Intelligent and Interactive Systems

User Tools

Site Tools


start

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
start [2021/03/31 12:52]
Matteo Saveriano
start [2025/11/07 06:25] (current)
IIS Webadmin
Line 12: Line 12:
 ===== Working With Us ===== ===== Working With Us =====
   * Check our thesis topics for [[theses/​start|Bachelor and Master students]].   * Check our thesis topics for [[theses/​start|Bachelor and Master students]].
-  * [[https://ellis.eu/|ELLIS]] PhD Program: ​[[https://ellis.eu/de/news/​ellis-phd-program-call-for-applications|Call for Applications]]+  * [[:​jobs:#​notice_for_non-eueea_prospective_master_students|Notice]] for non-[[https://en.wikipedia.org/​wiki/EU|EU]]/[[https://en.wikipedia.org/wiki/European_Economic_Area|EEA]] prospective Master students 
 +  * We currently do not have any open PhD positions. 
 + 
 +<​html><​!--We currently have [[jobs|one open PhD position]].--></​html>​
  
 <​html><​!-- <​html><​!--
Line 22: Line 25:
 </​html>​ </​html>​
  
- +{{ ::iis_retreat_2024.jpg?direct&​900 ​|}}\\ 
-{{::dsc_0052.jpg?640|Group Picture}}\\ +<​html>​ 
-Group picture taken at our retreat ​in Obergurgl +<div style="​text-align:​ center;">​ 
 +  <p>Group picture taken at our 2024 retreat ​at Meissner Haus.</​p>​ 
 +</​div>​ 
 +</​html>​
  
 ===== News ===== ===== News =====
  
-<​HTML><​table><​tr valign="​top"><​td>​2021-03-24</​td><​td>​Justus Piater gives an invited ​lecture ​<i>Machine ​Learning, Perception, And Abstract Concepts</i> at Invited lecture at Ontario Tech UCanadaonline. <span class="​actions"><​a href="​javascript:​void(0)"​ onclick="​showHide('​newsitem0',​ '​Abstract'​)">​[Abstract]</​a></​span><​blockquote id="​newsitem0Abstract"​ style="​display:​none">​With every spectacular achievement of a machine learning +<​HTML><​table><​tr valign="​top"><​td>​2025-11-19</​td><​td>​Justus Piater gives an invited ​talk <i>Structural Understanding – The Grand Challenge of Robot 
-    system, the long-elusive AI breakthrough is popularly proclaimed +    ​Learning</​i>​ at <a href="​https://​elliit.se/​news-and-events/​focus-period-lund-2025/​symposium/">​ELLIIT Focus Period Symposium: Robot Learning</​a>​Lund University. (The ELLIIT Focus Period Symposium is the highlight of the five-week focus periodduring which young international scholars, ELLIIT researchers and other well-established international academics gather in Lund to work together on joint research challenges.<span class="​actions"><​a href="​javascript:​void(0)"​ onclick="​showHide('​newsitem0',​ '​Abstract'​)">​[Abstract]</​a></​span><​blockquote id="​newsitem0Abstract"​ style="​display:​none">​AI has made great progress in recent yearsand the 
-    ​to be just around the corner Most recent successes have been due +    ​sophistication of robots has been rising with costs fallingYet
-    in large part to massive data and computationin particular using +    ​the capabilities of AI-enabled robots are not keeping paceI 
-    ​deep artificial neural networks But can artificial cognition +    ​argue that this is due to a lack of structural understanding ​by 
-    ​really be achieved just by further scaling up existing +    ​current AI systems. ​will discuss ​several lines of research in my 
-    ​machine-learning techniques?  ​I discuss ​examples ​of simple, +    ​lab that seek to enable ​robots ​to generalize better and learn 
-    ​perceptual problems ​that are easily solved by humans but very +    ​faster thanks ​to explicit notions ​of structure.</​blockquote></​td></​tr><​tr valign="​top"><​td>​2025-09-18</​td><​td>​Samuele Tosatto ​gives an invited ​keynote ​<i>Where are all the intelligent ​robots? ​A quest for efficiency in reinforcement learning</i> at <a href="​https://​sarl-plus.github.io/RL-Bootcamp2025/">Reinforcement Learning Bootcamp 2025</​a>, ​Salzburg. <span class="​actions"​><a href="javascript:​void(0)"​ onclick="​showHide('​newsitem1',​ '​Abstract'​)">[Abstract]</a></span><blockquote id="​newsitem1Abstract"​ style="​display:​none"​>As artificial intelligence reshapes our digital world at a breathtaking pace,  
-    difficult for today'​s machine learning methods. ​ These problems +    a curious question arises: Where are all the real-world, intelligent robots?  
-    reflect how humans conceptualize their world. ​ Their mastery is +    While we have mastered the generation of text, images, ​and video by leveraging vast web-scale datasets, 
-    thus likely ​to be an essential prerequisite for autonomous ​robots +    robotics still faces a fundamental data bottleneck. Reinforcement ​learning ​(RL) offers a compelling solution,  
-    to attain higher levels ​of cognitive abilities. ​ To get there, a +    enabling agents to learn autonomously by collecting their own experience.  
-    few core issues can be identified that should drive research in +    However, ​the path to autonomy is often blocked by the staggering inefficiency ​of current RL algorithms,​ 
-    cognitive robotics.</​blockquote></​td></​tr><​tr valign="​top"><​td>​2021-01-28</​td><​td>​Matteo Saveriano ​gives an invited ​talk <i>Making ​robots ​to learn from human observation?</i> at <a href="​https://​www.bmeia.gv.at/en/austrian-embassy-ottawa/​news/​events/​detail/​article/​showcasing-young-austrian-scholars-and-scientists-an-original-seven-part-virtual-lectures-ser/">Showcasing Young Austrian Scholars and Scientists, Austrian cultural forum, Ottawa</​a>, ​online.</td></​tr><​tr valign="top"><​td>2021-01-14</td><td>Matteo Saveriano gives an invited talk <​i>​Hierarchical action decomposition ​and motion ​learning ​for the execution ​of manipulation ​tasks</i> at <href="​http://​www.gmar.at/​aktuell/">​Hello Tyrol calling! Robotics Talk onlineGMARInnsbruck</a>, online.</​td></​tr><​tr valign="​top"><​td>​2020-11-19</​td><​td>​Justus Piater gives an invited ​talk <i>Machine Learning in Robotics</i> at <a href="​https://​baiome.org/">bAIome PI Talk, Center for +    which can require millions of trials to master simple ​tasks. This talk embarks on quest to tackle this  
-    ​Biomedical AI, University Medical Center Hamburg-Eppendorf</​a>, ​online. <span class="​actions"><​a href="​javascript:​void(0)"​ onclick="​showHide('​newsitem4', '​Abstract'​)">​[Abstract]</​a></​span><​blockquote id="newsitem4Abstract" style="​display:​none">​Machine Learning increasingly equips ​robots ​with +    efficiency problem head-onI will argue that a crucial step toward unlocking the potential of  
-    ​learning capabilities and flexibility This will enable them to +    robot learning lies in a two-pronged approach: firstby developing statistically efficient  
-    ​act purposefully ​in unstructured ​environments ​and to react to +    algorithms that can reuse data by leveraging sound off-policy techniquesand second,  
-    ​unforeseen events ​People ​can teach them intuitively to perform +    by designing better action representations for physical, real-world agents.  
-    ​tasks instead ​of having to program them in painstaking ways+    By making our algorithms more efficient and refining their core hypotheses,  
-    ​Robots can learn from experience ​and can improve their behavior +    we can accelerate the journey toward real embodied artificial intelligence.</blockquote></​td></​tr><​tr valign="​top"><​td>​2025-07-15</​td><​td>​Justus Piater gives an invited ​keynote ​<i>Making robots learn to perceive and act with 
-    ​over time In this talk I will give an overview ​of methods+    understanding</i> at <a href="​https://​www.uibk.ac.at/​en/​congress/​multibody2025/">The 
-    ​opportunitiesand challenges ​of machine ​learning ​in +    ​12th ECCOMAS Thematic Conference on Multibody Dynamics</​a>, ​Innsbruck. <span class="​actions"><​a href="​javascript:​void(0)"​ onclick="​showHide('​newsitem2', '​Abstract'​)">​[Abstract]</​a></​span><​blockquote id="newsitem2Abstract" style="​display:​none">​The flexibility and robustness of current ​robots ​is 
-    ​robotics.</​blockquote></​td></​tr><​tr valign="​top"><​td>​2020-11-20</​td><​td>​Simon Haller-Seeber ​and Patrick Lamprecht present a show <i>Explainable AI: A sneak peek into the Black-Box</i> at <a href="​https://​youtube.com/watch?​v=4NVfPwdLnCg&​amp;​t=17m43s">​Science ​Slam</​a>, ​online.</​td></​tr>​ +    ​limited by their lack of understanding of their environmentFor 
-     +    ​this reason, most robots operate ​in controlled ​environments. 
-    ​<tr valign="​top"><​td>​2020-10-22/23</​td><​td>​Matteo Saveriano, Erwan Renaudo, Antonio Rodríguez-Sánchez, ​and Justus Piater organize the </i> <a href="​https://​iis.uibk.ac.at/​conferences/hfr2020/"> ​13th International Workshop on Human-Friendly Robotics (HFR 2020)</a>, Innsbruck ​(online).</​td></​tr>​ +    ​Machine learning can circumvent modeling problems but introduces 
-     +    new problems of generalizing from examplesHow can robots acquire 
-    ​<tr valign="​top"><​td>​2020-09-30</​td><​td>​Erwan Renaudo contributes a talk <i>ROSSINIRobOt kidS deSIgn thiNkIng</i> at <a href="​https://​www.springer.com/gp/book/9783030674106">​Robotics ​in  +    ​understanding (of structure, function, causality, etc.) that 
-    Education 2020</​a>, ​online.</​td></​tr><​tr valign="​top"><​td>​2020-06-22</​td><​td>​Justus Piater gives an invited talk <i>Conditional Neural Movement Primitives</i> at <a href="​http:​//www.gdr-isis.fr/index.php?​page=reunion&​amp;​idreunion=424"​>GdR +    ​allows them to generalize ​from sparse ​experience? Motivated by 
-    ISIS Réunion Apprentissage et Robotique</a>, online. ​<span class="actions"><​a href="​javascript:​void(0)"​ onclick="​showHide('​newsitem7',​ '​Abstract'​)"​>[Abstract]</a></span><blockquote id="newsitem7Abstract"​ style="​display:none">​Conditional Neural Movement Primitives (CNMP) constitute +    ​shortcomings of current machine-learning methods, I will argue 
-    a novel framework for robot programming by demonstration based on +    that &​quot;​understanding&​quot;​ is a meaningful notion in AI that reaches 
-    Conditional Neural Processes (CNP) Like Bayesian methods such as +    beyond prediction and control. I will discuss examples ​of our 
-    Gaussian Processes (GP), CNP learn how target distributions depend +    recent work on learning visual relational conceptsextrapolation 
-    on data, and can be conditioned on specific data points to infer +    ​of learned movements beyond the training distributionlearning ​of 
-    new target distributions at test time ​Unlike GP that are +    symbolic concepts and rules, and structure-driven skill learning 
-    expensive to train and scale poorly to high dimensions, CNP are +    ​from sensorimotor experience. Our long-term objective is to 
-    neural networks and are trained by gradient descent ​CNMP +    improve abstraction,​ generalization,​ robustness, and ultimately 
-    leverage CNP to represent motion trajectories that can be +    explainability of robot perception and action.</​blockquote></​td></​tr><​tr valign="​top"><​td>​2025-07-11</​td><​td>​Justus Piater ​and Alejandro Agostini give an invited talk <i>Learning Symbols and Abstractions in Robot Planning</i> at <a href="​https://​www.unibz.it/en/​events/​abstraction-language-science-engineering">Abstraction:​ 
-    conditioned, ​at test time, on task paramters such as goal +    Language - Science ​- Engineering</​a>, ​Bolzano(International Workshop)</​td></​tr><​tr valign="​top"><​td>​2025-04-25</​td><​td>​Simon Haller-Seeber gives an invited talk <​i>​AI-powered tools for real-time transcription ​and translation in action: A self-hosted open-source framework for digital spaces.</​i> ​at <a href="​https://​www.uibk.ac.at/​de/medien/​veranstaltungen/​tagungen/​medien-wissen-bildung-2025/">Medien ​Wissen - Bildung 2025: Streif­züge an den Naht­stel­len von Medien, Bil­dung und Phi­lo­so­phie</​a>, ​Universität ​Innsbruck.</​td></​tr><​tr valign="​top"><​td>​2025-04-10</​td><​td>​Simon Haller-Seeber gives an invited keynote ​<i>Hands-on Approaches to Software, Robotics, and AIExploring Experiments and Science in Action</i> at <a href="​https://​iis.uibk.ac.at/public/simon/​ECER-2025/">European Conference on Educational ​Robotics ​(ECER 2025)</​a>, ​HTL Anichstrasse.</​td></​tr><​tr valign="​top"><​td>​2025-04-10</​td><​td>​Simon Haller-Seeber and Christopher Kelter teach a tutorial ​<i>Was sind Roboter, was macht eine KI? Entwickle deine eigene KI und programmiere unsere Minibots</i> at Campustag BG/BRG Sillgasse, Universität Innsbruck.</td></tr><tr valign="top"><​td>2025-04-03</td><​td>​Justus Piater gives an invited keynote <​i>​What is AI really?</iat <a href="https://www.uibk.ac.at/​events/​2025/​04/​03/​ai-in-law-and-practice-regional-perspectives-on-european-rules">​Cross-Border 
-    ​locations, via points, ​and/or force readings. ​ Moreover, CNMP are +    ​Seminar: AI in Law and Practice: Regional Perspectives ​on European 
-    conditioned ​on sensor readings during execution, resulting in +    ​Rules</a>, Universität Innsbruck.</​td></​tr><​tr valign="​top"><​td>​2025-03-06</​td><​td>​Justus Piater ​teaches a tutorial ​<i>Funktionsweise,​ Möglichkeiten und Grenzen von KI</i> at <a href="​https://​www.tirol.gv.at/​fileadmin/​themen/​bildung/​medienzentrum/​downloads/07_Magazin_Co/2025_01.pdf">Lieber 
-    ​robust, reactive behavior. ​ This talk will present an overview of +    ​gleich berechtigt als später: Hallo KI, hilfst du uns bei der 
-    how CNMP work and how they can be used in various robot +    ​Gleichstellung?​!</​a>, ​Tiroler Bildungsinstitut Grillhof Vill. <span class="​actions"><​a href="​javascript:​void(0)"​ onclick="​showHide('​newsitem8', '​Abstract'​)">​[Abstract]</​a></​span><​blockquote id="newsitem8Abstract" style="​display:​none">​Künstliche Intelligenz&​quot;​ bezeichnet derzeit Systeme, die 
-    applications.</blockquote></​td></​tr><​tr valign="​top"><​td>​2020-06-03</​td><​td>​Justus Piater appears in the media: Wie der Roboter denken lernt.</​td></​tr><​tr valign="​top"><​td>​2020-01-29</​td><​td>​Justus Piater ​gives an invited talk <i>Digital Science</i> at <a href="​https://​www.graduateacademy.uni-heidelberg.de/karriere/veranstaltungsreihen.html">Vortragsreihe +    ​auf maschinellem Lernen (ML) basieren. Dieser Workshop führt ​in 
-    ​„Primers for Predocs – Strategien für eine erfolgreiche +    ​die Grundlagen des ML ein, mit besonderem Augenmerk auf neuronale 
-    ​Promotion“</​a>, ​Universität Heidelberg. <span class="​actions"><​a href="​javascript:​void(0)"​ onclick="​showHide('​newsitem10', '​Abstract'​)">​[Abstract]</​a></​span><​blockquote id="newsitem10Abstract" style="​display:​none">​Massive availability of data and computing power are +    Netze, der derzeit populärsten ML-TechnologieDarauf aufbauend 
-    ​promoting data-driven methods ​in all areas of science and +    ​vermittelt er ein Grundverständnis für prinzipielle Möglichkeiten 
-    ​technology I will describe how the University of Innsbruck +    und Grenzen von ML und warum es mit derzeitigen Mitteln extrem 
-    ​supports this via its new Digital Science Centerand will give a +    schwierig istDiskriminierung in KI-Systemen zu 
-    ​flavor of machine learning for data analysis.</​blockquote></​td></​tr><​tr valign="​top"><​td>​2020-01-20</​td><​td>​Joanna Chimiak-Opoka, Carina König, ​and Justus Piater appear in the media: ​<a href="​https://​www.uibk.ac.at/​newsroom/​ergaenzung-digital-science-erfolgreich-gestartet.html.de"​>Ergänzung Digital Science erfolgreich gestartet – UIBK Newsroom</a>​.</​td></​tr></​table></​HTML>​+    ​verhindern.</​blockquote></​td></​tr><​tr valign="​top"><​td>​2025-02-26</​td><​td>​Simon Haller-Seeber ​and Christopher Kelter teach a tutorial ​<i>Programmieren eines autonomen Roboters anhand einer selbstentwickelten KI</iat STAIR-Lab INNALP Workshop für das Gymnasium Ursulinenen Innsbruck, Universität Innsbruck.</​td></​tr></​table></​HTML>​
  
 [[news|Older News]] [[news|Older News]]
Line 89: Line 94:
 Austria Austria
  
-**How to find us:** See the [[http://informatik.uibk.ac.at/​how-to-reach-us/​|directions]].+**How to find us:** See the [[https://www.uibk.ac.at/​informatik/kontakt/​anfahrt.html.en|directions]].
  
 **Legal Notice:** See the [[:​impressum|Impress and Privacy Notice]]. **Legal Notice:** See the [[:​impressum|Impress and Privacy Notice]].
start.1617187965.txt.gz · Last modified: 2021/03/31 12:52 by Matteo Saveriano