Publications
  
2017 / 2016 / 2015 / 2014 / 2013 / 2012 / 2011 /2010 /2009 / 2008 / 2007 / 2006 / 2005 / 2004 / 2003 / 2002 /
 
 
 
 
 
 
 

2017

Rezapour-Lakani S, Rodríguez-Sánchez AJ, Piater J. Can Affordances Guide Object Decomposition Into Semantically Meaningful Parts?. IEEE Winter Conference on Applications of Computer Vision (WACV) 2017. Accepted

2016

Hoyoux T, Rodríguez-Sánchez AJ, Piater J. Can Computer Vision Problems Benefit from Structured Hierarchical Classification?. Machine Vision and Applications 1-14. May 2016.

Rodríguez-Sánchez AJ, Oberleiter S, Xiong H, Piater J. Learning V4 curvature cell populations from sparse endstopped cells. 25th International Conference on Artificial Neural Networks (ICANN) 2016. Barcelona (Spain).

Stabinger S, Rodríguez-Sánchez AJ, Piater J. 25 years of CNNs: Can we compare to human abstraction capabilities?. 25th International Conference on Artificial Neural Networks (ICANN) 2016. Barcelona (Spain).

Fontanella S, Rodríguez-Sánchez AJ, Piater J. Kronecker decomposition for image classification. Conference and Labs of the Evaluation Forum (CLEF) 2016. Evora (Portugal).

Stabinger S, Rodríguez-Sánchez AJ, Piater J. Monocular Obstacle Avoidance for Blind People using Probabilistic Focus of Expansion Estimation. IEEE Winter Conference on Applications of Computer Vision (WACV) 2016. Lake Placid (USA).

2015

Rodríguez-Sánchez AJ, Fallah M, Leonardis A. Hierarchical object representations in the visual cortex and computer vision. Frontiers in Computational Neuroscience 9 (142). Link

Xiong H, Rodríguez-Sánchez AJ, Szedmak S, Piater H. Diversity priors for learning early visual feature. Frontiers in Computational Neuroscience 9 (140). Link

Rodríguez-Sánchez AJ, Szedmak S, Piater J. SCurV: A 3D Descriptor for Object Classification. IEEE/RSJ International Conference on Intelligento Robot Systems (IROS) 2015. PDF

Stabinger S, Rodríguez-Sánchez AJ, Piater J. Learning Abstract Classes using Deep Learning. Compational Model of the Visual Cortex workshop, BICT 2015. New York (USA).

Rodríguez-Sánchez AJ, Fontanella S, Piater J, Szedmak S. Image representation through tensor decomposition. Conference and Labs of the Evaluation Forum (CLEF) 2015. PDF

Hoyoux T, Rodríguez-Sánchez AJ, Piater J, Szedmak S. Can Computer Vision problems benefit from Structured Hierarchical classification?. Computer Analysis of Images and Patterns (CAIP) 2015. PDF

Rezapour-Lakani S, Popa M, Rodríguez-Sánchez AJ, Piater J. CPS: 3D compositional part segmentation through grasping. Computer and Robot Vision (CRV) 2015. PDF

2014

Azzopardi, G, Rodríguez-Sánchez, AJ, Piater, J, Petkov, N. A push-pull CORF model of a simple cell with antiphase inhibition improves SNR and contour detection. PLOS ONE 9 (7), 2014. Link open access

Rodríguez-Sánchez AJ, Neumann H, Piater J. Beyond Simple and Complex Neurons: Towards Intermediate-level Representations of Shapes and Objects. Künstliche Intelligenz, Springer, Dec. 2014 issue, 1-11, early access

Rodríguez-Sánchez AJ, Piater J. Models of the Visual Cortex for Object Representation: Learning and Wired Approaches. In: Lucio Grandinetti, Thomas Lippert, Nicolai Petkov (editors), Brain-Inspired Computing, pp. 51–62, 2014 (BrainComp). Springer Lecture Notes in Computer Science 8603. Link

Rezapour-Lakani S, Popa M, Antonio J. Rodríguez-Sánchez AJ, Piater J. Scale-Invariant. Unsupervised Part Decomposition of 3D Objects. Parts and Attributes, 2014 (Workshop at ECCV). PDF

Azzopardi, G, Rodríguez-Sánchez, AJ, Piater, P, Petkov, N. A computational model of push-pull inhibition of simple cells with application to contour detection. 37th European Conference on Visual Perception, 2014.

Xiong, H, Szedmak, S, Rodríguez-Sánchez, AJ, Piater, J. Towards Sparsity and Selectivity: Bayesian Learning of Restricted Boltzmann Machine for Early Visual Features. 24th International Conference on Artificial Neural Networks, 2014, to appear. Springer Lecture Notes in Computer Science. PDF

2013

Krüger, N, Janssen, P, Kalkan, S, Lappe, M, Leonardis, A, Piater, J, Rodríguez-Sánchez, AJ, Wiskott, L. Deep Hierarchies in the Primate Visual Cortex: What Can We Learn For Computer Vision?. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), 1847-1871, 2013. PDF

Antonio Rodríguez-Sánchez, AJ, Dudek, G, Tsotsos, JK. Detecting, Representing and Attending to Visual Shape. In: Sven Dickinson, Zygmunt Pizlo (editors), Shape Perception in Human and Computer Vision: An Interdisciplinary Perspective, 2013. Springer Advances in Computer Vision and Pattern Recognition. PDF

Justus Piater, Antonio Rodríguez Sánchez (editors), Proceedings of the 37th Annual Workshop of the Austrian Association for Pattern Recognition (ÖAGM/AAPR), 2013. Link

2012

Rodríguez-Sánchez, AJ, Tsotsos, JK. The roles of endstopped and curvature tuned computations in a hierarchical representation of 2D shape. PLoS ONE 7 (8), pp. 1–13, 2012. Link open access

2011

Rodríguez-Sánchez, AJ, Tsotsos, JK. The importance of intermediate representations for the modeling of 2D shape detection: Endstopping and curvature tuned computations. Proc. IEEE Computer Vision and Pattern Recognition, 4321-4326. PDF

2010

Rodríguez-Sánchez, AJ. Intermediate Visual Representations for Attentive Recognition Systems. PhD Thesis, York University Technical report CSE-2010-06. September 2010. PDF

2009

Rodríguez-Sánchez, AJ, Tsotsos, J.K., Treue, S., Martinez-Trujillo, J.C., Comparing neuronal and behavioral thresholds for spiral motion discrimination, Neuroreport 20(18): 1613-1618, December 2009.

2008

Tsotsos, J.K., Rodríguez-Sánchez, A., Rothenstein, A., Simine, E., Different Binding Strategies for the Different Stages of Visual Recognition, Brain Research , Available online 23 May 2008. PDF

Rothenstein, A., Rodríguez-Sánchez, A., Simine, E., Tsotsos, J.K., Visual Feature Binding within the Selective Tuning Attention Framework, Int. J. Pattern Recognition and Artificial Intelligence - Special Issue on Brain, Vision and Artificial Intelligence, 22(5), 2008 p. 861-881.

2007

Rodríguez-Sánchez AJ, Simine E, Tsotsos JK. Attention and Visual Search, International Journal of Neural Systems, Vol. 17, No. 4, August 2007. PDF.

Tsotsos JK, Rodríguez-Sánchez AJ, Rothenstein A, Simine E. Different Binding Strategies for the Different Stages of Visual Recognition. Brain, Vision and Artificial Intelligence 2007, Naples, Italy. PDF

Simine E, Rodríguez-Sánchez AJ, Tsotsos JK. Visual Search vith Selective Tuning. Vision Sciences Society 2007, Sarasota (USA)

Tsotsos JK, Rodríguez-Sánchez AJ, Rothenstein A, Simine E. The Different Stages of Visual Recognition Requieres Different Binding Strategies. Center for Vision Research 2007, Toronto (Canada).

2006

Rodríguez-Sánchez AJ, Simine E, Tsotsos JK. Feature Conjunctions in Serial Visual Search. International Conference on Artificial Neural Networks, 10-14 September 2006, Athens (Greece). PDF

2005

Rodríguez-Sánchez AJ, Tsotsos JK. A System for Biologically Plausible Object Recognition. IS 2005, 16th Annual Canadian Conference on Intelligent Systems, Quebec (Canada).

2004

Rodríguez-Sánchez AJ, Tsotsos JK, Martinez-Trujillo JC. Velocity gradient information influences optical flow processing in human observers. Vision Sciences Society 2004, Sarasota (USA).

Rodríguez-Sánchez AJ, Tsotsos JK, Martinez-Trujillo JC. (2004). Velocity gradient information influences optical flow processing in human observers [Abstract]. Journal of Vision, 4(8), 606a, http://journalofvision.org/4/8/606/, doi:10.1167/4.8.606. PDF.

Rodríguez-Sánchez AJ, Tsotsos JK. Attention, Visual Search and Object Recognition. Technical Report. York University. PDF.

2003

Rodríguez-Sánchez AJ, Cheyne DO, Tsotsos JK, Martinez-Trujillo JC. Speed gradient information influences optical flow processing in human observers. Society for Neuroscience 2003, Saint Louis (USA). PDF

Rodríguez-Sánchez AJ, John K. Tsotsos JK, Martínez-Trujillo JC. Speed gradients improve human ability to discriminate among optical flow stimuli. Center for Vision Research 2003, Toronto (Canada).

2002

Pascual-Montano AD, Sesto A, Rodríguez-Sánchez AJ, Navarro M, Jorcano JL, Carazo JM. Density Estimator Self-Organizing Map for Gene Expression Analysis. ISMB 2002