-action relation is straightforward with multi-layer presentations;

#### Future Work

- action-action relations are also straightforward;
- grounding with real-features (low-level and high level);
- go further to parameters level.

< 回 ト < 三 ト < 三 ト

# END



▲ @ ▶ < ≥</p>

Object-Action Relation Learning