Intelligent and Interactive Systems

User Tools

Site Tools


research:projects

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
research:projects [2016/06/01 11:34]
c7031007
research:projects [2017/09/14 17:25]
c703101
Line 2: Line 2:
  
 ===== Current EU Projects ===== ===== Current EU Projects =====
 +
 +{{:​research:​imagine-transparent.png?​nolink&​200 ||}}[[https://​www.imagine-h2020.eu|IMAGINE - Robots Understanding Their Actions by Imagining Their Effects ]] (EU H2020, 2017-2020): seeks to enable robots to understand the structure of their environment and how it is affected by its actions. “Understanding” here means the ability of the robot (a) to determine the applicability of an action along with parameters to achieve the desired effect, and (b) to discern to what extent an action succeeded, and to infer possible causes of failure and generate recovery actions.
 +
 +<​html>​
 +<div style="​clear:​both"><​br></​div>​
 +</​html>​
  
 {{:​research:​squirrel.png?​nolink&​200 |}}[[http://​www.squirrel-project.eu/​|SQUIRREL]] (EU FP7-ICT-STREP,​ 2014-2018): Clutter in an open world is a challenge for many aspects of robotic systems, especially for autonomous robots deployed in unstructured domestic settings, affecting navigation, manipulation,​ vision, human robot interaction and planning. ​ SQUIRREL addresses these issues by actively controlling clutter and incrementally learning to extend the robot'​s capabilities while doing so. We term this the B3 (bit by bit) approach, as the robot tackles clutter one bit at a time and also extends its knowledge continuously as new bits of information become available. ​ SQUIRREL is inspired by a user driven scenario, that exhibits all the rich complexity required to convincingly drive research, but allows tractable solutions with high potential for exploitation. We propose a toy cleaning scenario, where a robot learns to collect toys scattered in loose clumps or tangled heaps on the floor in a child'​s room, and to stow them in designated target locations. {{:​research:​squirrel.png?​nolink&​200 |}}[[http://​www.squirrel-project.eu/​|SQUIRREL]] (EU FP7-ICT-STREP,​ 2014-2018): Clutter in an open world is a challenge for many aspects of robotic systems, especially for autonomous robots deployed in unstructured domestic settings, affecting navigation, manipulation,​ vision, human robot interaction and planning. ​ SQUIRREL addresses these issues by actively controlling clutter and incrementally learning to extend the robot'​s capabilities while doing so. We term this the B3 (bit by bit) approach, as the robot tackles clutter one bit at a time and also extends its knowledge continuously as new bits of information become available. ​ SQUIRREL is inspired by a user driven scenario, that exhibits all the rich complexity required to convincingly drive research, but allows tractable solutions with high potential for exploitation. We propose a toy cleaning scenario, where a robot learns to collect toys scattered in loose clumps or tangled heaps on the floor in a child'​s room, and to stow them in designated target locations.
 +
 <​html>​ <​html>​
 <div style="​clear:​both"><​br></​div>​ <div style="​clear:​both"><​br></​div>​
research/projects.txt · Last modified: 2024/02/19 12:24 by Antonio Rodriguez-Sanchez